首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang YT  Linden DJ 《Neuron》2000,25(3):635-647
Cerebellar long-term depression (LTD) is a cellular model system of information storage that may underlie certain forms of motor learning. While cerebellar LTD is expressed as a selective modification of postsynaptic AMPA receptors, this might involve changes in receptor number/distribution, unitary conductance, kinetics, or glutamate affinity. The observation that GluR2-containing synaptic AMPA receptors could be internalized by regulated clathrin-mediated endocytosis suggested that this process could underlie LTD expression. To test this hypothesis, we postsynaptically applied dynamin and amphiphysin peptides that interfere with the clathrin endocytotic complex and found that they blocked LTD expression in cultured Purkinje neurons. In addition, induction of LTD and attenuation of AMPA responses by stimulation of clathrin-mediated endocytosis occluded each other. These findings suggest that the expression of cerebellar LTD requires clathrin-mediated internalization of postsynaptic AMPA receptors.  相似文献   

2.
Man HY  Lin JW  Ju WH  Ahmadian G  Liu L  Becker LE  Sheng M  Wang YT 《Neuron》2000,25(3):649-662
Redistribution of postsynaptic AMPA- (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid-) subtype glutamate receptors may regulate synaptic strength at glutamatergic synapses, but the mediation of the redistribution is poorly understood. We show that AMPA receptors underwent clathrin-dependent endocytosis, which was accelerated by insulin in a GluR2 subunit-dependent manner. Insulin-stimulated endocytosis rapidly decreased AMPA receptor numbers in the plasma membrane, resulting in long-term depression (LTD) of AMPA receptor-mediated synaptic transmission in hippocampal CA1 neurons. Moreover, insulin-induced LTD and low-frequency stimulation-(LFS-) induced homosynaptic CA1 LTD were found to be mutually occlusive and were both blocked by inhibiting postsynaptic clathrin-mediated endocytosis. Thus, controlling postsynaptic receptor numbers through endocytosis may be an important mechanism underlying synaptic plasticity in the mammalian CNS.  相似文献   

3.
We are interested in cellular co-expression patterns of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA) receptor subunits 1-4 (GluR1-4) in substance P receptor (SPR)-containing neurons of the basal forebrain, which may act as a morphological basis for interaction between neurokinins and glutamate-driven neuronal signaling and excitotoxicity. Immunohistochemistry and laser scanning confocal microscopy in adult C57/BL mice revealed that distribution of SPR-positive neurons overlapped with that of GluR1-4-containing ones in most basal forebrain regions, i.e. the medial septal nucleus, nucleus of diagonal band of Broca, magnocellular preoptic nucleus and substantia innominata. Neurons showing both SPR and GluR1-4-immunoreactivities were found in above cholinergic neurons-rich containing basal forebrain regions. Semi-quantification analysis indicated that about 57-95% of SPR-positive neurons displayed GluR1-4-immunoreactivity. The percentages of AMPA receptor subunits co-localizing in SPR-positive neurons were GluR4 (48%), GluR1 (47%), GluR2 (26%) and GluR3 (20%), respectively. However, the neurons co-expressing SPR and GluR1-4 were hardly detected in the basal nucleus of Meynert of the basal forebrain. The co-localization of SPR and AMPA receptors has provided a molecular basis for functional interaction between neurokinins and AMPA receptors-mediated signaling in basal forebrain neurons. This study has also implied that glutamate-driven neuronal transmission and excitotoxicity can be modulated by neurokinin peptides in most basal forebrain regions but not in the basal nucleus of Meynert, suggesting that neurokinins or SP may play certain roles in determining neuronal functional properties or excitotoxic susceptibility in the various basal forebrain regions of mammals.  相似文献   

4.
The dynamics of alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA)-type glutamate receptors, as represented by their exocytosis, endocytosis and cytoskeletal linkage, has often been implicated in N-methyl-d-aspartate (NMDA)-dependent synaptic plasticity. To explore the molecular mechanisms underlying the AMPA receptor dynamics, cultured hippocampal neurons were stimulated with 100 microm NMDA, and the biochemical and pharmacological changes in the ligand binding activity of AMPA receptor complexes and its subunits, GluR1 and GluR2/3, were investigated. The NMDA treatment reduced the total amount of bound [(3)H]AMPA on the surface of the neurons but not in their total membrane fraction. This process was mimicked by a protein kinase C activator, phorbol ester, but blocked by an inhibitor of the same kinase, calphostin C. The NMDA-induced down-regulation of the ligand binding activity was also reflected by the decreased AMPA-triggered channel activity as well as by the cells' reduced immunoreactivity for GluR1. In parallel, the NMDA treatment markedly altered the interaction between the AMPA receptor subunits and their associating molecule(s); the association of PDZ molecules, including Pick1, with GluR2/3 was enhanced in a protein-kinase-C-dependent manner. Viral expression vectors carrying GluR1 and GluR2 C-terminal decoys, both fused to enhanced green fluorescent protein, were transfected into hippocampal neurons to disrupt their interactions. The overexpression of the C-terminal decoy for GluR2 specifically and significantly blocked the NMDA-triggered reduction in [(3)H]AMPA binding, whereas that for GluR1 had no effects. Co-immunoprecipitation using anti-Pick1 antibodies revealed that the overexpressed GluR2 C-terminal decoy indeed prevented Pick1 from interacting with the endogenous GluR2/3. Therefore, these observations suggest that the NMDA-induced down-regulation of the functional AMPA receptors involves the interaction between GluR2/3 subunits and Pick1.  相似文献   

5.
6.
Two distinct classes of nociceptive primary afferents, peptidergic and non-peptidergic, respond similarly to acute noxious stimulation; however the peptidergic afferents are more likely to play a role in inflammatory pain, while the non-peptidergic afferents may be more characteristically involved in neuropathic pain. Using multiple immunofluorescence, we determined the proportions of neurons in the rat L4 dorsal root ganglion (DRG) that co-express AMPA or NMDA glutamate receptors and markers for the peptidergic and non-peptidergic classes of primary afferents, substance P and P2X(3), respectively. The fraction of DRG neurons immunostained for the NR1 subunit of the NMDA receptor (40%) was significantly higher than that of DRG neurons immunostained for the GluR2/3 (27%) or the GluR4 (34%) subunits of the AMPA receptor. Of all DRG neurons double-immunostained for glutamate receptor subunits and either marker for peptidergic and non-peptidergic afferents, a significantly larger proportion expressed GluR4 than GluR2/3 or NR1 and in a significantly larger proportion of P2X(3)- than SP-positive DRG neurons. These observations support the idea that nociceptors, involved primarily in the mediation of neuropathic pain, may be presynaptically modulated by GluR4-containing AMPA receptors.  相似文献   

7.
Ionotropic glutamate receptors mediate the majority of excitatory synaptic transmission in the brain and are thought to be involved in learning and memory formation. The activity of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)-type glutamate receptors can be regulated by direct phosphorylation of their subunits, which affects the electrophysiological properties of the receptor, and the receptor association with numerous proteins that modulate membrane traffic and synaptic targeting of the receptor. In the present study we investigated the association of protein kinase C (PKC) gamma isoform with the GluR4 AMPA receptor subunit. PKC gamma was co-immunoprecipitated with GluR4 AMPA receptor subunit in rat cerebellum and in cultured chick retina cell extracts, and immunocytochemistry experiments showed co-localization of GluR4 and PKC gamma in cultured chick retinal neurons. Pull-down assays showed that native PKC gamma binds the GluR4 C-terminal membrane-proximal region, and recombinant PKC gamma was retained by GST-GluR4 C-terminal fusion protein, suggesting that the kinase binds directly to GluR4. Furthermore, GST-GluR4 C-terminal protein was phosphorylated on GluR4 Ser-482 by bound kinases, retained by the fusion protein, including PKC gamma. The GluR4 C-terminal segment that interacts with PKC gamma, which lacks the PKC phosphorylation sites, inhibited histone H1 phosphorylation by PKC, to the same extent as the PKC pseudosubstrate peptide 19-31, indicating that PKC gamma bound to GluR4 preferentially phosphorylates GluR4 to the detriment of other substrates. Additionally, PKC gamma expression in GluR4 transfected human embryonic kidney 293T cells increased the amount of plasma membrane-associated GluR4. Our results suggest that PKC gamma binds directly to GluR4, thereby modulating the function of GluR4-containing AMPA receptors.  相似文献   

8.
Juo P  Kaplan JM 《Current biology : CB》2004,14(22):2057-2062
The anaphase-promoting complex (APC) is a multisubunit E3 ubiquitin ligase that targets key cell cycle regulatory proteins for degradation. Blockade of APC activity causes mitotic arrest. Recent evidence suggests that the APC may have roles outside the cell cycle. Several studies indicate that ubiquitin plays an important role in regulating synaptic strength. We previously showed that ubiquitin is directly conjugated to GLR-1, a C. elegans non-NMDA (N-methyl-D-aspartate) class glutamate receptor (GluR), resulting in its removal from synapses. By contrast, endocytosis of rodent AMPA GluRs is apparently regulated by ubiquitination of associated scaffolding proteins. Relatively little is known about the E3 ligases that mediate these effects. We examined the effects of perturbing APC function on postmitotic neurons in the nematode C. elegans. Temperature-sensitive mutations in APC subunits increased the abundance of GLR-1 in the ventral nerve cord. Mutations that block clathrin-mediated endocytosis blocked the effects of the APC mutations, suggesting that the APC regulates some aspect of GLR-1 recycling. Overexpression of ubiquitin decreased the density of GLR-1-containing synapses, and APC mutations blunted this effect. APC mutants had locomotion defects consistent with increased synaptic strength. This study defines a novel function for the APC in postmitotic neurons.  相似文献   

9.
Considerable evidence indicates that neuroadaptations leading to addiction involve the same cellular processes that enable learning and memory, such as long-term potentiation (LTP), and that psychostimulants influence LTP through dopamine (DA)-dependent mechanisms. In hippocampal CA1 pyramidal neurons, LTP involves insertion of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors into excitatory synapses. We used dissociated cultures to test the hypothesis that D1 family DA receptors influence synaptic plasticity in hippocampal neurons by modulating AMPA receptor trafficking. Brief exposure (5 min) to a D1 agonist increased surface expression of glutamate receptor (GluR)1-containing AMPA receptors by increasing their rate of externalization at extrasynaptic sites. This required the secretory pathway but not protein synthesis, and was mediated mainly by protein kinase A (PKA) with a smaller contribution from Ca2+-calmodulin-dependent protein kinase II (CaMKII). Prior D1 receptor stimulation facilitated synaptic insertion of GluR1 in response to subsequent stimulation of synaptic NMDA receptors with glycine. Our results support a model for synaptic GluR1 incorporation in which PKA is required for initial insertion into the extrasynaptic membrane whereas CaMKII mediates translocation into the synapse. By increasing the size of the extrasynaptic GluR1 pool, D1 receptors may promote LTP. Psychostimulants may usurp this mechanism, leading to inappropriate plasticity that contributes to addiction-related behaviors.  相似文献   

10.
Gardner SM  Takamiya K  Xia J  Suh JG  Johnson R  Yu S  Huganir RL 《Neuron》2005,45(6):903-915
A recently described form of synaptic plasticity results in dynamic changes in the calcium permeability of synaptic AMPA receptors. Since the AMPA receptor GluR2 subunit confers calcium permeability, this plasticity is thought to occur through the dynamic exchange of synaptic GluR2-lacking and GluR2-containing receptors. To investigate the molecular mechanisms underlying this calcium-permeable AMPA receptor plasticity (CARP), we examined whether AMPA receptor exchange was mediated by subunit-specific protein-protein interactions. We found that two GluR2-interacting proteins, the PDZ domain-containing Protein interacting with C kinase (PICK1) and N-ethylmaleimide sensitive fusion protein (NSF), are specifically required for CARP. Furthermore, PICK1, but not NSF, regulates the formation of extrasynaptic plasma membrane pools of GluR2-containing receptors that may be laterally mobilized into synapses during CARP. These results demonstrate that PICK1 and NSF dynamically regulate the synaptic delivery of GluR2-containing receptors during CARP and thus regulate the calcium permeability of AMPA receptors at excitatory synapses.  相似文献   

11.
Kato AS  Siuda ER  Nisenbaum ES  Bredt DS 《Neuron》2008,59(6):986-996
AMPA-type glutamate receptors (GluRs) play major roles in excitatory synaptic transmission. Neuronal AMPA receptors comprise GluR subunits and transmembrane AMPA receptor regulatory proteins (TARPs). Previous studies identified five mammalian TARPs, gamma-2 (or stargazin), gamma-3, gamma-4, gamma-7, and gamma-8, that enhance AMPA receptor function. Here, we classify gamma-5 as a distinct class of TARP that modulates specific GluR2-containing AMPA receptors and displays properties entirely dissimilar from canonical TARPs. Gamma-5 increases peak currents and decreases the steady-state currents selectively from GluR2-containing AMPA receptors. Furthermore, gamma-5 increases rates of GluR2 deactivation and desensitization and decreases glutamate potency. Remarkably, all effects of gamma-5 require editing of GluR2 mRNA. Unlike other TARPs, gamma-5 modulates GluR2 without promoting receptor trafficking. We also find that gamma-7 regulation of GluR2 is dictated by mRNA editing. These data establish gamma-5 and gamma-7 as a separate family of "type II TARPs" that impart distinct physiological features to specific AMPA receptors.  相似文献   

12.
Phosphorylation at glutamate receptor subunit 1(GluR1) Ser845 residue has been widely accepted to involve in GluR1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor trafficking, but the in vivo evidence has not yet been established. One of the main obstacles is the lack of effective methodologies to selectively target phosphorylation at single amino acid residue. In this study, the Escherichia  coli -expressed glutathione- S -transferase-tagged intracellular carboxyl-terminal domain of GluR1 (cGluR1) was phosphorylated by protein kinase A for in vitro selection. We have successfully selected aptamers which effectively bind to phospho-Ser845 cGluR1 protein, but without binding to phospho-Ser831 cGluR1 protein. Moreover, pre-binding of the unphospho-cGluR1 protein with these aptamers inhibits protein kinase A-mediated phosphorylation at Ser845 residue. In contrast, the pre-binding of aptamer A2 has no effect on protein kinase C-mediated phosphorylation at Ser831 residue. Importantly, the representative aptamer A2 can effectively bind the mammalian GluR1 that inhibited GluR1/GluR1-containing AMPA receptor trafficking to the cell surface and abrogated forskolin-stimulated phosphorylation at GluR1 Ser845 in both green fluorescent protein–GluR1-transfected human embryonic kidney cells and cultured rat cortical neurons. The strategy to use aptamer to modify single-residue phosphorylation is expected to facilitate evaluation of the potential role of AMPA receptors in various forms of synaptic plasticity including that underlying psychostimulant abuse.  相似文献   

13.
Recent studies show that Eph receptors act mainly through the regulation of actin reorganization. Here, we show a novel mode of action for EphB receptors. We identify synaptojanin 1 - a phosphatidylinositol 5'-phosphatase that is involved in clathrin-mediated endocytosis - as a physiological substrate for EphB2. EphB2 causes tyrosine phosphorylation in the proline-rich domain of synaptojanin 1, and inhibits both the interaction with endophilin and the 5'-phosphatase activity of synaptojanin 1. Treatment with the EphB ligand, ephrinB2, elevates the cellular level of phosphatidylinositol 4,5-bisphosphate and promotes transferrin uptake. A kinase inactive mutant of EphB2 and a phosphorylation site mutant of synaptojanin 1 both neutralize the increase of transferrin uptake after ephrinB2 treatment. These mutants also inhibit AMPA glutamate receptor endocytosis in hippocampal neurons. Interestingly, incorporated transferrin does not reach endosomes, suggesting dual effects of EphB signalling on the early and late phases of clathrin-mediated endocytosis. Our results indicate that ephrinB-EphB signalling regulates clathrin-mediated endocytosis in various cellular contexts by influencing protein interactions and phosphoinositide turnover through tyrosine phosphorylation of synaptojanin 1.  相似文献   

14.
Association of PKA with the AMPA receptor GluR1 subunit via the A kinase anchor protein AKAP150 is crucial for GluR1 phosphorylation. Mutating the AKAP150 gene to specifically prevent PKA binding reduced PKA within postsynaptic densities (>70%). It abolished hippocampal LTP in 7-12 but not 4-week-old mice. Inhibitors of PKA and of GluR2-lacking AMPA receptors blocked single tetanus LTP in hippocampal slices of 8 but not 4-week-old WT mice. Inhibitors of GluR2-lacking AMPA receptors also prevented LTP in 2 but not 3-week-old mice. Other studies demonstrate that GluR1 homomeric AMPA receptors are the main GluR2-lacking AMPA receptors in adult hippocampus and require PKA for their functional postsynaptic expression during potentiation. AKAP150-anchored PKA might thus critically contribute to LTP in adult hippocampus in part by phosphorylating GluR1 to foster postsynaptic accumulation of homomeric GluR1 AMPA receptors during initial LTP in 8-week-old mice.  相似文献   

15.
Huntingtin-interacting protein 1 (HIP1) interacts with huntingtin, the protein whose gene is mutated in Huntington's disease. In addition, a fusion between HIP1 and platelet-derived growth factor beta receptor causes chronic myelomonocytic leukemia. The HIP1 proteins, including HIP1 and HIP1-related (HIP1r), have an N-terminal polyphosphoinositide-interacting epsin N-terminal homology, domain, which is found in proteins involved in clathrin-mediated endocytosis. HIP1 and HIP1r also share a central leucine zipper and an actin binding TALIN homology domain. Here we show that HIP1, like HIP1r, colocalizes with clathrin coat components. We also show that HIP1 physically associates with clathrin and AP-2, the major components of the clathrin coat. To further understand the putative biological role(s) of HIP1, we have generated a targeted deletion of murine HIP1. HIP1(-/-) mice developed into adulthood, did not develop overt neurologic symptoms in the first year of life, and had normal peripheral blood counts. However, HIP1-deficient mice exhibited testicular degeneration with increased apoptosis of postmeiotic spermatids. Postmeiotic spermatids are the only cells of the seminiferous tubules that express HIP1. These findings indicate that HIP1 is required for differentiation, proliferation, and/or survival of spermatogenic progenitors. The association of HIP1 with clathrin coats and the requirement of HIP1 for progenitor survival suggest a role for HIP1 in the regulation of endocytosis.  相似文献   

16.
17.
18.
Here, we show that disruption of N-ethylmaleimide-sensitive fusion protein- (NSF-) GluR2 interaction by infusion into cultured hippocampal neurons of a blocking peptide (pep2m) caused a rapid decrease in the frequency but no change in the amplitude of AMPA receptor-mediated miniature excitatory postsynaptic currents (mEPSCs). N-methyl-D-aspartate (NMDA) receptor-mediated mEPSCs were not changed. Viral expression of pep2m reduced the surface expression of alpha-amino-3-hydroxy-5-methyl-isoxazolepropionate (AMPA) receptors, whereas NMDA receptor surface expression in the same living cells was unchanged. In permeabilized neurons, the total amount of GluR2 immunoreactivity was unchanged, and a punctate distribution of GluR2 was observed throughout the dendritic tree. These data suggest that the NSF-GluR2 interaction is required for the surface expression of GluR2-containing AMPA receptors and that disruption of the interaction leads to the functional elimination of AMPA receptors at synapses.  相似文献   

19.
The alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) subtype of glutamate receptors is subject to functionally distinct constitutive and regulated clathrin-dependent endocytosis, contributing to various forms of synaptic plasticity. In HEK293 cells transiently expressing GluR1 or GluR2 mutants containing domain deletions or point mutations in their intracellular carboxyl termini (CT), we found that deletion of the first 10 amino acids (834-843) selectively reduced the rate of constitutive AMPA receptor endocytosis, whereas truncation of the last 15 amino acids of the GluR2 CT, or point mutation of the tyrosine residues in this region, only eliminated the regulated (insulin-stimulated) endocytosis. Moreover, in hippocampal slices, both insulin treatment and low-frequency stimulation (LFS) specifically stimulated tyrosine phosphorylation of the GluR2 subunits of native AMPA receptors, and the enhanced phosphorylation appears necessary for both insulin- and LFS-induced long-term depression of AMPA receptor-mediated excitatory postsynaptic currents. Thus, our results demonstrate that constitutive and regulated AMPA receptor endocytosis requires different sequences within GluR CTs and tyrosine phosphorylation of GluR2 CT is required for the regulated AMPA receptor endocytosis and hence the expression of certain forms of synaptic plasticity.  相似文献   

20.
Cocaine strengthens excitatory synapses onto midbrain dopamine neurons through the synaptic delivery of GluR1-containing AMPA receptors. This cocaine-evoked plasticity depends on NMDA receptor activation, but its behavioral significance in the context of addiction remains elusive. Here, we generated mice lacking the GluR1, GluR2, or NR1 receptor subunits selectively in dopamine neurons. We report that in midbrain slices of cocaine-treated mice, synaptic transmission was no longer strengthened when GluR1 or NR1 was abolished, while in the respective mice the drug still induced normal conditioned place preference and locomotor sensitization. In contrast, extinction of drug-seeking behavior was absent in mice lacking GluR1, while in the NR1 mutant mice reinstatement was abolished. In conclusion, cocaine-evoked synaptic plasticity does not mediate concurrent short-term behavioral effects of the drug but may initiate adaptive changes eventually leading to the persistence of drug-seeking behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号