首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a quest to identify new ground-state triplet germylenes, the stabilities (singlet–triplet energy differences, ΔES–T) of 96 singlet (s) and triplet (t) M1-Ge-M2-M3 species were compared and contrasted at the B3LYP/6–311++G**, QCISD(T)/6–311++G**, and CCSD(T)/6–311++G** levels of theory (M1?=?H, Li, Na, K; M2?=?Be, Mg, Ca; M3?=?H, F, Cl, Br). Interestingly, F-substituent triplet germylenes (M3?=?F) appear to be more stable and linear than the corresponding Cl- or Br-substituent triplet germylenes (M3?=?Cl or Br). Triplets with M1?=?K (i.e., the K-Ge-M2-M3 series) seem to be more stable than the corresponding triplets with M1?=?H, Li, or Na. This can be attributed to the higher electropositivity of potassium. Triplet species with M3?=?Cl behave similarly to those with M3?=?Br. Conversely, triplets with M3?=?H show similar stabilities and linearities to those with M3?=?F. Singlet species of formulae K-Ge-Ca-Cl and K-Ge-Ca-Br form unexpected cyclic structures. Finally, the triplet germylenes M1-Ge-M2-M3 become more stable as the electropositivities of the α-substituents (M1 and M2) and the electronegativity of the β-substituent (M3) increase.  相似文献   

2.
Utilizing first-principles calculations, we studied the electronic and optical properties of C24, C12X6Y6, and X12Y12 fullerenes (X?=?B, Al; Y?=?N, P). These fullerenes are energetically stable, as demonstrated by their negative cohesive energies. The energy gap of C24 may be tuned by doping, and the B12N12 fullerene was found to have the largest energy gap. All of the fullerenes had finite optical gaps, suggesting that they are optical semiconductors, and they strongly absorb UV radiation, so they could be used in UV light protection devices. They could also be used in solar cells and LEDs due to their low reflectivities.
Graphical abstract Possible applications of doped C24 fullerene
  相似文献   

3.
We designed nine endohedral dodecahedrane heterodimers H@C20Hn-C20Hn@M (M = Cu, Ag, and Au, n = 15, 18, and 19) that may act as single-molecule spin switches, and we predicted theoretically that the ground states of the dimmers shift from low-spin states (S = 0) to the high-spin states (S = 1) under an external electric field applied parallel or perpendicular to the molecular symmetry axes, consisting well with the analyses of Stark effect. Molecular orbitals analyses provide an intuitive insight into the spin crossover behavior. This study expands the application of endohedral chemistry and provides new molecules for designing single-molecule spin switch.  相似文献   

4.
Different subtypes of opioid receptors (OR) were activated in rats in vivo to study the activation effect on the heart’s resistance to ischemia and reperfusion. It has been established that administration of deltorphin II, a selective δ2-OR agonist, lowered the infarct size/area at risk index (IS/AAR) by 23%. Naltrexone, naloxone methiodide (an OR inhibitor not penetrating the blood-brain barrier (BBB)), and naltriben (δ2-antagonist) eliminated the cardioprotective effect of deltorphin II, while BNTX (a δ1-antagonist) produced no effect on the cardioprotective action of the δ2-agonist. The infarct-reducing effect of deltorphin II was eliminated by administration of chelerythrine (a protein kinase C (PKC) inhibitor), glibenclamide (a KATP-channels inhibitor), and 5-hydroxydecanoate (a mitochondrial KATP-channel blocker). Administration of other opioids did not reduce the IS/AAR index. It has been established that all the deltorphins manifest antiarrhythmic potency. Other opioids do not produce any effect on the incidence of arrhythmia occurrences. The antiarrhythmic effect of deltorphin II was eliminated by preliminary administration of naltrexone, naloxone methiodide, and naltriben, but BNTX did not affect the δ2-agonist’s anti-arrhythmic effect. The preliminary administration of chelerythrine, a PKC inhibitor, eliminated the δ2 agonist’s antiarrhythmic action. However, glibenclamide and 5-hydroxydecanoate did not alter the antiarrhythmic effect by deltorphin II. Therefore, activation of the peripheral δ2-ORs reduces the infarct size and prevents the onset of arrhythmias. The antiarrhythmic effect of the δ2-OR stimulation is mediated by activating PKC and opening the mitochondrial KATP-channels. PKC participates in the antiarrhythmic effect of the δ2-OR activation, but this effect does not depend on the condition of KATP-channels.  相似文献   

5.
A new metal complex, Fe(Sal2dienNO3·H2O) (where Sal is salicylaldehyde and dien is diethylenetriamine), has been synthesized and characterized. The interactions between the Fe(III) complex and calf thymus DNA has been investigated using UV and fluorescence spectra, viscosity, thermal denaturation, and molecular modeling. The cleavage reaction on plasmid DNA has been monitored by agarose gel electrophoresis. The experimental results show that the mode of binding of the complex to DNA is classical intercalation and the complex can cleave pBR322 DNA.  相似文献   

6.
This investigation generated rovibrational energies and spectroscopic constants for systems of CCl4 with Ng (Ng?=?He, Ne, Ar), O2, D2O and ND3 from scattering experimental data, and the results presented are of interest for microwave spectroscopy studies of small halogenated molecules. The rovibrational spectra were obtained through two different approaches (Dunham and DVR) within the improved Lennard Jones (ILJ) model. Spectra were also generated within ordinary Lennard Jones and deviations suggest that the ILJ model should be preferred due to interactions beyond dispersion forces presented in these systems. Data from the literature and additional high level quantum mechanical calculations presented in this work show that these systems should not be considered as van der Waals complexes due to halogen bonding (HB) interactions, and this is especially true for the CCl4–D2O and CCl4–ND3 complexes. The charge displacement from the latter systems are one order of magnitude higher than the values from literature for CCl4 and He, Ne, Ar and O2 systems, and show significant deviations between DFT and Hartree-Fock values not previously reported in the literature.  相似文献   

7.
The nature of M–M bonding and aromaticity of [M2(NHCHNH)3]2(μ-E)2 (E?=?O, S; M?=?Nb, Mo, Tc, Ru, Rh) was investigated using atoms in molecules (AIM) theory, electron localization function (ELF), natural bond orbital (NBO) and molecular orbital analysis. These analyses led to the following main conclusions: in [M2(NHCHNH)3]2(μ-E)2 (E?=?O, S; M?=?Nb, Mo, Tc, Ru, Rh), the Nb–Nb, Ru–Ru, and Rh–Rh bonds belong to “metallic” bonds, whereas Mo–Mo and Tc–Tc drifted toward the “dative” side; all these bonds are partially covalent in character. The Nb–Nb, Mo–Mo, and Tc–Tc bonds are stronger than Ru–Ru and Rh–Rh bonds. The M–M bonds in [M2(NHCHNH)3]2(μ-S)2 are stronger than those in [M2(NHCHNH)3]2(μ-O)2 for M?=?Nb, Mo, Tc, and Ru. The NICS(1)ZZ values show that all of the studied molecules, except [Ru2(NHCHNH)3]2(μ-O)2, are aromaticity molecules. O-bridged compounds have more aromaticity than S-bridged compounds.
Graphical Abstract Left Molecular graph, and right electron localization function (ELF) isosurface of [M2(NHCHNH)3]2(μ-E)2(E?=?O, S; M?=?Nb, Mo, Tc, Ru, Rh)
  相似文献   

8.
The catalytic pyrolysis pathways of carbonyl compounds in coal were systematically studied using density functional theory (DFT), with benzaldehyde (C6H5CHO) employed as a coal-based model compound and ZnO, γ-Al2O3, and CaO as catalysts. The results show that the products of both pyrolysis and catalytic pyrolysis are C6H6 and CO. However, the presence of any of the catalysts changes the reaction pathway and reduces the energy barrier, indicating that these catalysts promote C6H5CHO decomposition.
Graphical abstract The presence of catalysts changes the reaction pathway and the energy barrier decreases in the order Ea (no catalyst)> Ea (CaO)> Ea (γ-Al2O3)> Ea (ZnO), indicating that these catalysts promote C6H5CHO decomposition.
  相似文献   

9.
Similar to σ-hole interactions, the π-hole interaction has attracted much attention in recent years. According to the positive electrostatic potentials above and below the surface of inorganic heterocyclic compounds S2N2 and three SN2P2 isomers (heterocyclic compounds 1–4), and the negative electrostatic potential outside the X atom of XH3 (X = N, P, As), S2N2/SN2P2?XH3 (X = N, P, As) complexes were constructed and optimized at the MP2/aug-cc-pVTZ level. The X atom of XH3 (X = N, P, As) is almost perpendicular to the ring of the heterocyclic compounds. The π-hole interaction energy becomes greater as the trend goes from 1?XH3 to 4?XH3. These π-hole interactions are weak and belong to “closed-shell” noncovalent interactions. According to the energy decomposition analysis, of the three attractive terms, the dispersion energy contributes more than the electrostatic energy. The polarization effect also plays an important role in the formation of π-hole complexes, with the contrasting phenomena of decreasing electronic density in the π-hole region and increasing electric density outside the X atom of XH3 (X = N, P, As).
Graphical abstract Computed density difference plots for the complexes 3?NH 3 (a 1), 3?PH 3 (b 1), 3?AsH 3 (c 1) and electron density shifts for the complexes 3?NH 3 (a 2), 3?PH 3 (b 2),3?AsH 3 (c 2) on the 0.001 a.u. contour
  相似文献   

10.
Summary Phosphatidylinositol 3-kinase (PI3K) pathway is important for platelet activation. Recent studies showed that PI3K and oscillative calcium could cross talk to each other and positively regulate integrin α IIbβ3-mediated outside-in signaling. However, the mechanism of this feedback regulation remains to be further characterized. Here we found that treatments of both PI3K inhibitor wortmannin and P2Y1 inhibitor A3P5P could inhibit granular secretion in platelets. Additionally, when RGD-substrate adherent platelets were treated with the ADP scavenger apyrase to deplete the granular-released ADP, their attachments in engaging with substrates became looser and the frequency of calcium oscillation decreased. Since it is known that ADP stimulates the PI3K and calcium signal primarily through P2Y12 and P2Y1 receptors respectively, our data indicated that integrin αIIbβ3 downstream PI3K and calcium activation might be not completely coupled to integrin associated signaling complex, but in part through feedback stimulation by granular released ADP. Our data indicates the important roles of PI3K and granular released ADP in coordinating the feedback regulations in integrin αIIbβ3-mediated platelet activation.  相似文献   

11.
PROSTAGLANDIN (PG) Fhas antifertility effects in many species1–3 but there are conflicting suggestions as to its mechanism of action. For example, it may cause the degeneration of the corpus luteum by decreasing blood flow in the uteroovarian vein4; alternatively, its action may be due to a hypersecretion of luteinizing hormone (LH) by the pituitary3,5. I have investigated the effects of PGF, E2 and E1 on pregnancy in mice and examined the mechanism of action of PGF.  相似文献   

12.
Ab initio calculations have been performed using the complete basis set model (CBS-QB3) to study the reaction mechanism of butane radical (C4H9•) with oxygen (O2). On the calculated potential energy surface, the addition of O2 to C4H9• forms three intermediates barrierlessly, which can undergo subsequent isomerization or decomposition reaction leading to various products: HOO• + C4H8, C2H5• + CH2CHOOH, OH• + C3H7CHO, OH• + cycle-C4H8O, CH3• + CH3CHCHOOH, CH2OOH• + C3H6. Five pathways are supposed in this study. After taking into account the reaction barrier and enthalpy, the most possible reaction pathway is C4H9• + O2 → IM1 → TS5 → IM3 → TS6 → IM4 → TS7 → OH• + cycle-C4H8O.  相似文献   

13.
Nine minima were found on the intermolecular potential energy surface for the ternary system HNO3(CH3OH)2 at the MP2/aug-cc-pVDZ level of theory. The cooperative effect, which is a measure of the hydrogen-bonding strength, was probed in these nine conformations of HNO3…(CH3OH)2. The results are discussed here in terms of structures, energetics, infrared vibrational frequencies, and topological parameters. The cooperative effect was observed to be an important contributor to the total interaction energies of the cyclic conformers of HNO3…(CH3OH)2, meaning that it cannot be neglected in simulations in which the pair-additive potential is applied.
Graphical abstract The H-bonding behavior of various conformations of the HNO3(CH3OH)2 trimer was investigated
  相似文献   

14.
The nucleation, ice crystal shapes and thermodynamic stability of polar stratospheric clouds particles are interesting concerns owing to their implication in the ozone layer destruction. Some of these particles are formed by conformers of H2O, HNO3, and H2SO4. We carried out calculations using density functional theory (DFT) to obtain optimized structures. Several stable trimers are achieved —divided in two groups, one with HNO3 moiety, second with H2SO4 moiety— after pre-optimization at B3LYP/6-31G and subsequently optimization at B3LYP/aug-cc-pVTZ level of theory. For both most stable conformers five H2O molecules are added to their optimized trimers to calculate hydrated geometries. The OH stretching harmonic frequencies are provided for all aggregates. The zero-point energy correction (ZEPC), relative electronic energies (?E), relative reaction Gibbs free energies ?(?G)k-relative, and cooling constant (K cooling ) are reported at three temperatures: 188 K, 195 K, and 210 K. Shapes given in our calculations are compared with various experimental shapes as well as comparisons with their thermo-stabilities.
Graphical Abstract Facet shapes and thermo-stabilities of H2SO4?HNO3 hydrates involved in polar stratospheric clouds. IR spectrum of WNS-1+5W structure and its circular facet
  相似文献   

15.
F0F1ATPsynthase is now known to be expressed as a plasma membrane receptor for several extracellular ligands. On hepatocytes, ecto–F0F1ATPsynthase binds apoA–I and triggers HDL endocytosis concomitant with ATP hydrolysis. Considering that inhibitor protein IF1 was shown to regulate the hydrolytic activity of ecto–F0F1ATPsynthase and to interact with calmodulin (CaM) in vitro, we investigated the subcellular distributions of IF1, calmodulin (CaM), OSCP and β subunits of F0F1ATPsynthase in HepG2 cells. Using immunofluorescence and Western blotting, we found that around 50% of total cellular IF1 is localized outside mitochondria, a relevant amount of which is associated to the plasma membrane where we also found Ca2+–CaM, OSCP and β. Confocal microscopy showed that IF1 colocalized with Ca2+–CaM on plasma membrane but not in mitochondria, suggesting that Ca2+–CaM may modulate the cell surface availability of IF1 and thus its ability to inhibit ATP hydrolysis by ecto–F0F1ATPsynthase. These observations support a hypothesis that the IF1–Ca2+–CaM complex, forming on plasma membrane, functions in the cellular regulation of HDL endocytosis by hepatocytes.  相似文献   

16.
The substitution reactions of H2GeLiF (G) with SiH3X (X = F, Cl, Br) were investigated using calculations performed at the QCISD/6-311++G (d, p)//B3LYP/6-311+G (d, p) level of theory. The results led to the following conclusions. (i) The substitutions are nucleophilic reactions. There are two substitution paths, I and II, which both lead to the germane H2GeFSiH3. The enantiomers of this germane are obtained via these two paths if an H in SiH3X is replaced with a different group or atom. (ii) Both substitution pathways show the same order of barrier heights (SiH3F > SiH3Cl > SiH3Br). The difference between the bond energies of Li–X and Si–X may explain the precedence among the substitution reactions of G with SiH3X. Path I has a lower activation barrier than path II, indicating that path I is more favorable. (iii) Comparison between the relevant insertion and substitution reactions shows that substitutions are more favorable and that the substitution product H2GeFSiH3 predominates over the insertion product. (iv) The substitution reactions of H2GeLiF with SiH3X are exothermic.  相似文献   

17.
Herein, we describe a general strategy for the facile synthesis of a multifunctional amino acid derivative bearing both fluorescent and photolabile groups such as the lysine derivative NvocLys(CO(CH2)5NH–NBD)OCH2CN (1) that can be used as a biophysical tool for studying protein structure. The synthetic strategy involves functionalization of the amine groups while the amino acid is attached to a solid support, followed by esterification of the carboxylic acid in solution. The solid support protects the caboxylic acid, preventing a side reaction associated with the synthesis in solution and obviating the need for chromatographic purification of several intermediates. This synthetic strategy can be used for the preparation of a variety of amino acid derivatives with unusual α-amine and side chain functionalities.  相似文献   

18.
This work describes a DFT level theoretical quantum study using the B3LYP functional with the Lanl2TZ(f)/6-31G* basis set to calculate parameters including the bond distances and angles, electronic configurations, interaction energies, and vibrational frequencies of FeTClTAA (iron-tetrachloro-tetraaza[14]annulene), FeTOHTAA (iron-tetrahydroxy-tetraaza[14]annulene), FeTOCH3TAA (iron- tetramethoxy-tetraaza[14]annulene), FeTNH2TAA (iron-tetraamino-tetraaza[14]annulene), and FeTNO2TAA (iron-tetranitro-tetraaza[14]annulene) complexes, as well as their different spin multiplicities. The calculations showed that the complexes were most stable in the triplet spin state (S?=?1), while, after interaction with carbon monoxide, the singlet state was most stable. The reactivity of the complexes was evaluated using HOMO–LUMO gap calculations. Parameter correlations were performed in order to identify the best complex for back bonding (3d xzFe?→?2p xC and 3d yzFe?→?2p zC) with carbon monoxide, and the degree of back bonding increased in the order: FeTNO2TAA?<?FeTClTAA?<?FeTOHTAA?<?FeTOCH3TAA?<?FeTNH2TAA.  相似文献   

19.
Subunit α of the Escherichia coli F1FO ATP synthase has been produced, and its low-resolution structure has been determined. The monodispersity of α allowed the studies of nucleotide-binding and inhibitory effect of 4-Chloro-7-nitrobenzofurazan (NBD-Cl) to ATP/ADP-binding. Binding constants (K d ) of 1.6 μM of bound MgATP-ATTO-647N and 2.9 μM of MgADP-ATTO-647N have been determined from fluorescence correlation spectroscopy data. A concentration of 51 μM and 55 μM of NBD-Cl dropped the MgATP-ATTO-647N and MgADP-ATTO-647N binding capacity to 50% (IC50), respectively. In contrast, no effect was observed in the presence of N,N′-dicyclohexylcarbodiimide. As subunit α is the homologue of subunit B of the A1AO ATP synthase, the interaction of NBD-Cl with B of the A-ATP synthase from Methanosarcina mazei Gö1 has also been shown. The data reveal a reduction of nucleotide-binding of B due to NBD-Cl, resulting in IC50 values of 41 μM and 42 μM for MgATP-ATTO-647N and MgADP-ATTO-647N, respectively.  相似文献   

20.
Prostaglandins (PGs) are lipid mediators that may play important roles in cancer, immunomodulation, and neurodegeneration. So, the quantitative analysis of PGs will therefore be important in order to understand the natural history of a range of diseases and may be used as a tool in the development of new biotherapeutics. However, such an analysis is problematic because of the small quantities of PGs present in the body. Here, we developed a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-MS)-based analytical method for rapid and easy quantification of the ketone-containing PGs (15d-PGJ2 etc.) as a targeted metabolomics platform. The chemical derivatization with Girard’s reagent P (GP) provided a good linearity (R2 > 0.99) between peak area and quantity of 15d-PGJ2 and highly improved sensitivity (limit of quantitation, LOQ: 1.25 pmol on a spot in MALDI plate). Finally, we utilized this method to directly characterize the interaction between peroxisome proliferatoractivated receptor gamma-ligand binding domain (PPARγ-LBD) and 15d-PGJ2. The 15d-PGJ2 was enriched by PPARγ-LBD and also the binding level of the ligand was dropped considerably by the treatment of PPARγ agonist such as rosiglitazone (about 0.61-fold reduction). Taken together, our MALDI-MS-based targeted metabolomics method for ketone-containing PGs may be applicable to elucidate the protein-metabolite interactions and to identify natural ligands for drug candidates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号