首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The complete nucleotide sequence of the 8.7-kb theta-replicating plasmid pUCL287 from Tetragenococcus halophilus (formerly Pediococcus halophilus) ATCC33315 has been determined. The replication region was identified and analyzed. Its nucleotide sequence contains an untranslated region, the replication origin, followed by two open reading frames (ORFs) encoding two proteins of 311 (RepA287) and 168 (RepB287) amino acids, respectively. Evidence is presented to show that RepA287 represents the plasmid replication protein. RepB287, which is non-essential for replication, is involved in the plasmid copy-number control and segregational stability. The roles of lactococcal proteins homologous to RepB287 have not been defined so far. Nevertheless, the structural organization of the pUCL287 replication region is remarkably similar to those of well known theta-replicating lactococcal plasmids despite the absence of homology of the replication origin and of the replication protein, and this suggests that pUCL287 uses the same mechanism of replication. Nucleotide sequence comparisons show that pSMB74, a pediococcal plasmid encoding bacteriocin production, is a member of the pUCL287 replicon family. Received: 22 May 1996 / Accepted: 11 April 1997  相似文献   

2.
Here, we describe plasmid pREN of Lactobacillus rennini ACA-DC 1534, isolated from traditional Kopanisti cheese. pREN is a circular molecule of 4371 bp. Orf calling revealed a novel repA-orf2 operon with the deduced product of orf2 showing no similarity to other known proteins. Downstream of this operon, a gene cluster encoding different mobilization proteins, namely mobC, mobA1, mobA2 and mobB, was detected. Based on the sequence of the origin of replication (ori) and the similarity pattern of RepA, pREN was placed in the pUCL287 family of theta-replicating plasmids. Multiple sequence alignment demonstrated for the first time the degree of conservation in the pUCL287 oris. Our analysis supported that the identified conserved repeats could drive similar secondary structures in the oris of all plasmids. Furthermore, comparative mapping of pREN with its related plasmids (i.e. pLB925A03 and pLJ42) showed that they retain a unique combination in the architecture of their replication and mobilization elements within the pUCL287 family. Phylogenetic analysis also established that these plasmids have undergone a modular evolutionary process in order to acquire their mob genes. Research on plasmids from uncommon lactic acid bacteria will expand our appreciation for their divergence and will aid their rational selection for biotechnological applications.  相似文献   

3.
Summary The sequence and genetic organization was determined of the 2508 by lactococcal portion of pFX2, which was derived from a crypticLactococcus lactis subsp.lactis plasmid and used as the basis for construction of a series of lactococcal vectors. A lactococcal plasmid plus origin and two replication protein-coding regions (repA andrepB) were located. RepA has a helix-turn-helix motif, a geometry typical of DNA-binding proteins. RepB shows a high degree of homology to the plasmid replication initiation proteins from other gram-positive bacteria andMycoplasma. The transcribed inverted repeat sequence betweenrepA andrepB could form an attenuator to regulate pFX2 replication. Upstream of theori site, and in a region which was non-essential for replication, a 215 by sequence identical to the staphylococcal plasmid pE194 and carrying the RSA site was identified. The genetic organization of this lactococcal plasmid replicon shares significant similarity with pE194 group plasmids.  相似文献   

4.
5.
Summary The nucleotide sequence of the entire region required for autonomous replication and incompatibility of an R100 plasmid derivative, pSM1, has been determined. This region includes the replication region and all plasmid encoded information required for replication. Numerous reading frames for possible proteins can be found in this region. The existence of one of these proteins called RepA1 (285 amino acids; 33,000 daltons) which is encoded within the region known by cloning analysis to be required for replication is supported by several lines of evidence. These include an examination of the characteristic sequences on the proximal and distal ends of the coding region, a comparison of the sequence of the replication regions of pSM1 and the highly related R1 plasmid derivative Rsc13 as well as other biochemical and genetic evidence. The existence of two other proteins, RepA3 (64 amino acids; 7000 daltons) and RepA2 (103 amino acids; 11,400 daltons) is also consistent with most of the criteria mentioned above. However, the region encoding RepA3, which by cloning analysis is within the region responsible for both replication and incompatibility, has never been demonstrated to produce a 7,000 dalton polypeptide. Since a large secondary structure can be constructed in this region, it is possible that the region contains structure or other information that is responsible for incompatibility. RepA2, encoded entirely within the region identified by cloning analysis to be responsible for incompatibility but not for replication can be visualized in vivo and in vitro. However, the nucleotide sequence of the region encoding RepA2 is completely different in mutually incompatible plasmid derivatives of R1 and R100. It is therefore unlikely that RepA2 plays a major role in incompatibility. Thus, we predict that RepA1 is required to initiate DNA synthesis at the replication origin and that the region proximal to RepA1 either encodes a gene product or structure information that is responsible for incompatibility.  相似文献   

6.
A small cryptic plasmid designated pPB1 was isolated from Lactobacillus plantarum BIFI-38 and its complete 2899 bp nucleotide sequence was determined. Sequence analysis revealed four putative open reading frames. Based on sequence analysis two modules could be identified. First, the replication module consisted of a sequence coding for a replication protein (RepB) and its corresponding target site, and two putative repressor proteins (RepA and RepC). Sequence analysis indicated the possible synthesis of an antisense RNA that might regulate RepB production. A putative lagging-strand initiation site was also found, suggesting that pPB1 replicates via a rolling circle mechanism. The second module of pPB1 consisted of a sequence coding for a putative mobilization protein and its corresponding oriT site. Since the nucleotide sequence of the replication module showed 94.5% identity to the similar region on the Leuconostoc lactis plasmid pCI411, and the nucleotide sequence of the mobilization module had 97.5% identity to L. plantarum plasmid pLB4, it is concluded that pPB1 originated by modular exchange between two such plasmids by homologous recombination. Putative recombination sites where crossover might have taken place were also identified.  相似文献   

7.
Alfredson DA  Korolik V 《Plasmid》2003,50(2):152-160
A small cryptic plasmid, pCJ419, was identified in a human clinical isolate of Campylobacter jejuni, cloned and sequenced. pCJ419 is a circular molecule of 4013 bp with a G+C content of 27.1%. The products of four open reading frames (ORFs) share significant sequence similarity with putative proteins from known C. jejuni and Campylobacter coli plasmids. ORF-1 encodes a putative mobilisation protein (Mob). ORF-2 and ORF-3 encode proteins that have high identity to putative RepA and RepB proteins, respectively, of known C. jejuni and C. coli plasmids. ORF-4 encodes a protein that has high identity to a hypothetical protein of unknown function, Cjp32, previously described in a pVir plasmid of C. jejuni. Tandem repeating 22-bp sequences typical of a plasmid replication origin (ori) were identified upstream of the DNA sequences encoding putative replication initiation proteins. An Escherichia coli-Campylobacter shuttle cloning vector, pGU0202, was constructed using plasmid pMW2 that harbours a Campylobacter-derived kanamycin resistance gene [aph(3')-III]. The sequences encoding pCJ419 mob, RepA and RepB proteins were inserted upstream of aph(3')-III resulting in a stable construct of 6174 bp that was used to transform both E. coli and Campylobacter.  相似文献   

8.
9.
10.
pUCL22 is the lactose protease plasmid of Lactococcus lactis ssp. lactis CNRZ270. The nucleotide sequence of its replication region Rep22 contains a non-transcribed region, the replication origin, followed by a gene encoding a putative 388-amino-acid protein named Rep22A. The promoter regions of the rep22A and pC194 cat genes share strong similarities and the pUCL22 replicon exerted trans or cis negative control on the pC194 cat gene expression in L. lactis. We suggest that Rep22A binds to its own promoter as well as to the pC194 cat promoter and thus is autoregulated. We show that pUCL22 replicates mainly by a bidirectional theta mechanism in L. lactis, and is representative of a widely distributed replicon family, members of which could be co-resident. We propose that compatibility between these closely related replicons results from minor replication protein modifications coupled with base changes in their respective binding sites, supporting the co-existence of numerous related replicons in lactococcal strains.  相似文献   

11.
Plasmid pAL5000 from Mycobacterium fortuitum encodes two proteins necessary for replication: RepA (307 amino acid residues) and RepB (119 residues). A single RNA species encoding these proteins was characterized, and its 5' end was defined. The proteins were expressed as maltose-binding protein fusions in Escherichia coli. The RepB protein was shown in vitro to bind specifically to a previously defined 435-bp region of pAL5000 containing the origin of replication (ori). The precise RepB binding sites were defined by DNase I footprinting experiments. RepB binds to two motifs in the ori region: a high-affinity site within its own promoter region, implying autoregulation of its expression, and a low-affinity site further upstream, presumably the origin of replication itself. The binding to the latter motif seems to occur on one DNA strand only. The high-affinity binding site contains several palindromic sequences. Gel retardation assays were performed with the different binding sites as templates, and the binding constant to each site was estimated from protein titrations. This is the first molecular dissection of mycobacterial DNA-binding proteins and their interactions with their targets.  相似文献   

12.
The nucleotide sequence of pRS5 (10153 bp) is reported. Through sequence analysis, 9 open reading frames (ORFs) were identified and the following features observed: a region likely involved in replication whose structural features indicate that pRS5 belongs to the pUCL287 group of theta-type replicons, and hypothetical proteins putatively involved in plasmid copy number control, restriction–modification system, toxin–antitoxin system and a putative integrase. Shuttle vectors for Escherichia coli and lactic acid bacteria (LAB) as well as a small cloning vector for direct use in LAB were constructed using the replication region of pRS5. The ability of such vectors to accept and express other genes was assessed. All pRS5-derivatives were maintained at a high rate over 200 generations without selective pressure.  相似文献   

13.
14.
15.
16.
17.
We sequenced the minimum replication region of the virulence plasmid pYVe439-80 from a serogroup O:9 Yersinia enterocolitica. This sequence is 68% homologous on a 1,873-nucleotide stretch to the sequence of the RepFIIA replicon of the resistance plasmid R100. The sequence contains two open reading frames, repA and repB, encoding proteins of 33,478 and 9,568 daltons, respectively. The amino acid sequences of the two proteins are 77 and 55% identical, respectively, to proteins RepA1 and RepA2 of the R100 replicon. Analysis of minicells transformed with a copy number mutant demonstrated that the replication region of pYVe439-80 directs the synthesis of a 33-kilodalton protein. Disruption of repA, encoding this protein, abolished replication. Two regions of pYVe439-80 are 76 and 70% homologous, respectively, to the copy number control antisense RNA and to the origin of replication region of R100. A mutation introduced in the pYVe439-80 DNA corresponding to the R100 sequence encoding the copy number control antisense RNA resulted in an increase in copy number, indicating a functional homology between the two replicons.  相似文献   

18.
19.
The symbiotic plasmid of Rhizobium etli CE3 belongs to the RepABC family of plasmid replicons. This family is characterized by the presence of three conserved genes, repA, repB, and repC, encoded by the same DNA strand. A long intergenic sequence (igs) between repB and repC is also conserved in all members of the plasmid family. In this paper we demonstrate that (i) the repABC genes are organized in an operon; (ii) the RepC product is essential for replication; (iii) RepA and RepB products participate in plasmid segregation and in the regulation of plasmid copy number; (iv) there are two cis-acting incompatibility regions, one located in the igs (incalpha) and the other downstream of repC (incbeta) (the former is essential for replication); and (v) RepA is a trans-acting incompatibility factor. We suggest that incalpha is a cis-acting site required for plasmid partitioning and that the origin of replication lies within incbeta.  相似文献   

20.
Summary Comparative analyses were made between plasmid pSa17, a deletion derivative of pSa that is capable of replicating efficiently in Escherichia coli and plasmid pSa3, a derivative that is defective for replication. By comparing the restriction maps of these two derivatives, the regions essential for replication and for stable maintenance of the plasmid were determined. A 2.5 kb DNA segment bearing the origin of DNA replication of pSa17 was sequenced. A 36 kDa RepA protein was encoded in the region essential for replication. Downstream of the RepA coding region was a characteristic sequence including six 17 bp direct repeats, the possible binding sites of RepA protein, followed by AT-rich and GC-rich sequences. Furthermore, an 8 bp incomplete copy of the 17 bp repeat was found in the promoter region of the repA gene. Based on the hypothesis that RepA protein binds to this partial sequence as well as to intact 17 bp sequences, an autoregulatory system for the synthesis of RepA protein may be operative. Another open reading frame (ORF) was found in the region required for the stability of the plasmid. The putative protein encoded in this ORF showed significant homology to several site-specific recombination proteins. A possible role of this putative protein in stable maintenance of the plasmid is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号