首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Large quantities of intact generative cells and their protoplasts were isolated from pollen protoplasts of four liliaceous plants, and their structural features were investigated. The generative cells, liberated from the vegetative cell cytoplasm of the pollen protoplasts, were initially spindle-shaped with two long, oppositely oriented extensions, and were surrounded by two cell membranes, one on each side of a wall of uniform thickness. The generative nuclei, stained with 4′,6-diamidino-2-phenylindole (DAPI), showed ellipsoidal and highly condensed chromatin, whereas the generative cell cytoplasm, whose quantity was widely different from species to species, showed no fluorescence, suggesting the absence of plastid and mitochondria! DNA, although many mitochondria were present. The isolated generative cells, which were spindle-shaped at first, became spherical in shape in vitro. Immunocytochemistry and transmission electron microscopy revealed that this change was associated with the depolymerization of an axial array of microtubules present in generative cells in situ. These results are discussed in relation to the function of the generative cell within the bicellular pollen of angiosperms.  相似文献   

2.
Summary A method to remove the exine from mature tobacco pollen and to release numerous intact pollen protoplasts has been developed. Post-anthesis binucleate pollen was treated with water, buffered with MES at pH 5.5, for two hours. Rupture of the exine was caused by the force of pollen hydration exposing the intine to subsequent enzymatic maceration. The high osmotic pressure (1000 mOsm·kg-1 H2O) of pollen protoplasts required a special maceration medium, 4% KCl (w/v). Action of an enzyme solution containing 1% (w/v) Macerozyme and 1% (w/v) Cellulase gave rise to viable protoplasts within 4 hours. When cultured in a tobacco mesophyll protoplast culture medium, the pollen protoplasts underwent regeneration of a cell wall, formation of various tube-shaped structures, and division of the generative nucleus into two nuclei. Using a PEG/Ca2+ method pollen protoplasts were fused with diploid mesophyll protoplasts. Evidence of transfer of chloroplasts into the pollen protoplasts was observed after one day of culture.Abbreviations BCP bromocresol purple - FDA fluoresceindiacetate - MES 2-(N-morpholino) ethanesulfonic acid - PEG polyethyleneglycol  相似文献   

3.
This study aimed to analyze male gamete behavior from mature pollen to pollen tube growth in the bicellular pollen species Alstroemeria aurea. For mature pollen, pollen protoplasts were examined using flow cytometry. The protoplasts showed two peaks of DNA content at 1C and 1.90C. Flow cytometry at different developmental stages of pollen tubes cultured in vitro revealed changes in the nuclear phase at 9 and 18 h after culture. Sperm cell formation occurred at 6–9 h after culture, indicating that the first change was due to the division of the generative cells into sperm cells. After sperm cell formation, the number of vegetative nucleus associations with sperm cells showed a tendency to increase. This association was suggested as the male germ unit (MGU). When sperm cells, vegetative nuclei, and partial MGUs were collected separately from pollen tubes cultured for 18 h and analyzed using a flow cytometer, the sperm cells and vegetative nuclei contained 1C DNA, while the DNA content of partial MGUs was counted as 2C. Therefore, the second change in the nuclear phase, which results in an increase in 2C nuclei, is possibly related to the formation of MGUs.  相似文献   

4.
Actin filament (AF) distribution in Zea mays pollen and Gladiolus gandavensis pollen protoplasts was localized by FITC conjugated phalloidin fluorescence microprobe. The pollen was incubated in Brewbaker and Kwack (BK) medium, and the pollen protoplasts were isolated enzymatically and cultured in K3 medium containing various supplements by a previously reported method. Samples were fixed for 30 min with 1.5% paraformaldehyde dissolved in 0.1 mol/1 phosphate buffer (pH 7), half strength of BK elements, 1 mol/1 EGTA and sucrose, stained for 30–60 min with 1 μg/ml FITC-phalloidin in the buffer solution, and observed by a fluorescence microscopy. In hydrated corn pollen grains, the AFs constituted an irregular network. Prior to germination a part of the pollen grains showed polarized pattern of Afs. At the opposite pole to the germ pore, there was a center from which AF bundles radiated and converged toward the pore, often making a spindle-shaped configuration. In just isolated gladiolus pollen protoplasts, the AFs appeared as irregular fine network. After 4–7h of culture, the AF distribution coincided in some cases with the unevenly regenerated new wall area as exhibited by FITC-phalloidin and Calcofluor White ST double staining, indicating a possible involvement of AF in wall synthesis. After 17–18 h of culture, a part of the pollen protoplasts went on germination. The AFs became polarized in such protoplasts and converged into the tubes produced, and ran longitudinally along the tubes just like in the tubes germinated from pollen grains. However, in ungerminated pollen protoplasts, the AFs behaved abnormalty, showing various irregular arrangements. When protoplasts bursted, the actin aggregates often located at the protrusion site from which the protoplasts would burst, and were discharged into the medium. In neither corn pollen nor gladiolus pollen protoplasts AFs were observed within the generative or sperm cells.  相似文献   

5.
The dynamics of nuclear DNA synthesis were analysed in isolated microspores and pollen of Brassica napus that were induced to form embryos. DNA synthesis was visualized by the immunocytochemical labelling of incorporated Bromodeoxyuridine (BrdU), applied continuously or as a pulse during the first 24 h of culture under embryogenic (32 °C) and non-embryogenic (18 °C) conditions. Total DNA content of the nuclei was determined by microspectrophotometry. At the moment of isolation, microspore nuclei and nuclei of generative cells were at the G1, S or G2 phase. Vegetative nuclei of pollen were always in G1 at the onset of culture. When microspores were cultured at 18 °C, they followed the normal gametophytic development; when cultured at 32 °C, they divided symmetrically and became embryogenic or continued gametophytic development. Because the two nuclei of the symmetrically divided microspores were either both labelled with BrdU or not labelled at all, we concluded that microspores are inducible to form embryos from the G1 until the G2 phase. When bicellular pollen were cultured at 18 °C, they exhibited labelling exclusively in generative nuclei. This is comparable to the gametophytic development that occurs in vivo. Early bicellular pollen cultured at 32 °C, however, also exhibited replication in vegetative nuclei. The majority of vegetative nuclei re-entered the cell cycle after 12 h of culture. Replication in the vegetative cells preceded division of the vegetative cell, a prerequisite for pollen-derived embryogenesis.  相似文献   

6.
At all stages of male gametogenesis, generative and vegetative pollen nuclei of Nicotiana sylvestris can be distinguished without ambiguity after Feulgen or ethidium bromide staining. They differ by their morphology and their apparent DNA content, always lower in vegetative nuclei. These differences provide a basis for their separation by sedimentation and fluorometry. After elimination of the another somatic cells and after crushing the pollen, vegetative and generative nuclei are separated by two successive Percoll gradients (purity 80–90%). Analysis of the gradient fractions and final purification can be done with a cell sorter. DNAs of both types are isolated by a cetyltrimethylammonium method, followed by a RNase treatment. Yields are lower for vegetative than for generative nuclei, and decrease with the age of pollen. Molecular weights and digestibility by restriction enzymes are compatible with molecular analyses.  相似文献   

7.
A culture medium and culture conditions are described that enable generative cell division and sperm formation to occur in a large proportion (greater than 70%) of the pollen tubes of Tradescantia paludosa within six to eight hours of culture of pollen. The nature of the nitrogen source, speed of shaking, and ratio of pollen to medium are important parameters in determining the extent of sperm formation. Addition of the plant hormones indole acetic acid, gibberellic acid, and kinetin to the growth medium does not influence generative cell division.  相似文献   

8.
Pollen germination, division of the generative nucleus and position of the generative nucleus in the pollen tube during in vitro germination were examined for six bromeliad cultivars. The influence of mixed amino acids (casein hydrolysate) and individual amino acids (Arg, Asn, Asp, Glu, Gly, Met, Phe, Orn, Tyr) were tested. Aechmea fasciata and A. chantinii pollen tubes showed more generative nuclear division in cultured pollen tubes than the other four cultivars tested. Casein hydrolysate did not stimulate generative nuclear division. In general arginine (1 mM) improved division of the Aechmea generative nucleus and to a lesser extent this of Vriesea `Christiane', Guzmania lingulata and Tillandsia cyanea. A concentration of 2 mM arginine reduced pollen tube growth of Aechmea. The vegetative nucleus was ahead of the generative nucleus in approximately 50% of the pollen tubes of all cultivars studied. In about 25% of the pollen tubes, the generative nucleus was ahead and in ±25% pollen tubes the vegetative and generative nuclei were joined together. The distance between the two generative nuclei and the distance from the generative nuclei to the pollen tube tip differed significantly for Aechmea fasciata and A. chantinii. The influence of different amino acids for Aechmea fasciata and A. chantinii varied with respect to pollen germination and generative nuclear division. Arg and Met improved nuclear division of both Aechmea cultivars. Pollen germination and sperm cell production were not linked. This information is important to ameliorate in vitro pollination methods used to overcome fertilization barriers in Bromeliaceae and other higher plants.  相似文献   

9.
Large quantities of protoplasts were isolated enzymatically from the mature pollen grains in Gladiolus gandavensis. Regeneration of cell wall and germination of pollen tubes were performed during culture of purified pollen protoplasts in Ks medium supplemented with 32% sucrose, 0.1 mg/1 2,4-D, 1 mg/1 NAA and 0.2 mg/1 6-BA, with a germination rate up to 47.7%. The materials were fixed gently with gradually increasing concentration of glutaraldehyde, followed by osmium, then preembedded in a thin layer of agar and surveyed under an inverted microscope so as to select desired specimens for subsequent procedure. Small agar blocks containing specimens were dehydrated through ethanal-propylene oxide series, embedded in Araldite and ultratomed. Electron microscopic observations show that the pollen protoplasts are surrounded by a smooth plasma membrane and with ultrastructurally intact cytoplasm, a vegetative nucleus and a generative cell. After 8h of culture, wall regeneration commences resulting in a multilayered, fibrillar wall structure which is different from the intine. No exine is formed. Numerous vesicles participate actively in the wall formation. The wall is uneven in thickness around its periphery; a thickened area somewhat resembling to germ furrow is formed, from which pollen tube emerges. The tubes contain abundant plastids, mitochondria and dictyosomes. Vesicles are released out of the plasma membrane and involved in tube wall formation. After 18h of culture, the vegetative nucleus and generative cell have migrated into the tube. Technical points of preparing pollen protoplast specimens for ultastructural studies and the fearnres of wall regeneration in pollen protoplast culture are discussed.  相似文献   

10.
Anthers of Capsicum annuum L. were cultured on Murashige and Skoog (MS) medium containing 0.1 mg l−1 NAA and 0.1 mg l−1 kinetin. Inoculated anthers were subjected to 31 °C and development of microspores in anthers of varying stages was observed cytologically using 4′-6-diamidino-2-phenylindol-2HCl (DAPI). Pepper was characterized by a strong asynchrony of pollen development within a single anther. Percentage of pollen at different stages changed with the culture period, and the proportion of dead pollen increased drastically from day 2 after culture. Microspores that were cultured at the late-uninucleate stage followed one of two developmental pathways. In the more common route, the first sporophytic division was asymmetric and produced what appeared to be a typical bicellular pollen. Embryogenic pollen was formed by repeated divisions of the vegetative nucleus. In the second pathway, which occurred in fewer microspores, the first division was symmetric and both nuclei divided repeatedly to form embryogenic pollen. In early-bicellular pollen, sporophytic pollen was produced through division of the vegetative nucleus. In mid-bicellular pollen, the generative nucleus may undergo division to produce two or more sperm-like nuclei. However, division of the generative nucleus alone to form the embryo was never observed. The anther stage optimal for embryo production contained a large proportion (>75%) of early-binucleate pollen. Associations were found among the percentage of early-binucleate pollen, the frequency of embryogenic multinucleate pollen, and the yield of pollen embryos.  相似文献   

11.
The generative cells used for fusion experiments were isolated from pollen grains of Zephyranthes candida and Lycoris radiata by “2-step osmotic shock” and from those of Hippeastrum vittata, Hemerocallis minor and Iris tectorum by “weak enzyme treatment” as reported previously. Using PEG method, fusions have been successfully induced between generative cells of the same species mentioned above, between generative cells of Z. candida and L. radiata, between generative cells and petal protoplasts in L. radiata, and between generative cells of L. radiata and hypocotyl protoplasts of Brassica napus. In all cases either homokaryons or heterokaryons could be obtained. Fusion of nuclei was observed sometimes in homokaryons of generative cells in L. radiata. The generative nuclei in fusion products could be well identified by labelling the generative cells before fusion with DAPI. FDA test demonstrated that most of the fusion products were viable. Factors affecting fusion efficiency including cell density, PEG concentration, duration of PEG treatment and effect of calcium ions were studied in fusion of generative cells in Z. candida. Our experiments indicate that isolated generative cells are likely to be deprived of cell wails and may be regarded as a special kind of protoplasts for direct fusion experiments.  相似文献   

12.
I. Tanaka 《Protoplasma》1988,142(1):68-73
Summary Methods are described for the isolation of large quantities of generative cells and their protoplasts from the pollen ofLilium longiflorum. First, large numbers of pollen protoplasts were enzymatically isolated from immature pollen grains. When they were gently disrupted mechanically, the pollen contents including spindle-shaped generative cells were released. The generative cells were separated from other structures by Percoll density gradient centrifugation. They were nearly spherical, but had a callosic cell wall. The isolated generative cells were then re-treated in enzyme solution to yield authentic protoplasts. The generative cell protoplasts, gametoplasts, were uniform in size and contained a condensed haploid nucleus with relatively little cytoplasm.  相似文献   

13.
Summary Immunofluorescence methods were developed for examining the distribution of microtubules in freshly isolated and cultured protoplasts and regenerated somatic embryos of white spruce (Picea glauca). Freshly isolated protoplasts consisted of both uniand multinucleate types. Uninucleate protoplasts established parallel cortical microtubules during cell wall formation and cell shaping, divided within 24 h and developed into somatic embryos in culture. Dividing cells were characterized by preprophase bands (PPBs) of microtubules, atypical spindle microtubules focused at the poles and a typical phragmoplast at telophase. Multinucleate protoplasts also established parallel arrays of cortical microtubules during cell wall formation. In addition their nuclei divided synchronously within 4 days, then cell walls formed between the daughter nuclei. Individual multinucleate protoplast-derived colonies subsequently gave rise to elongate suspensor cells thereby forming embryo-like structures by 7 days.  相似文献   

14.
A continuous-flow culture system was developed for culturing Laminaria japonica protoplasts. Protoplasts were settled on 5-μm pore size nylon mesh fixed inside a 50-ml plastic syringe, and cultured in Provasoli's enriched seawater with iodine medium with a gentle upward flow generated by a peristaltic pump. In the culture system, 50% of the protoplasts regenerated their cell wall within 24 hours and almost all protoplasts regenerated a cell wall after 3 days culture. After cell wall regeneration, a number of cells divided and regenerated into sheet-shaped thalli. The thalli transferred to a tissue culture flask developed into sporophyte-like plantlets within 1 month. Plantlets then differentiated into blade, stipe, and holdfast, with a proper mucilage canal. Received: 21 April 1997 / Revision received: 27 June 1997 / Accepted: 5 July 1997  相似文献   

15.
Actin filaments (F-actin) were localized in the isolated pollen protoplasts of lily using TRITC-phalloidin probe and confocal microscopy. Two kinds of pollen protoplasts were examined: one from pollen grains of non-dehiscent anthers(referred to as ‘nearly mature’ pollen); and the other from pollen grains of just dehiscent anthers(referred to as ‘just mature’ pollen). In the cytoplasm of the pollen protoplasts of the ‘nearly mature’ pollen there was a very well organized actin network made up of thick actin bundles. Two types of bundle connections were seen in the network; namely ‘branch’ connections and 'junction' connections. The ‘branch’ connection (or branching points) was formed due to branching or merging of bundies. The ‘junction’ connection (or 'junction' point) had two or more bundles associated with it. Some of the ‘junction’ points might be actin filament organization: centres. The generative cell in iht pollen protoplasts of the ‘nearly mature’ pollen also contained an actin network. But this network was structurally quite loose and the pundles made up the network were short and thick. In the cytoplasm of the pollen protoplasts of the ‘just mature’ pollen the actin net work was more densely packed. The bundles made up the network were also thinner. The actin network in the generative cell was, however, less densely packed. If the pollen protoplasts from both the ‘nearly mature’ and the 'just mature' pollen grains were transferred from a B5 medium into a Brewbaker and Kwack medium supplemented with sucrose, protoplasts rapidly (i.e. within 2 to 3 hours) developed vacuoles and transvacuolar strand. In these va cuolated protoplasts the vegetative nucleus andthe generative cell became tightly surrounded by a new actin network. In the transvacuolar strands there were numerous actin bundles. The “ends” of some of these bundles appeared to be tightly attached to the protoplast membrane indicating that some kind of structures might be present in the protoplast membrane for actin filament attachment.  相似文献   

16.
The Feulgen-DNA contents of microspores, vegetative and generative nuclei of tobacco pollen grains in vivo and in anther culture have been determined by microphotometry. 1. The values of DNA content of vegetative and generative nuclei of the pollen grains selected at definite developmental stages vary between 1C and 2C levels, which coincide with the role of the dynamics of DNA in haploid cell cycle. This method applied in the study of androgenesis in anther culture is proved successful and valid. 2. By the cytomorphological investigation on androgenesis, the pollen embryoid in this experiment results from repeated divisions of the vegetative cell within the pollen grains. 3. In mature pollen grains of the same variety of tobacco in vivo, DNA replication has not occured in vegetative nuclei, in which the level of DNA remains in 1C. 4. In the cultured anthers after 8 days innoculation, 30% of the total pollen grains measured indicate that the vegetative nuclei have completed DNA replication and show 2C level. The pollen grains which have the potential to differentiate into the embryogenie pollen grains, may be distinguished from non-embryogenie ones by this method before any cytomorphological sign appears. The significance of this method in the study of the mechanism of androgenesis is discussed.  相似文献   

17.
Kenji Ueda  Ichiro Tanaka 《Planta》1994,192(3):446-452
A method has been developed for the efficient isolation of generative and vegetative nuclei from the generative and vegetative cells, respectively, of pollen grains of Lilium longiflorum Thunb. First, large numbers of pollen protoplasts were isolated enzymatically from nearly mature pollen grains. After the protoplasts had been gently disrupted by a mechanical method, the generative cells could be separated from the other pollen contents, which included vegetative nuclei. The generative nuclei were isolated by suspending the purified generative cells in a buffer that contained a non-ionic deter gent. The isolated generative nuclei, like those within pollen grains, had highly condensed chromatin and the isolated material was without contamination by vegetative nuclei. When basic proteins, extracted from the preparation of generative nuclei by treatment with 0.4 N H2SO4, were compared with those from preparations of somatic and vegetative nuclei by two-dimensional gel electrophoresis, it was revealed that at least five proteins with apparent molecular masses of 35, 33, 22.5, 21 and 18.5 kDa (p35, p33, p22.5, p21 and p18.5), respectively, were specific for, or highly concentrated in, the generative nuclei. An examination of solubility in 5% perchloric acid and the mobility during electrophoresis indicated that two of these proteins (p35 and p33) resembled H1 histones while the three other proteins (p22.5, p21 and p18.5) resembled core histones. It is likely that these basic nuclear proteins are related to the condensation of chromatin or to the differentiation of male gametes in flowering plants, as is the case for analogous proteins present during spermatogenesis in animals.Abbreviations DAPI 4'6-diamidino-2-phenylindole - NIB nuclear isolation buffer This work was supported in part by Grant-inAid for Scientific Research from the Ministry of Education, Science and Culture, Japan.  相似文献   

18.
The present study consists of the cytological observations on the process of microsporogenesis and pollen development in the regenerated stamen of hyacinth; and a comparative study of the cytological changes in stamens of both regenerated and produced under natural condition. Results showed that the cytological changes of microsporogenesis and the pollen deveLopment in the regenerated stamen of the hyacinth were basically normal. But in the stage of the mature pollen there was an obvious cytological difference between both stamens in vitro and in nature. The mature pollen of the regenerated stamen consisted of three cells: one vegetative cell and two sperms, while mature pollen grain under natural condition was made up of two cells: one vegetative cell and one generative cell. This difference mainly resulted from different time and place of the generative cell division. The reason resulting in the differences and their influence on sperms were discussed.  相似文献   

19.
The sequence of pollen development from the tetrad stage to the mature tricellular grain was studied in freshly harvested anthers of Sorghum bicolor. This pattern of development was then compared with that occurring during panicle pretreatment and subsequent anther incubation in vitro. It was found that during pretreatment at 7° C mitoses of the vegetative cell were induced in up to 30% of the pollen. During anther incubation procallus development was highly polarised with contributions from both the generative and vegetative cells. After pretreatment at 14 or 20° C the generative cell became detached from the pollen wall and it was not possible to determine whether subsequent development involved only the vegetative cell or both the vegetative and generative cells.Although retarded pollen grains were observed both in vivo and in vitro, and were occasionally seen to divide in culture, they did not appear to be the source of the procalluses produced.  相似文献   

20.
Anther and pollen development in male-fertile and male-sterile green onions was studied. In the male-fertile line, both meiotic microspore mother ceils and tetrads have a callose wall. Mature pollen grains are 2-celled. The elongated generative cell with two bended ends displays a PAS positive cell wall. The tapetum has the character of both secretory and invasive types. From microspore stage onwards, many oil bodies or masses accumulate in the cytoplasm of the tapetal cells. The tapetum degenerates at middle 2-celled pollen stage. In male-sterile line, meiosis in microspore mother cells proceeds normally to form the tetrads. Pollen abortion occurs at microspore with vacuole stage. Two types of pollen abortion were observed. In type I, the protoplasts of the microspores contract and gradually disintegrate. At the same time the cytoplasm of microspores accumulates oil bodies which remain in the empty pollen. The tapetal cells behave normally up to the microspore stage and early stage of microspore abortion, but contain fewer oil bodies or masses than those in the male-fertilt line. At late stage of microspore abortion, three forms of the tapetal ceils can be observed: (1) the tapetal cells with degenerating protoplasts become flattened, (2) the tapetal cells enlarge but protoplasts retractor, (3) the cells break down and tile middle layer enlarges. In type Ⅱ, the cytoplasm degenerates earlier than the nucleus of the microspores and no protoplast is found in the anther locule. There are fibrous thickenings iii the endothecium of both types. It is difficult to verify whether the tapetum behavior and pollen abortion is the cause or the effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号