首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Free D-amino acid content in some archaea was investigated and D-forms of several amino acids were found in them. In the acidothermophilic archaeon, Thermoplasma acidophilum, the proportion of D-aspartate (D-Asp) to total Asp was as high as 39.7%. Crude extracts of Thermoplasma acidophilum had Asp-specific racemase activity that was pyridoxal 5'-phosphate (PLP)-dependent. The relative insensitivity to a SH-modifying reagent distinguished this activity from those of the PLP-independent Asp racemases found in other hyperthermophilic archaea (Matsumoto, M., et al., J. Bacteriol. 181, 6560-6563 1999). Thus, high levels of d-Asp should be produced by a new type(s) of Asp-specific racemase in Thermoplasma acidophilum, although the function of d-Asp in this archaeon remains unknown.  相似文献   

2.
There exists a d-enantiomer of aspartic acid in lactic acid bacteria and several hyperthermophilic archaea, which is biosynthesized from the l-enantiomer by aspartate racemase. Aspartate racemase is a representative pyridoxal 5'-phosphate (PLP)-independent amino acid racemase. The "two-base" catalytic mechanism has been proposed for this type of racemase, in which a pair of cysteine residues are utilized as the conjugated catalytic acid and base. We have determined the three-dimensional structure of aspartate racemase from the hyperthermophilic archaeum Pyrococcus horikoshii OT3 at 1.9 A resolution by X-ray crystallography and refined it to a crystallographic R factor of 19.4% (R(free) of 22.2%). This is the first structure reported for aspartate racemase, indeed for any amino acid racemase from archaea. The crystal structure revealed that this enzyme forms a stable dimeric structure with a strong three-layered inter-subunit interaction, and that its subunit consists of two structurally homologous alpha/beta domains, each containing a four-stranded parallel beta-sheet flanked by six alpha-helices. Two strictly conserved cysteine residues (Cys82 and Cys194), which have been shown biochemically to act as catalytic acid and base, are located on both sides of a cleft between the two domains. The spatial arrangement of these two cysteine residues supports the "two-base" mechanism but disproves the previous hypothesis that the active site of aspartate racemase is located at the dimeric interface. The structure revealed a unique pseudo mirror-symmetry in the spatial arrangement of the residues around the active site, which may explain the molecular recognition mechanism of the mirror-symmetric aspartate enantiomers by the non-mirror-symmetric aspartate racemase.  相似文献   

3.
It was believed for long time that d-amino acids are not present in mammals. However, current technological advances and improvements in analytical instruments have enabled studies that now indicate that significant amounts of D-amino acids are present in mammals. The most abundant D-amino acids are D-serine and D-aspartate. D-Serine, which is synthesized by serine racemase and is degraded by D-amino-acid oxidase, is present in the brain and modulates neurotransmission. D-Aspartate, which is synthesized by aspartate racemase and degraded by D-aspartate oxidase, is present in the neuroendocrine and endocrine tissues and testis. It regulates the synthesis and secretion of hormones and spermatogenesis. D-Serine and D-aspartate bind to the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors and function as a coagonist and agonist, respectively. The enzymes that are involved in the synthesis and degradation of these D-amino acids are associated with neural diseases where the NMDA receptors are involved. Knockout mice for serine racemase and D-aspartate oxidase have been generated, and natural mutations in the d-amino-acid oxidase gene are present in mice and rats. These mutant animals display altered behaviors caused by enhanced or decreased NMDA receptor activity. In this article, we review currently available studies on D-amino acid metabolism in mammals and discuss analytical methods used to assay activity of amino acid racemases and D-amino-acid oxidases.  相似文献   

4.
The contents of D-enantiomers of serine, alanine, proline, glutamate (glutamine) and aspartate (asparagine) were examined in the membrane fractions, soluble proteins and free amino acids from some species of archaea, Pyrobaculum islandicum, Methanosarcina barkeri and Halobacterium salinarium. Around 2% (D/D+L) of D-aspartate was found in the membrane fractions. In the soluble proteins, the D-amino acid content was higher in P. islandicum than that in the other archaeal cells: the concentrations in P. islandicum were 3 and 4% for D-serine and D-aspartate, respectively. High concentrations of free D-amino acids were found in P. islandicum and H. salinarium; the concentrations of D-serine (12-13%), D-aspartate (4-7%) and D-proline (3-4%) were higher than those of D-alanine and D-glutamate. This result showed a resemblance between these archaea and not bacterial, but eukaryotic cells. The presence of D-amino acids was confirmed by their digestion with D-amino acid oxidase and D-aspartate oxidase. The occurrence of D-amino acids was also confirmed by the presence of activities catalyzing catabolism of D-amino acids in the P. islandicum homogenate, as measured by 2-oxo acid formation. The catalytic activities oxidizing D-alanine, D-aspartate and D-serine at 90 degrees C were considerably high. Under anaerobic conditions, dehydrogenase activities of the homogenate were 69, 84 and 30% of the above oxidase activities toward D-alanine, D-aspartate and D-serine, respectively. Comparable or higher dehydrogenase activities were also detected with these D-amino acids as substrate by the reduction of 2, 6-dichlorophenolindophenol. No D-amino acid oxidase activity was detected in the homogenates of M. barkeri and H. salinarium.  相似文献   

5.
Yoshida T  Seko T  Okada O  Iwata K  Liu L  Miki K  Yohda M 《Proteins》2006,64(2):502-512
X-ray crystallography has revealed two similar alpha/beta domains of the aspartate racemase from the hyperthermophilic archaeon, Pyrococcus horikoshii OT3. The active site is located in the cleft between the two domains where two cysteine residues face each other. This arrangement allows the substrate to enter the cleft and enables the two cysteine residues to act synergistically. However, the distance between their thiolates was estimated to be 9.6 angstroms, which is beyond the distance for cooperative action of them. We examined the molecular mechanism for the racemization reaction of this hyperthermophilic aspartate racemase by mutational analyses and molecular dynamics simulations. The mutational analyses revealed that Arg48 and Lys164 were essential for catalysis in addition to the putative catalytic cysteine residues. The molecular dynamics simulations revealed that the distance between the two active gamma-sulfur atoms of cysteine residues oscillate to periodically become shorter than the predicted cooperative distance at high temperature. In addition, the conformation of Tyr160, which is located at the entrance of the cleft and inhibits the entry of a substrate, changes periodically to open the entrance at 375 K. The opening of the gate is likely to be induced by the motion of the adjacent amino acid, Lys164. The entrance of an aspartate molecule was observed by molecular dynamics (MD) simulations driven by the force of the electrostatic interaction with Arg48, Lys164, and also Asp47. These results provide insights into the roles of amino acid residues at the catalytic site and also the activation mechanism of a hyperthermophilic aspartate racemase at high temperature.  相似文献   

6.
Aminotransferase reacting between D-amino acids and α-keto acids was found in the germinating pea seedlings. With partial purification, it was evident that the enzyme preparation contained no racemase and L-amino acid aminotransferase and was only specific for D-amino acid transamination. Large amounts of D-alanine found in the germinating pea seedlings were assumed to be formed by this enzyme action.  相似文献   

7.
Free D-amino acids are implicated in several biological functions. This study examined the presence of D-alanine in Leishmania amazonensis. Measuring chiral amino acid content by high-performance liquid chromatography we detected a significant amount of free D-alanine in promastigotes of these parasites. D-alanine accounts for 8.9% of total free alanine and is found primarily in the soluble fraction. Specific racemization of L-alanine to D-alanine was detected in cell lysates and this enzyme activity was inhibited by D-cycloserine, an alanine racemase inhibitor. Furthermore, we were able to decrease this pool of D-amino acid by treating our cultures with D-cycloserine. We demonstrate for the first time the existence of a significant amount of free D-alanine in L. amazonensis and an alanine racemase activity present in cell lysates. The restriction of D-alanine to bacteria, some fungi and now in L. amazonensis opens a new perspective on treatment of diseases caused by these microorganisms.  相似文献   

8.
D- and L-amino acids were produced from L- and D-amino acid amides by D-aminopeptidase from Ochrobactrum anthropi C1-38 and L-amino acid amidase from Pseudomonas azotoformans IAM 1603, respectively, in the presence of alpha-amino-epsilon-caprolactam racemase from Achromobacter obae as the catalyst by dynamic kinetic resolution of amino acid amides.  相似文献   

9.
10.
Two recombinant reaction systems for the production of optically pure D-amino acids from different D,L-5-monosubstituted hydantoins were constructed. Each system contained three enzymes, two of which were D-hydantoinase and D-carbamoylase from Agrobacterium tumefaciens BQL9. The third enzyme was hydantoin racemase 1 for the first system and hydantoin racemase 2 for the second system, both from A. tumefaciens C58. Each system was formed by using a recombinant Escherichia coli strain with one plasmid harboring three genes coexpressed with one promoter in a polycistronic structure. The D-carbamoylase gene was cloned closest to the promoter in order to obtain the highest level of synthesis of the enzyme, thus avoiding intermediate accumulation, which decreases the reaction rate. Both systems were able to produce 100% conversion and 100% optically pure D-methionine, D-leucine, D-norleucine, D-norvaline, D-aminobutyric acid, D-valine, D-phenylalanine, D-tyrosine, and D-tryptophan from the corresponding hydantoin racemic mixture. For the production of almost all D-amino acids studied in this work, system 1 hydrolyzed the 5-monosubstituted hydantoins faster than system 2.  相似文献   

11.
Functional and structural characterizations of pyridoxal 5′-phosphate-independent aspartate racemase of the acidothermophilic archaeon Picrophilus torridus were performed. Picrophilus aspartate racemase exhibited high substrate specificity to aspartic acid. The optimal reaction temperature was 60 °C, which is almost the same as the optimal growth temperature. Reflecting the low pH in the cytosol, the optimal reaction pH of Picrophilus aspartate racemase was approximately 5.5. However, the activity at the putative cytosolic pH of 4.6 was approximately 6 times lower than that at the optimal pH of 5.5. The crystal structure of Picrophilus aspartate racemase was almost the same as that of other pyridoxal 5′-phosphate -independent aspartate racemases. In two molecules of the dimer, one molecule contained a tartaric acid molecule in the catalytic site; the structure of the other molecule was relatively flexible. Finally, we examined the intracellular existence of d-amino acids. Unexpectedly, the proportion of d-aspartate to total aspartate was not very high. In contrast, both d-proline and d-alanine were observed. Because Picrophilus aspartate racemase is highly specific to aspartate, other amino acid racemases might exist in Picrophilus torridus.  相似文献   

12.
D-aspartate is present at high concentrations in the tissues of Scapharca broughtonii, and its production depends on aspartate racemase. This enzyme is the first aspartate racemase purified from animal tissues and unique in its pyridoxal 5'-phosphate (PLP)-dependence in contrast to microbial aspartate racemases thus far characterized. The enzyme activity is markedly increased in the presence of AMP and decreased in the presence of ATP. To analyze the structure-function relationship of the enzyme further, we cloned the cDNA of aspartate racemase, and then purified and characterized the recombinant enzyme expressed in Escherichia coli. The cDNA included an open reading frame of 1,017 bp encoding a protein of 338 amino acids, and the deduced amino acid sequence contained a PLP-binding motif. The sequence exhibits the highest identity (43-44%) to mammalian serine racemase, followed mainly by threonine dehydratase. These relationships are fully supported by phylogenetic analyses of the enzymes. The active recombinant aspartate racemase found in the Escherichia coli extract represented about 10% of total bacterial protein and was purified to display essentially identical physicochemical and catalytic properties with those of the native enzyme. In addition, the enzyme showed a dehydratase activity toward L-threo-3-hydroxyaspartate, similar to the mammalian serine racemase that produces pyruvate from D- and L-serine.  相似文献   

13.
The gene coding aspartate racemase (EC 5.1.1.13) was cloned from the lactic acid bacteria Streptococcus thermophilus IAM10064 and expressed efficiently in Escherichia coli. The 2.1 kilobase pairs long full length clone had an open reading frame of 729 nucleotides coding for 243 amino acids. The calculated molecular weight of 27,945 agreed well with the apparent molecular weight of 28,000 found in sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis of the aspartate racemase purified from S. thermophilus. The N-terminal amino acid sequence from the purified protein exactly matches the derived sequence. In addition, the amino acid composition compiled from the derived sequence is very similar to that obtained from the purified recombinant protein. No significantly homologous proteins were found in a protein sequence data bank. Even the homology scores with alanine racemases of Salmonella typhimurium and Bacillus stearothermophilus were low. Aspartate racemase was overproduced in Escherichia coli NM522 with plasmid pAG6-2-7, which was constructed from two copies of the gene linked with a tac promoter and plasmid vector pUC18. The amount of aspartate racemase increases with the growth of E. coli and almost no degradation of the enzyme was observed. The maximum amount of the produced enzyme reached approx. 20% of the total protein of E. coli.  相似文献   

14.
哺乳动物中枢神经系统中D构象丝氨酸的区域性高浓度分布与N-甲基-D-天冬氨酸(NMDA)受体相一致.它主要由丝氨酸消旋酶将L丝氨酸直接消旋而来,也可能通过肠道菌群产生后吸收至体内,最终被D构象氨基酸氧化酶氧化.这种从胶质细胞而非神经元来源的“异常”构象氨基酸作为一种新型神经递质,不仅更新了传统“神经递质”的定义,而且为许多与NMDA受体过度兴奋或表达下调相关的神经系统疾病治疗提出了新的线索.  相似文献   

15.
16.
Bifidobacterium bifidum is a useful probiotic agent exhibiting health-promoting properties and contains d-aspartate as an essential component of the cross-linker moiety in the peptidoglycan. To help understand D-aspartate biosynthesis in B. bifidum NBRC 14252, aspartate racemase, which catalyzes the racemization of D- and L-aspartate, was purified to homogeneity and characterized. The enzyme was a monomer with a molecular mass of 27 kDa. This is the first report showing the presence of a monomeric aspartate racemase. Its enzymologic properties, such as its lack of cofactor requirement and susceptibility to thiol-modifying reagents in catalysis, were similar to those of the dimeric aspartate racemase from Streptococcus thermophilus. The monomeric enzyme, however, showed a novel characteristic, namely, that its thermal stability significantly increased in the presence of aspartate, especially the D-enantiomer. The gene encoding the monomeric aspartate racemase was cloned and overexpressed in Escherichia coli cells. The nucleotide sequence of the aspartate racemase gene encoded a peptide containing 241 amino acids with a calculated molecular mass of 26 784 Da. The recombinant enzyme was purified to homogeneity and its properties were almost the same as those of the B. bifidum enzyme.  相似文献   

17.
We succeeded in expressing the aspartate racemase homolog gene from Thermococcus litoralis DSM 5473 in Escherichia coli Rosetta (DE3) and found that the gene encodes aspartate racemase. The aspartate racemase gene consisted of 687 bp and encoded 228 amino acid residues. The purified enzyme showed aspartate racemase activity with a specific activity of 1590 U/mg. The enzyme was a homodimer with a molecular mass of 56 kDa and did not require pyridoxal 5′-phosphate as a coenzyme. The enzyme showed aspartate racemase activity even at 95 °C, and the activation energy of the enzyme was calculated to be 51.8 kJ/mol. The enzyme was highly thermostable, and approximately 50 % of its initial activity remained even after incubation at 90 °C for 11 h. The enzyme showed a maximum activity at a pH of 7.5 and was stable between pH 6.0 and 7.0. The enzyme acted on l-cysteic acid and l-cysteine sulfinic acid in addition to d- and l-aspartic acids, and was strongly inhibited by iodoacetic acid. The site-directed mutagenesis of the enzyme showed that the essential cysteine residues were conserved as Cys83 and Cys194. d-Forms of aspartic acid, serine, alanine, and valine were contained in T. litoralis DSM 5473 cells.  相似文献   

18.
Two D-glutamic acid biosynthetic activities, glutamate racemase and D-amino acid transaminase, have been described previously for bacteria. To date, no bacterial species has been reported to possess both activities. Genetic complementation studies using Escherichia coli WM335, a D-glutamic acid auxotroph, and cloned chromosomal DNA fragments from Staphylococcus haemolyticus revealed two distinct DNA fragments containing open reading frames which, when present, allowed growth on medium without exogenous D-glutamic acid. Amino acid sequences of the two open reading frames derived from the DNA nucleotide sequences indicated extensive identity with the amino acid sequence of Pediococcus pentosaceous glutamate racemase in one case and with that of the D-amino acid transaminase of Bacillus spp. in the second case. Enzymatic assays of lysates of E. coli WM335 strains containing either the cloned staphylococcal racemase or transminase verified the identities of these activities. Subsequent DNA hybridization experiments indicated that Staphylococcus aureus, in addition to S. haemolyticus, contained homologous chromosomal DNA for each of these genes. These data suggest that S. haemolyticus, and probably S. aureus, contains genes for two D-glutamic acid biosynthetic activities, a glutamate racemase (dga gene) and a D-amino acid transaminase (dat gene).  相似文献   

19.
从荧光假单胞菌TM5-2中得到一个含丙氨酸消旋酶基因的DNA片段(8.8kb),相邻的一个开读框(ORF)与甘氨酸/D-型氨基酸氧化酶基因相似。该ORF经过克隆、表达,并没有检测到甘氨酸/D-型氨基酸氧化酶的活性,推导而得的氨基酸序列与D-型氨基酸脱氢酶序列比较发现,ORF含有D-型氨基酸脱氢酶的所有重要的保守序列。经TTC培养基鉴定,其具有D-型氨基酸脱氢酶的活性,并对一系列D-型氨基酸有作用,最佳作用底物是D-组氨酸。  相似文献   

20.
A reaction system was developed for the production of D-amino acids from D,L-5-monosubstituted hydantoins with a very slow rate of spontaneous racemization. For this purpose the D-hydantoinase and D-carbamoylase from Agrobacterium radiobacter NRRL B11291 were cloned in separate plasmids and expressed in Escherichia coli. The third enzyme, hydantoin racemase, was cloned from Agrobacterium tumefaciens C58. The hydantoin racemase amino acid sequence was significantly similar to those previously described. A reaction system consisting of recombinant Escherichia coli whole cell biocatalysts containing separately expressed D-hydantoinase, D-carbamoylase, and hydantoin recemase showed high substrate specificity and was effective toward both aliphatic and aromatic D,L-5-monosubstituted hydantoins. After optimizing reaction conditions (pH 8 and 50 degrees C), 100% conversion of D,L-5-(2-methylthioethyl)-hydantoin (15 mM) into D-methionine was obtained in 30 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号