首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 908 毫秒
1.
Mechanism of imprinting on mouse distal chromosome 7   总被引:3,自引:0,他引:3  
Genomic imprinting is an epigenetic mode of gene regulation that results in expression of the autosomal 'imprinted' genes from only a single allele, determined exclusively by parental origin. To date over 20 imprinted genes have been identified in mouse and man and these appear to lie in clusters in restricted regions on a subset of chromosomes. This may be a critical feature of imprinting suggesting a domain-type mode of regulation. Imprinted domains are replicated asynchronously, show sex-specific meiotic recombination frequencies and have CpG-rich regions that are differentially methylated, often associated with the imprinted genes themselves. Mouse distal chromosome 7 is one such domain, containing at least nine imprinted genes spanning over 1 Mb of DNA. For the maternally expressed p57Kip2 gene, passage through the female germline is essential to generate the active state, whereas passage through the male germline is needed to force the maternally expressed H19 gene into an inactive state. It is therefore possible that the mouse distal chromosome 7 imprinted domain is actually composed of two or more independently regulated subdomains.  相似文献   

2.
3.
Genomic imprinting in mammals: emerging themes and established theories   总被引:1,自引:0,他引:1  
  相似文献   

4.
A small sub-set of mammalian genes are subject to regulation by genomic imprinting such that only one parental allele is active in at least some sites of expression. Imprinted genes have diverse functions, notably including the regulation of growth. Much attention has been devoted to the insulin-like growth factor signalling pathway that has a major influence on fetal size and contains two components encoded by the oppositely imprinted genes, Igf2 (a growth promoting factor expressed from the paternal allele) and Igf2r (a growth inhibitory factor expressed from the maternal allele). These genes fit the parent-offspring conflict hypothesis for the evolution of genomic imprinting. Accumulated evidence indicates that at least one other fetal growth pathway exists that has also fallen under the influence of imprinting. It is clear that not all components of growth regulatory pathways are encoded by imprinted genes and instead it may be that within a pathway the influence of a single gene by each of the parental genomes may be sufficient for parent-offspring conflict to be enacted. A number of imprinted genes have been found to influence energy homeostasis and some, including Igf2 and Grb10, may coordinate growth with glucose-regulated metabolism. Since perturbation of fetal growth can be correlated with metabolic disorders in adulthood these imprinted genes are considered as candidates for involvement in this phenomenon of fetal programming.  相似文献   

5.
6.
Tandem repeats in the CpG islands of imprinted genes   总被引:4,自引:0,他引:4  
Hutter B  Helms V  Paulsen M 《Genomics》2006,88(3):323-332
  相似文献   

7.
Imprinted genes harbor discrete regions which are differentially methylated in gametes; usually the final differential methylation patterns in adults are established during embryogenesis through modifications of the initial methylation patterns in gametes. Previous reports have shown that a 200-bp region termed region II within the CpG island of the mouse imprinted U2afbp-rs gene is methylated in oocytes but not in sperm, suggesting that this region is a center for the propagation of methylated CpGs on the maternal allele and is also a candidate for an imprinting control element. To determine whether region II is required for the imprinted methylation of this gene at the endogenous locus, we generated mice carrying a deletion of this region. We herein show that parental methylation differences still exist in the CpG island on the region II-deleted allele. These findings suggest that region II is dispensable for the imprinted methylation of the U2afbp-rs gene.  相似文献   

8.
Genomic imprinting causes the expression of an allele depending on its parental origin. In plants, most imprinted genes have been identified in Arabidopsis endosperm, a transient structure consumed by the embryo during seed formation. We identified imprinted genes in rice seed where both the endosperm and embryo are present at seed maturity. RNA was extracted from embryos and endosperm of seeds obtained from reciprocal crosses between two subspecies Nipponbare (Japonica rice) and 93-11 (Indica rice). Sequenced reads from cDNA libraries were aligned to their respective parental genomes using single-nucleotide polymorphisms (SNPs). Reads across SNPs enabled derivation of parental expression bias ratios. A continuum of parental expression bias states was observed. Statistical analyses indicated 262 candidate imprinted loci in the endosperm and three in the embryo (168 genic and 97 non-genic). Fifty-six of the 67 loci investigated were confirmed to be imprinted in the seed. Imprinted loci are not clustered in the rice genome as found in mammals. All of these imprinted loci were expressed in the endosperm, and one of these was also imprinted in the embryo, confirming that in both rice and Arabidopsis imprinted expression is primarily confined to the endosperm. Some rice imprinted genes were also expressed in vegetative tissues, indicating that they have additional roles in plant growth. Comparison of candidate imprinted genes found in rice with imprinted candidate loci obtained from genome-wide surveys of imprinted genes in Arabidopsis to date shows a low degree of conservation, suggesting that imprinting has evolved independently in eudicots and monocots.  相似文献   

9.
哺乳动物印记基因的研究进展   总被引:1,自引:0,他引:1  
哺乳动物印记基因是指只表达亲本一方的遗传信息,而另一方处于关闭状态的一类基因。约80%的印记基因呈串出现在染色体上;在哺乳动物品种之间,印记基因具有较高的保守性;印记基因的复制通常表现为不同时性;一些印记基因具有印记遗传的时空性;少数印记基因只转录为mRNA而不翻译成蛋白质;印记基因的反意链通常表达,表达产生具有调节印记基因的作用。哺乳动物印记基因的调控序列的DNA甲基化、组蛋白乙酰酸化和组蛋白甲基化等引起其印记表达,其中DNA分子的甲基化是关键,它在生命周期中可被清除,也可被标记。印记基因之间的调控表达通常是相互作用的。克隆动物作为印记基因研究的实验动物模型,已获得许多有意义的研究结果。  相似文献   

10.
Competition--a common motif for the imprinting mechanism?   总被引:18,自引:1,他引:17       下载免费PDF全文
D P Barlow 《The EMBO journal》1997,16(23):6899-6905
  相似文献   

11.
The mouse chromosome 7C, orthologous to the human 15q11–q13 has an imprinted domain, where most of the genes are expressed only from the paternal allele. The imprinted domain contains paternally expressed genes, Snurf/Snrpn, Ndn, Magel2, Mkrn3, and Frat3, C/D-box small nucleolar RNAs (snoRNAs), and the maternally expressed gene, Ube3a. Imprinted expression in this large (approximately 3–4 Mb) domain is coordinated by a bipartite cis-acting imprinting center (IC), located upstream of the Snurf/Snrpn gene. The molecular mechanism how IC regulates gene expression of the whole domain remains partially understood. Here we analyzed the relationship between imprinted gene expression and DNA methylation in the mouse chromosome 7C using DNA methyltransferase 1 (DNMT1)-null mutant embryos carrying Dnmt1ps alleles, which show global loss of DNA methylation and embryonic lethality. In the DNMT1-null embryos at embryonic day 9.5, the paternally expressed genes were biallelically expressed. Bisulfite DNA methylation analysis revealed loss of methylation on the maternal allele in the promoter regions of the genes. These results demonstrate that DNMT1 is necessary for monoallelic expression of the imprinted genes in the chromosome 7C domain, suggesting that DNA methylation in the secondary differentially methylated regions (DMRs), which are acquired during development serves primarily to control the imprinted expression from the maternal allele in the mouse chromosome 7C.  相似文献   

12.
13.
Imprinted genes are expressed in a parent-of-origin manner by epigenetic modifications that silence either the paternal or maternal allele. They are widely expressed in fetal and placental tissues and are essential for normal placental development. In general, paternally expressed genes enhance feto-placental growth while maternally expressed genes limit conceptus growth, consistent with the hypothesis that imprinting evolved in response to the conflict between parental genomes in the allocation of maternal resources to fetal growth. Using targeted deletion, uniparental duplication, loss of imprinting and transgenic approaches, imprinted genes have been shown to determine the transport capacity of the definitive mouse placenta by regulating its growth, morphology and transporter abundance. Imprinted genes in the placenta are also responsive to environmental challenges and adapt placental phenotype to the prevailing nutritional conditions, in part, by varying their epigenetic status. In addition, interplay between placental and fetal imprinted genes is important in regulating resource partitioning via the placenta both developmentally and in response to environmental factors. By balancing the opposing parental drives on resource allocation with the environmental signals of nutrient availability, imprinted genes, like the Igf2-H19 locus, may act as nutrient sensors and optimise the fetal acquisition of nutrients for growth. These genes, therefore, have a major role in the epigenetic regulation of placental phenotype with long term consequences for the developmental programming of adult health and disease.  相似文献   

14.
15.
Every diploid organism inherits a complete chromosome set from its father and mother in addition to the sex chromosomes, so that all autosomal genes are available in two copies. For most genes, both copies are expressed without preference. Imprinted genes, however, are expressed depending on their parental origin, being active on the paternal or maternal allele only. To date 73 imprinted genes are known in mouse (www.mgu.har.mrc.ac.uk/research/imprinting), 37 show paternal expression while 36 show maternal expression, indicating no bias for imprinting to occur in one sex or the other. Therefore, two different parental-specific imprinting systems may have evolved in mammals, acting specifically in the paternal or maternal gamete. Similarities and differences between the two imprinting systems will be reviewed, with specific reference to the role of non-coding RNAs and chromatin modifications. The mouse Igf2r/Air cluster is presented as a model of the maternal imprinting system.  相似文献   

16.
Imprinted genes are epigenetically modified in a parent‐of‐origin dependent manner and as a consequence are differentially expressed, with one allele typically expressed while the other is repressed. In canine, the insulin like growth factor 2 receptor gene (IGF2R) is imprinted with predominant expression of the maternally inherited allele. Because imprinted genes usually occur in clusters, we examined the allelic expression pattern of the gene encoding the canine Mas receptor (MAS1), which is located upstream of IGF2R on canine chromosome 1 and is highly conserved in mammals. In this report we describe monoallelic expression of canine MAS1 in the neonatal umbilical cord of several individuals and we identify the expressed allele as maternally inherited. These data suggest that canine MAS1 is an imprinted gene.  相似文献   

17.
PHLDA2 is an imprinted gene in cattle   总被引:1,自引:0,他引:1  
Genomic imprinting is an epigenetic non-Mendelian phenomenon found predominantly in placental mammals. Imprinted genes display differential expression in the offspring depending on whether the gene is maternally or paternally inherited. Currently, some 100 imprinted genes have been reported in mammals, and while some of these genes are imprinted across most mammalian species, others have been shown to be imprinted in only a few species. The PHLDA2 gene that codes for a pleckstrin homology-like domain, family A (member 2), protein has to date been shown to be a maternally expressed imprinted gene in humans, mice and pigs. Genes subject to imprinting can have major effects on mammalian growth, development and disease. For instance, disruption of imprinted genes can lead to aberrant growth syndromes in cloned domestic mammals, and it has been demonstrated that PHLDA2 mRNA expression levels are aberrant in the placenta of somatic clones of cattle. In this study, we demonstrate that PHLDA2 is expressed across a range of cattle foetal tissues and stages and provide the first evidence that PHLDA2 is a monoallelically expressed imprinted gene in cattle foetal tissues, and also in the bovine placenta.  相似文献   

18.
L E Young 《Twin research》2001,4(5):307-317
Several common adult diseases appear to be related to impaired fetal growth and this may be caused either by nutritional inadequacies at particular stages of pregnancy or by variation in alleles at specific growth loci. Little is known about the genes involved in the underlying mechanism. This review proposes that at least some of the effects have their origins at imprinted loci, genes that are unusual because they are expressed from only one parental allele. Many imprinted genes are crucial for fetal growth and determine birthweight. They can be disrupted in the early embryo by environmental influences and these disruptions can be inherited through many cell cycles into adult tissues. Their disruption can affect specific organs during fetal development and disruption could affect adult disease in a variety of direct and indirect means. Imprinted genes may be particularly vulnerable to disruption as they are functionally haploid and their expression is regulated by different means from the rest of the genome. Thus many imprinted genes provide plausible candidates for programming adult disease and warrant further study in this context.  相似文献   

19.
20.
Imprinted genes are defined by their parent-of-origin-specific monoallelic expression. Although the epigenetic mechanisms regulating imprinted gene expression have been widely studied, their functional importance is still unclear. Imprinted genes are associated with a number of physiologies, including placental function and foetal growth, energy homeostasis, and brain and behaviour. This review focuses on genomic imprinting in the brain and on two imprinted genes in particular, Nesp and paternal Grb10, which, when manipulated in animals, have been shown to influence adult behaviour. These two genes are of particular interest as they are expressed in discrete and overlapping neural regions, recognised as key “imprinting hot spots” in the brain. Furthermore, these two genes do not appear to influence placental function and/or maternal provisioning of offspring. Consequently, by understanding their behavioural function we may begin to shed light on the evolutionary significance of imprinted genes in the adult brain, independent of the recognised role in maternal care. In addition, we discuss the potential future directions of research investigating the function of these two genes and the behavioural role of imprinted genes more generally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号