首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In order to investigate some of the cytochemical processes involved in interphase growth and culminating in cell division, a combined autoradiographic and microphotometric study of nucleic acids and proteins was undertaken on statistically seriated cells of Vicia faba root meristems. Adenine-8-C14 and uridine-H3 were used as ribonucleic acid (RNA) precursors, thymidine-H3 as a deoxyribonucleic acid (DNA) precursor, and phenylalanine-3-C14 as a protein precursor. Stains used in microphotometry were Feulgen (DNA), azure B (RNA), pH 2.0 fast green (total protein), and pH 8.1 fast green (histone). The autoradiographic data (representing rate of incorporation per organelle) and the microphotometric data (representing changes in amounts of the various components) indicate that the mitotic cycle may be divided into several metabolic phases, three predominantly anabolic (net increase), and a fourth phase predominantly catabolic (net decrease). The anabolic periods are: 1. Telophase to post-telophase during which there are high rates of accumulation of cytoplasmic and nucleolar RNA and nucleolar and chromosomal total protein. 2. Post-telophase to preprophase characterized by histone synthesis and a diphasic synthesis of DNA with the peak of synthesis at mid-interphase and a minor peak just preceding prophase. The minor peak is coincident with a relatively localized DNA synthesis in several chromosomal regions. This period is also characterized by minimal accumulations of cytoplasmic RNA and chromosomal and nucleolar total protein and RNA. 3. Preprophase to prophase in which there are again high rates of accumulation of cytoplasmic RNA, and nucleolar and chromosomal total protein and RNA. The catabolic phase is: 4. The mitotic division during which there are marked losses of cytoplasmic RNA and chromosomal and nucleolar total protein and RNA.  相似文献   

2.
The state of the chromosomes in the interphase nucleus   总被引:8,自引:2,他引:6  
In the living interphase nucleus no chromosomal structures are visible. Yet in the injured cell and after treatment with most histological fixatives chromatin structures become apparent. Under certain conditions this appearance of structure in the living interphase nucleus is reversible. We have found that this change in the interphase nucleus is the result of a change in the state of the chromosomes. In the living nucleus the chromosomes are in a greatly extended state, filling the entire nucleus. Upon injury the chromosomes condense and therefore become visible. At the same time the nuclear volume decreases. This behavior of the chromosomes is connected with their content of desoxyribonucleic acid (DNA). This view is based on the following observations: (a) Distribution of DNA in the Nucleus.-(1) The living interphase nucleus of uninjured cells absorbs diffusely at 2537 A. No chromosomal structures are visible in ultraviolet photographs unless they are also distinct in ordinary light. If the chromosomes are made to condense they become visible and the absorption at 2537 A is now localized in these structures. (2) After fixation with formalin and osmic acid interphase nuclei stain diffusely with Feulgen. These fixatives preserve the extended state of the chromosomes. (3) If nuclei are teased out in non-electrolytes (sucrose, glycerin) the chromosomes are extended. Such nuclei stain homogeneously with methyl green. On adding salts the chromosomes condense and the methyl green is now restricted to the visible structures. (b) Extension and Condensation of Isolated Chromosomes.-When chromosomes isolated from interphase nuclei of calf thymus are suspended in sucrose, their volume is four to five times larger than in saline, but they retain their characteristic shapes. Chromosomes from which DNA and histone have been removed do not show this reversible extension and condensation, neither do lampbrush chromosomes of frog oocytes which contain very little DNA. During mitosis a partial condensation of the DNA occurs in prophase, so that the mitotic chromosomes now occupy a much smaller volume of the nucleus. At telophase the chromosomes swell again to fill the entire nucleus.  相似文献   

3.
1. The fast green stain of Alfert and Geschwind for nuclear basic protein is shown to obey the Beer-Lambert laws when used on purified histone. Interference from acid substances other than nucleic acids as a possible source of error is indicated. 2. Use of this technique after a modified Feulgen stain enables determination of relative amounts of desoxyribonucleic acid and histone in the same individual cells. 3. DNA and histone are shown to have the same distribution in formalin-fixed nuclei. 4. The syntheses of DNA and histone proceed simultaneously resulting in the doubling of both these substances prior to cell division. 5. The standard error for histone values is greater than that for DNA; however, the source of this variability is not known.  相似文献   

4.
Tritium labelling and cytochemistry of extra DNA in Acheta   总被引:3,自引:1,他引:2  
Females of Acheta domesticus were injected with H3-thymidine and H3-uridine at various stages of development in order to study DNA and RNA synthesis in the DNA body present in the oocytes. Staining with alkaline fast green, azure B and the Feulgen reaction were employed as cytochemical tests. The following main results were obtained.
  1. The DNA body appears in the oogonia at interphase as a Feulgen positive spherical structure 2 microns in diameter and is seen in subsequent mitotic divisions as a slightly smaller structure of variable shape. H3-thymidine autoradiography discloses that the DNA present in this body is synthesised at a different time from the chromosomal DNA.
  2. At interphase and during the early prophase of meiosis the DNA body increases in size becoming a large Feulgen positive sphere 6 microns in diameter. Small nucleoli are present within this body. The DNA of the body is complexed with histone as revealed by alkaline fast green staining. H3-thymidine labelling discloses that it is at these stages that the bulk of the DNA synthesis takes place in the body.
  3. Every oocyte contains a DNA body, and no body of comparable size or shape seems to be present in the male meiotic prophase.
  4. At pachytene and diplotene the DNA body acquires the appearance of a “puff”. Two zones can be distinguished inside the DNA body: (1) an inner core of DNA and an outer shell of RNA. The inner core is Feulgen positive and stains light green with azure B, the outer shell is Feulgen negative and stains purple-violet with azure B, as does the cytoplasm. From the inner DNA core many Feulgen positive fibrils radiate into the outer RNA shell. These fibrils appear unstained or slightly greenish with Azure B, forming a transparent network in a purple-violet background. This gives the body the typical appearance of a “puff”. H3-uridine incorporation reveals that the RNA synthesis occurs in the outer RNA shell of the body and in the chromosomes. RNase treatment removes the H3-uridine incorporated into these regions.
  5. At the end of diplotene the DNA body starts to disintegrate. The DNA core breaks up into minor components and the outer RNA zone also begins to disintegrate. By late diplotene the whole body has vanished, releasing DNA, histone and RNA into the nucleus. Subsequently the nuclear envelope disintegrates as it regularly does at the end of prophase of meiosis.
  6. The simplest interpretation of the above results is that the DNA body represents hundreds of copies of the genes of the nucleolar organizing region.
  相似文献   

5.
ANTIGEN-INDUCED CHANGES IN LYMPHOID CELL HISTONES : I. Thymus   总被引:3,自引:2,他引:1       下载免费PDF全文
An acute effect of antigens on the nuclear histones of mouse thymocytes was investigated by means of cytophotometric measurements of thymocytes stained with ammoniacal-silver (A-S) and with fast green (FG). In addition, the DNA content was measured in terms of Feulgen staining. In terms of such staining it appeared that nuclei of control thymocytes contain a greater amount of nuclear histones and a higher histone/DNA ratio than do renal cell nuclei from the same animal. Within 1 hour after the injection of antigen the thymocyte nuclei appear to lose approximately 32 per cent and 20 per cent, respectively, of A-S and FG stainable nuclear proteins, while the Feulgen staining remains unchanged. Since the renal cell nuclei show no antigen-induced change in histone staining, the histone staining and histone/DNA ratios were found to be similar in the thymocytes and renal cells of the antigen-injected mice. The antigen-induced loss of thymocyte histones was also found to be associated with a change in the color of the A-S staining, from yellowish brown to black. This and other findings suggest that thymocyte nuclei contain an antigen-labile, lysine-rich histone. The implication of these observations in regard to the phenomenon of immunological competence is discussed and the need for continued investigation indicated.  相似文献   

6.
ULTRASTRUCTURE AND CYTOCHEMISTRY OF METABOLIC DNA IN TIPULA   总被引:5,自引:4,他引:1       下载免费PDF全文
A DNA body is present in the females of the fly Tipula oleracea and is formed in contact with the sex chromosomes in the oogonial interphases. At each oogonial mitosis, the DNA body follows the chromosomes to one anaphase group and is included in one of the telophase nuclei. The body increases appreciably in size during the interphase of meiosis. All oocytes have the body, but only a few nurse cells possess it. The DNA body synthesizes its DNA at a different time than the chromosomes, as is shown by incorporation of tritiated thymidine, and contains 59% of the DNA of the nucleus, as is disclosed by spectrophotometric measurements. At late diplotene the DNA body disintegrates, releasing its DNA into either the nucleus or the cytoplasm. When studied in the electron microscope, the DNA body appears composed of a tight mass of intertwined fibrils. Demonstration that the main mass of the body is composed of DNA is obtained from cytochemical tests which reveal that the DNA body is Feulgen positive, stains green with azure B, incorporates H3-thymidine, and after digestion with DNase is Feulgen negative. The DNA of the body is complexed with histone, like the DNA of the chromosomes, as is revealed by an intense alkaline fast green staining. Electron microscope examination of oocytes reveals that one side of the DNA body is in close contact with the nuclear envelope and that the other side possesses an outer shell composed mainly of particles 150 to 250 A in diameter. Between the outer shell and the chromosomes there is a band of low electron opacity, 4000 to 7000 A thick. In the light microscope, this light band together with the outer shell is Feulgen negative and stains violet with azure B; this is confirmation of the presence of RNA. In the oocytes the nucleoli are found inside the DNA body. These nucleoli have a nucleolonema composed mainly of particles 150 to 250 A. The nucleoli are Feulgen negative, alkaline fast green negative, stain violet with azure B, and do not stain with azure B after RNase digestion, thus confirming their RNA content. The presence of the nucleoli inside the DNA body and of a band of RNA between the body and the chromosomes is indicative of a high RNA synthetic activity. Since the DNA of the body is complexed with histone, as in the chromosomes, and the nucleoli are located inside the body, the simplest interpretation of the DNA body is that it represents hundreds of copies of the operons of the nucleolar organizing region or neighboring regions. The situation found in Tipula has several basic features in common with the polytene chromosomes of other Diptera and with the hundreds of nucleoli present in Triturus oocytes. In all three cases, genes seem to be copied hundreds of times but are kept in different types of packages. A DNA body like the one in Tipula oleracea is found in other species of Diptera and in the Coleoptera. There is no indication, from the present investigation, that the DNA body is in any way associated with a virus.  相似文献   

7.
1. The fast green stain of Alfert and Geschwind for nuclear basic protein is shown to obey the Beer-Lambert laws when used on purified histone. Interference from acid substances other than nucleic acids as a possible source of error is indicated. 2. Use of this technique after a modified Feulgen stain enables determination of relative amounts of desoxyribonucleic acid and histone in the same individual cells. 3. DNA and histone are shown to have the same distribution in formalin-fixed nuclei. 4. The syntheses of DNA and histone proceed simultaneously resulting in the doubling of both these substances prior to cell division. 5. The standard error for histone values is greater than that for DNA; however, the source of this variability is not known.  相似文献   

8.
John McLeish 《Chromosoma》1959,10(1-6):686-710
Summary Photometric measurements have been made of the amounts of stain formed in the Feulgen (DNA) and Sakaguchi (arginine) reactions in plant nuclei of differing ploidy.In nuclei of diploid and tetraploid plants of Tradescantia ohioensis and of diploid, triploid and tetraploid plants of Ranunculus ficaria, both Feulgen and Sakaguchi values gave ratios which agreed closely with the ratios of the number of chromatids known to be present. The Feulgen/ Sakaguchi ratio for each of the different types of nuclei measured was very similar both within and between these two species.In the interphase nuclei of five different species, both Feulgen and Sakaguchi values gave bimodal distributions. In the nuclei of differentiating cells, the proportions of values falling into each of the 2C, 4C or 8C classes were the same for both stains.Measurements of the amounts of both stains were made in sequence on the same individual nuclei and a positive correlation found between the two sets of values.In nuclei from differentiating cells of Vicia faba primary roots, the Feulgen/Sakaguchi ratio decreased with increasing distance from the apex.The following suggestions were made from the results: (a) that there is some degree of quantitative constancy of nuclear arginine which parallels that of DNA; (b) that the amount of nuclear arginine, like that of DNA, is doubled during synthesis in interphase; (c) that the syntheses of DNA and arginine in interphase, if not simultaneous, at least occur within the same relatively short period; (d) that there may be a difference in the DNA/arginine ratio between the nuclei of meristematic and differentiating cells.  相似文献   

9.
The ribbon-like macronucleus of Euplotes eurystomus pinches in half amitotically at each cell division. Several hours before the actual division two lightly staining duplication bands (reorganization bands) appear at the ends of the nucleus and approach each other slowly, finally meeting near the middle. Distal to the bands, that is, in regions through which the bands have already passed, the concentration of DNA (Feulgen) and "histone" (alkaline fast green) is greater than in the central zone. These facts suggest the hypothesis that DNA-histone synthesis takes place in a sequential fashion starting at the tips of the nucleus and proceeding to the middle. That this hypothesis is correct is shown by autoradiographic and photometric observations. Tritium-labelled thymidine is incorporated only in a limited region immediately distal to the bands. The average amount of Feulgen dye bound by the nucleus rises as the duplication bands approach each other, and is double the presynthesis value by the time the bands meet. A similar rise in the alkaline fast green dye is seen in duplicating nuclei, although no completely post-synthesis values were obtained in this study. The quantitative data are consistent with the assumption that the macronucleus contains a number of DNA-histone "units," presumably chromosomes, each of which duplicates once and only once.  相似文献   

10.
The ribbon-like macronucleus of Euplotes eurystomus pinches in half amitotically at each cell division. Several hours before the actual division two lightly staining duplication bands (reorganization bands) appear at the ends of the nucleus and approach each other slowly, finally meeting near the middle. Distal to the bands, that is, in regions through which the bands have already passed, the concentration of DNA (Feulgen) and "histone" (alkaline fast green) is greater than in the central zone. These facts suggest the hypothesis that DNA-histone synthesis takes place in a sequential fashion starting at the tips of the nucleus and proceeding to the middle. That this hypothesis is correct is shown by autoradiographic and photometric observations. Tritium-labelled thymidine is incorporated only in a limited region immediately distal to the bands. The average amount of Feulgen dye bound by the nucleus rises as the duplication bands approach each other, and is double the presynthesis value by the time the bands meet. A similar rise in the alkaline fast green dye is seen in duplicating nuclei, although no completely post-synthesis values were obtained in this study. The quantitative data are consistent with the assumption that the macronucleus contains a number of DNA-histone "units," presumably chromosomes, each of which duplicates once and only once.  相似文献   

11.
J Gaub 《Histochemistry》1976,49(4):293-301
1. In isolated liver cells, fixed in 4 per cent formaldehyde (NFS) for Feulgen-Naphthol Yellow S (F-NYS) staining of DNA and protein, nuclear shrinkage increases the nuclear concentration of solids to 46 per cent (w/v) before the start of the NYS staining. 2. When a fixative mixture of methanol:acetic acid:formalin (85:5:10 by volume; MAF) is used, the concentration of nuclear solids during NYS staining remain at a physiological level of 19 per cent. 3. By exposing liver cells to NFS for 10 to 120 seconds before fixation in MAF, increasing nuclear shrinkage can be induced with increasing pretreatment in NFS. Nuclear NYS binding decreases in parallel with the decreasing nuclear volume in cells thus treated. As the shrinkage induced reduction in NYS binding may vary with the net charge of nuclear non-histone proteins, MAF fixation must be preferred for quantitative determinations of nuclear non-histone protein in F-NYS stained, isolated cells. 4. Fixation in MAF offers the same advantages as NFS fixation as regards the small loss of proteins during the Feulgen staining procedure and the excellent reproducibility of the F-NYS staining. Storage of MAF fixed cells in the fixative for a few days does not alter their F-NYS staining properties. 5. In MAF fixed, F-NYS stained cells there is no NYS binding to histone basic amino acid residues.  相似文献   

12.
Histone proteins were studied by microphotometry of plant tissue sections stained with fast green at pH 8.1. For comparative purposes the Feulgen reaction was used for deoxyribose nuclei acid (DNA); the Sakaguchi reaction for arginine; and the Millon reaction for estimates of total protein. Analysis of Tradescantia tissues indicated that amounts of nuclear histone fell into approximate multiples of the gametic (egg or sperm) quantity except in dividing tissues, where amounts intermediate between multiples were found. In differentiated tissues of lily, corn, onion, and broad bean, histones occurred in constant amounts per nucleus, characteristic of the species, as was found also for DNA. Unlike the condition in several animal species, the basic proteins of sperm nuclei in these higher plants were of the histone type; no evidence of protamine was found. In a plant neoplasm, crown gall of broad bean, behavior of the basic nuclear proteins closely paralleled that of DNA. Thus, alterations of DNA levels in tumor tissues were accompanied by quantitatively similar changes in histone levels to maintain the same Feulgen/fast green ratios found in homologous normal tissues.  相似文献   

13.
A method is described for the isolation, according to size, of mini segregants produced by the abnormal cleavage of reversibly arrested mitotic HeLa cells. Many of these mini segregants contain small amounts of DNA, as judged by Feulgen staining and chromosome analysis. After fusion with mitotic HeLa cells, the interphase chromosomes of the mini segregants are seen as either monovalent or bivalent prematurely condensed chromosomes (PCC), some of which are damaged. A proportion of isolated mini segregants synthesize DNA, RNA and protein. Fusion of mini segregants with interphase HeLa cells gives rise to cells with 'hybrid' karyotypes.  相似文献   

14.
A method for sequential estimation of nuclear DNA and silver staining of nucleoli in plant cells is described. Feulgen staining is done first and nuclear DNA estimated by absorption cytophotometry. Following this, the slides are stained with AgNO3. The method has been used to study the process of nucleolar fusion in garlic (Allium sativum L.) meristem root tip cells. It was found that during interphase nucleoli rarely fused, thus most fusion must have occurred before the G1 phase of the cell cycle.  相似文献   

15.
It has been shown by means of double wavelength cytophotometry of DNA (Feulgen reaction) and histone (fast green, pH 8.2) inTriturus vulgaris spermatocytes that the doubling of DNA content in nuclei terminates at the end of preleptotene to beginning of leptotene whereas the doubling of histone content begun at premeiotic interphase is delayed and proceeds till the end of leptotene to beginning of zygotene. As a result preleptotene spermatocytes contain approximately 4C DNA and only 3C histone. Histone content in leptotene amounts to 93% of 4C, and in zygotene, pachytene and metaphase I both DNA and histone contents equal 4C. Thus, the temporal pattern of nucleo-histone doubling in meiotic chromosomes ofT. vulgaris differs from the synchronous DNA and histone doubling in mitotic chromosomes of all previously studied species. The delay of histone doubling inT. vulgaris meiocytes is less pronounced than in the previously studied insectsAcheta domestica andPyrrhocoris apterus where the histone content amounts to 3C in leptotene—zygotene and the equal histone/DNA ratio is restored only in pachytene.—Responsibilities for this phenomenon and its biolgoical sinnificance are discussed in connection with recent hypotheses concerning mechanisms of homologous chromosome pairing.  相似文献   

16.
When the mouse mammary adenocarcinoma 755 (Ca-755) reaches the plateau phase of growth, non-cycling cells with a G2-DNA content can be observed. They may belong to the diploid cell cycle but they could also be blocked in G0 or G1 of a tetraploid cycle. This hypothesis was tested in three ways: (1) non-cycling G2 nuclei were stained with a combination of Feulgen and naphthol yellow which revealed two populations, one with a low protein content and the other with a high protein content--the latter may represent nuclei ready to begin a new phase of DNA synthesis; (2) Feulgen staining and autoradiography were performed after tritiated thymidine had been administered to mice continuously: this showed that there were cells synthesizing DNA with a DNA index above 2; and (3) cells having 80 chromosomes, corresponding to the tetraploid cycle, were found almost exclusively in the plateau phase tumours. On the other hand, the use of texture and DNA parameters of the Feulgen stained nuclei showed that they were concentrated in a diploid cycle for tumours in the exponential phase of growth and were divided between a diploid and tetraploid cycle for 'plateau' cells. Neither the cause for, nor the role played by, polyploid cells is known.  相似文献   

17.
Abstract. When the mouse mammary adenocarcinoma 755 (Ca-755) reaches the plateau phase of growth, non-cycling cells with a G2-DNA content can be observed. They may belong to the diploid cell cycle but they could also be blocked in G0 or G1 of a tetraploid cycle. This hypothesis was tested in three ways: (1) non-cycling G2 nuclei were stained with a combination of Feulgen and naphthol yellow which revealed two populations, one with a low protein content and the other with a high protein content– the latter may represent nuclei ready to begin a new phase of DNA synthesis; (2) Feulgen staining and autoradiography were performed after tritiated thymidine had been administered to mice continuously: this showed that there were cells synthesizing DNA with a DNA index above 2; and (3) cells having 80 chromosomes, corresponding to the tetraploid cycle, were found almost exclusively in the plateau phase tumours.
On the other hand, the use of texture and DNA parameters of the Feulgen stained nuclei showed that they were concentrated in a diploid cycle for tumours in the exponential phase of growth and were divided between a diploid and tetraploid cycle for 'plateau' cells. Neither the cause for, nor the role played by, polyploid cells is known.  相似文献   

18.
A comparison of the times necessary to incorporate tritium-labeled lysine and arginine into histones and tritium-labeled thymidine into DNA indicates that the periods of DNA and histone synthesis prior to division closely coincide. (The comparison was made by determining the times necessary, after pulse labeling, for cells with marked chromosomes to enter and then leave the division stages.) An additional period of chromosomal protein synthesis, of short duration, occurs late in interphase. Most of the chromosomal proteins appear either to be synthesized in the nucleus or to migrate there shortly after synthesis. Much of this protein is conserved from one division to the next. Studies of the effects of puromycin and fluorodeoxyuridine on the syntheses of DNA and histone suggest that continuation of DNA synthesis is dependent on a concurrent protein synthesis. Histone synthesis, on the other hand, can proceed at a normal rate under conditions in which DNA synthesis is inhibited.  相似文献   

19.
A method for sequential estimation of nuclear DNA and silver staining of nucleoli in plant cells is described. Feulgen staining is done first and nuclear DNA estimated by absorption cytophotometry. Following this, the slides are stained with AgNO3. The method has been used to study the process of nucleolar fusion in garlic (Allium sativum L.) meristem root tip cells. It was found that during interphase nucleoli rarely fused, thus most fusion must have occurred before the GI phase of the cell cycle.  相似文献   

20.
A simple modification of nuclear staining after acid hydrolysis has been made which provides easy identification of quail nuclear markings in a chick-quail chimera. This method also improves the histologic detail normally seen with hematoxylin and eosin when compared to the more commonly used Feulgen reaction. Embryonic tissues can be fixed in Zenker's or Helly's solution and the sections obtained are hydrolyzed in acid (3.5 N HCl at 37 C for 40-50 min). After acid hydrolysis the sections are stained with hematoxylin and eosin rather than Schiff reagent and fast green. The interphase nuclei of chick cells show homogeneous or mottled purplish blue staining, while quail nuclei contain a dark blue spot. This staining corresponds to the reddish purple staining of the quail's heterochromatin seen adjacent to the nucleolus in the standard Feulgen stain. This new technique facilitates identification of quail cell types in the chick host and provides superior histology of the chick tissues by demonstrating cytoplasmic detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号