首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The application of hexachlorobenzene (HCB), pentachlorophenol (PCP) and 2,4,5-trichlorophenol (TCP) to female rats led to an induction of both the microsomal and the nuclear cytochrome P-450 system in the liver. The increase of th mixed-function hydroxylase activities examined (7-ethoxycoumarin deethylase, 7-ethoxyresorufin deethylase, NADPH-dependent cytochrome c reductase, aminopyrine demethylase, benzpyrene hydroxylase) did not correlate strictly with the cytochrome P-450 content. Depending on the inducers and the substrates used, the content and the activity of the cytochrome P-450 were essentially smaller in the nuclei than in the microsomes. It was striking that in the nuclei those activities (benzpyrene hydroxylase, 7-ethoxyresorufin deethylase, 7-ethoxycoumarin deethylase) were preferably induced which can be attributed to the methyl-cholanthrene-induced form of the cytochrome P-450 (cytochrome P-448). These results suggest, also in the light of findings of other authors, the induction of different species of cytochrome P-450 in the nuclei and microsomes.  相似文献   

2.
Content of cytochromes b5 and P-450, and activities of NADPH-cytochrome c (P-450) reductase (NCR) and 7-ethoxyresorufin O-deethylase (EROD) were measured in liver microsomes prepared from two South American endemic fish, Brycon cephalus and Colossoma macropomum, from tilapia, Oreochromis niloticus, and from Swiss mice, Mus musculus, which served as a control. Strong hemoglobin binding to fish liver microsomal membranes (FLM) altered visible spectra of microsomal cytochromes. Consequently, special precautions during FLM preparation, including liver perfusion followed by repeated washing of microsomes, were required in the study of microsomal cytochromes from these fish. FLM from all fish studied here had a significantly lower content of microsomal cytochromes but a similar level of NCR and EROD activities compared to mouse liver microsomes (MLM). Strong response of the monooxygenase system in O. niloticus to water pollution was detected with both specific cytochrome P-450 content and EROD activity increasing sharply. The optical spectra of hemoglobin from B. cephalus and C. macropomum were analyzed and some differences in shape and relative extinction were observed compared to known hemoglobins.  相似文献   

3.
In brain of female monkey (M. fascicularis) the content of cytochrome P-450 and benzo(a)pyrene hydroxylase activity in the mitochondrial fraction exceeded that of the microsomes by more than 4-fold. The mitochondrial drug metabolism activity exhibited substrate specificity and, unlike the microsomes, did not catalyze 7-ethoxyresorufin O-deethylase reaction. Moreover, the rate of benzo(a)pyrene hydroxylase activity by both the mitochondrial and the microsomal fractions displayed regional variation with the olfactory bulb displaying the highest hydroxylase activity. In contrast, the microsomal 7-ethoxyresorufin O-deethylase activity was uniformally distributed in all brain regions.  相似文献   

4.
3,4,5,3',4'-Pentachlorobiphenyl (PenCB), one of the most potent 3-methylcholanthrene (MC)-type inducers of hepatic enzymes in animals, caused a remarkable induction of liver microsomal monooxygenases, particularly 7-ethoxyresorufin (7-ER) O-deethylase, benzo(a)pyrene (BP) 3-hydroxylase, and testosterone 16 alpha-hydroxylase in chickens, but not NADPH-cytochrome c(P-450) reductase and cytochrome b5. Two forms of cytochrome P-450 (P-450) in liver microsomes of PenCB-treated chickens were purified and characterized. The absorption maxima of the CO-reduced difference spectra of both enzymes (chicken P-448 L and chicken P-448 H) were at 448 nm. From the oxidized form of their absolute spectra, chicken P-448 L was a low-spin form and chicken P-448 H was a high-spin form. They had molecular masses of 56 and 54 kDa, respectively. In a reconstituted system, 7-ER O-deethylation, BP 3-hydroxylation, and testosterone 16 alpha-hydroxylation were catalyzed at high rates by chicken P-448 L but not by chicken P-448 H. Chicken P-448 L also catalyzed N-demethylation of aminopyrine, benzphetamine, and ethylmorphine with relatively low activity. On the other hand, chicken P-448 H functioned only in catalyzing estradiol 2-hydroxylation. These results were supported by an inhibition study of microsomal monooxygenases using an antibody against each enzyme. Immunochemical studies revealed that the enzymes differ from each other but are both inducible by PenCB-treatment. Chicken P-448 L and chicken P-448 H respectively comprise about 82 and 7% of the total P-450 content in chicken liver microsomes.  相似文献   

5.
Antibodies to mouse liver cytochrome P3-450 (anti-P3-450) and antibodies to rat liver cytochrome P-450d (anti-P-450d-c) inhibit the 0-deethylation of 7-ethoxyresorufin (ER) in liver microsomes of benz(a)pyrene-induced (BP) mice but do not inhibit the 0-deethylase activity in liver microsomes of BP-induced rats. Anti-P3-450 and anti-P-450c inhibit BP-hydroxylation in BP-induced mouse liver microsomes by 20%, but they do not inhibit this reaction at all in BP-induced rat liver microsomes. In a reconstituted monooxygenase system isolated cytochrome P3-450 metabolized 7-ER and BP. In contrast, its homologue, cytochrome P-450d, did not metabolize these substrates. The fraction containing cytochrome P1-450 metabolized 7-ER at a low rate and BP at a rate of 3.6 nmol product/min/nmol cytochrome. Western blot analysis with anti-P-450c + d revealed two bands in SDS-PAGE gels containing BP-induced mouse liver microsomes. The interaction of mouse liver BP-microsomes with anti-P3-450 and anti-P-450d-c was accompanied by the appearance of a single band (cytochrome P3-450).  相似文献   

6.
The aim of the present study was to examine a recent proposal that inhibitory isozyme:isozyme interactions explain why membrane-bound isozymes of rat liver microsomal cytochrome P-450 exert only a fraction of the catalytic activity they express when purified and reconstituted with saturating amounts of NADPH-cytochrome P-450 reductase and optimal amounts of dilauroylphosphatidylcholine. The different pathways of testosterone hydroxylation catalyzed by cytochromes P-450a (7 alpha-hydroxylation), P-450b (16 beta-hydroxylation), and P-450c (6 beta-hydroxylation) enabled possible inhibitory interactions between these isozymes to be investigated simultaneously with a single substrate. No loss of catalytic activity was observed when purified cytochromes P-450a, P-450b, or P-450c were reconstituted in binary or ternary mixtures under a variety of incubation conditions. When purified cytochromes P-450a, P-450b, and P-450c were reconstituted under conditions that mimicked a microsomal system (with respect to the absolute concentration of both the individual cytochrome P-450 isozyme and NADPH-cytochrome P-450 reductase), their catalytic activity was actually less (69-81%) than that of the microsomal isozymes. These results established that cytochromes P-450a, P-450b, and P-450c were not inhibited by each other, nor by any of the other isozymes in the liver microsomal preparation. Incorporation of purified NADPH-cytochrome P-450 reductase into liver microsomes from Aroclor 1254-induced rats stimulated the catalytic activity of cytochromes P-450a, P-450b, and P-450c. Similarly, purified cytochromes P-450a, P-450b, and P-450c expressed increased catalytic activity in a reconstituted system only when the ratio of NADPH-cytochrome P-450 reductase to cytochrome P-450 exceeded that normally found in liver microsomes. These results indicate that the inhibitory cytochrome P-450 isozyme:isozyme interactions described for warfarin hydroxylation were not observed when testosterone was the substrate. In addition to establishing that inhibitory interactions between different cytochrome P-450 isozymes is not a general phenomenon, the results of the present study support a simple mass action model for the interaction between membrane-bound or purified cytochrome P-450 and NADPH-cytochrome P-450 reductase during the hydroxylation of testosterone.  相似文献   

7.
Effects of pyridine and pyridine-N-oxide on the monooxygenase system of rat liver microsomes have been studied. Pyridine (200 mg/kg) increased total cytochrome P-450 content and activated metabolism of some specific substrates 24 hours after injection. There was an increase in the degree of p-nitrophenol and chlorzoxazone hydroxylation due to increasing ethanol-induced cytochrome P-450IIE1 content. Pyridine was also able to induce cytochrome P-450IIB1 in rat microsomes; this reaction was accompanied by acceleration of 7-pentoxyresorufin 0-dealkylation. Cytochrome P-450IA1 appearance in liver microsomes was associated with increasing content of cytochrome P-450IA2. Dealkylation rates for specific substrates (7-ethoxyresorufin and 7-methoxyresorufin) were also increased. Similar to pyridine, pyridine-7-oxide induced cytochromes P-450IIE1, P-450IIB1/B2, and P-450IA1/A2, resulting in activation of specific substrate metabolism. Hence, pyridine and its derivative pyridine-N-oxide can be regarded as effective inducers of cytochrome P-450.  相似文献   

8.
Induction of perfluorodecalin (PFD) of the liver microsomal system of metabolism of xenobiotics has been studied and compared with the inductions by phenobarbital (PB) and 3-methylcholanthrene (MC). It has been shown that PFD increases the content of cytochrome P-450, NADPH-cytochrome c reductase activity. Like PB, PFD induces the activities of benzphetamine-N-demethylase, aldrine-epoxidase, 16 beta-androstendion-hydroxylase. Using specific antibodies against cytochromes P-450b and P-450c (which are the main isoenzymes of cytochrome P-450 in the PB- and MC-microsomes respectively), an immunological identity of the cytochrome P-450 isoforms during PFD and PB induction has been found. According to the rocket immunoelectrophoresis the content of cytochrome P-450 in PFD-microsomes, which is immunologically indistinguishable from P-450b, was approximately 70% of the total cytochrome P-450. Two forms of cytochrome P-450 were isolated from the liver microsomes of PFD-induced rats and purified to homogeneity. A comparison of these forms with cytochromes P-450b and P-450e obtained from the PB-induced rat liver microsomes revealed their similarity in a number of properties, e.g., chromotographic behavior on DEAE-Sephacel column, molecular weight determined by sodium dodecyl sulphate (SDS) electrophoresis in polyacrylamide gel, immunoreactivity, peptide mapping, catalytic activity. The data presented demonstrate that PFD induced in rat liver microsomes the cytochrome P-450 forms whose immunological properties and substrate specificity correspond to those of the PB-type cytochrome P-450. These findings suggest that PFD and PB, which differ in their chemical structure, induce in the rat liver microsomes identical forms of cytochrome P-450.  相似文献   

9.
Eight electrophoretically homogeneous forms of cytochrome P-450 were isolated from liver microsomes of phenobarbital (PB)- and 3-methylcholanthrene (MC)-induced male Wistar rats, using chromatography on 1.8-diaminooctyl-Sepharose, SEAE-Sephacel and hydroxylapatite. These cytochrome forms were compared to those described in literature in terms of their ability to metabolize androstenedione (AD), benzphetamine (BP) and 7-ethoxyresorufin (7-ER). Cytochrome P-450b capable of catalyzing with a high specificity the 16-hydroxylation of AD and N-demethylation of BP, and cytochrome P-450e immunologically related to P-450b but incapable of catalyzing these reactions were isolated from PB-microsomes. Besides, a male-specific cytochrome P-450h catalyzing the 16 alpha-hydroxylation of AD was isolated from PB-microsomes. Cytochrome P-450c possessing a high 7-ER-O-deethylase activity, and a high spin cytochrome P-450d as well as cytochrome P-450a specifically catalyzing the 7 alpha-oxidation of AD were isolated from MC-microsomes. Two forms of cytochrome P-450 isolated from PB-microsomes possessed no such activities. Data from immunochemical analysis suggest that one of these forms can be identified as cytochrome P-450k. It is concluded that the specificity of metabolism and the molecular activity of Wistar rat liver cytochrome P-450 forms are comparable with the corresponding parameters of hemoproteins isolated from other rat species. At the same time, data from metabolic analysis are suggestive of differences in the levels of certain cytochrome P-450 forms, in particular P-450a.  相似文献   

10.
A procedure for the preparation of monospecific antibody directed against rat liver microsomal cytochrome P-45-a is described. This antibody, together with monospecific antibodies to cytochromes P-450b and P-450c, has been used to show that these three forms of cytochrome P-450 are distinct and share no common antigenic determinants. These antibodies (a) give single immunoprecipitin bands with detergent-solubilized microsomes; (b) do not cross-react with the purified heterologous antigens in Ouchterlony double diffusion analyses; (c) have no effect on catalytic activity of the heterologous antigens but completely inhibit the enzymatic activity of the homologous antigens; and (d) remove only the homologous antigen from detergent-solubilized microsomes when covalently bound to a solid support. With radial immunodiffusion assay, we have quantitated these three forms of cytochrome P-450 in liver microsomes after treatment of rats with seven different inducers of cytochrome P-450. The levels of these cytochrome P-450 isozymes vary independently and are also regulated by the age and sex of the animal. The antibodies have also been used to assess the contribution of cytochromes P-450a, P-450b, and P-450c in the metabolism of xenobiotics by rat liver microsomes. A large proportion of benzo(a)pyrene metabolism and testosterone 16 alpha-hydroxylation in microsomes from untreated rats is not catalyzed by cytochromes P-450a, P-450b, and P-450c. Epoxide hydrolase, another microsomal enzyme involved in the metabolism of xenobiotics, was also quantitated by radial immunodiffusion after prior treatment of rats with microsomal enzyme inducers. The inductions of epoxide hydrolase varies independently of the induction of cytochromes P-450a, P-450b, and P-450c.  相似文献   

11.
Four isozymes of cytochrome P-450 were purified to varying degrees of homogeneity from liver microsomes of cod, a marine teleost fish. The cod were treated with beta-naphthoflavone by intraperitoneal injection, and liver microsomes were prepared by calcium aggregation. After solubilization of cytochromes P-450 with the zwitterionic detergent 3-[(3-cholamidopropyl) dimethylammonio]-1-propansulfonate, chromatography on Phenyl-Sepharose CL-4B, and subsequently on DEAE-Sepharose, resulted in two cytochrome P-450 fractions. These were further resolved on hydroxyapatite into a total of four fractions containing different isozymes of cytochromes P-450. One fraction, designated cod cytochrome P-450c, was electrophoretically homogeneous, was recovered in the highest yield and constituted the major form of the isozymes. The relative molecular mass of this form (58 000) corresponds well with a protein band appearing in cod liver microsomes after treatment with beta-naphthoflavone. Both cytochrome P-450c and a minor form called cytochrome P-450d (56000) showed activity towards 7-ethoxyresorufin in a reconstituted system containing rat liver NADPH-cytochrome P-450 reductase and phospholipid. Differences between these two forms were observed in the rate and optimal pH for conversion of this substrate, and in optical properties. Rabbit antiserum to cod cytochrome P-450c did not show any cross-reactions with cod cytochrome P-450a (Mr 55000) or cytochrome P-450d in Ouchterlony immunodiffusion, but gave a precipitin line of partial identity with cod cytochrome P-450b (Mr 54000), possibly as a result of contaminating cytochrome P-450c in this fraction.  相似文献   

12.
The interaction of cimetidine with liver microsomes has been examined by spectral and equilibrium partition studies. First, difference spectroscopy has been used to evaluate the proportion of cytochrome P-450 in rat liver microsomes that exhibits an affinity for cimetidine in the pharmacologically relevant, low micromolar range of drug concentration. The value of 0.45 so obtained has confirmed that a substantial proportion of rat liver cytochrome P-450 has a high binding affinity for this drug. Second, a study of the binding of cimetidine to human liver microsomes by difference spectroscopy and partition equilibrium has detected a similar interaction, thus providing direct support for the postulate that the clinically observed impairment of oxidative drug metabolism may be due in part to inhibition of cytochrome P-450 monooxygenase by cimetidine. Hepatic microsomes from cimetidine-pretreated rats have been shown to exhibit elevated cytochrome P-450 specific content but a decreased proportion of sites with high affinity for the drug; this finding has been shown not to be the consequence of cimetidine-mediated, time-dependent, irreversible monooxygenase inhibition. Although cimetidine pretreatment caused enhanced specific activity of 7-ethoxyresorufin O-dealkylation, the specific activities for O-dealkylation of 7-ethoxycoumarin and 4-nitroanisole were decreased, as were those for the N-dealkylation of morphine, ethylmorphine, aminopyrine, and dimethylnitrosamine. Since cimetidine pretreatment was shown to cause no change in the Michaelis constants for oxidation of morphine or 7-ethoxyresorufin, it is argued that these results provide strong presumptive evidence for changes in the relative abundance of isoenzymes catalyzing these various oxidations. Thus, a dual role of cimetidine, acting both as inhibitor and inducer of the cytochrome P-450 system, is proposed to account for the impaired oxidative metabolism of some drugs that occurs during coadministration with this H2-receptor antagonist.  相似文献   

13.
The mechanism-based inactivation of hepatic cytochrome P-450 by the suicide inhibitor 1-aminobenzotriazole and two of its derivatives, N-benzyl-1-aminobenzotriazole and N-alpha-methylbenzyl-1-aminobenzotriazole, was investigated in microsomes from untreated, phenobarbital-induced, and beta-naphthoflavone-induced guinea pigs. Microsomal 7-ethoxyresorufin O-deethylase, 7-pentoxyresorufin O-dealkylase, and benzphetamine N-demethylase activities, and cytochrome P-450 content were determined following incubation with 1-aminobenzotriazole and its analogues. The loss of hepatic cytochrome P-450 content and monooxygenase activity was dependent on inhibitor concentration and required NADPH. N-Benzyl-1-aminobenzotriazole and N-alpha-methylbenzyl-1-aminobenzotriazole were more potent inhibitors of monooxygenase activity than the parent compound in microsomes from untreated and phenobarbital-induced guinea pigs. In microsomes from phenobarbital-induced guinea pigs, N-alpha-methylbenzyl-1-aminobenzotriazole (10 microM) was highly selective for the inactivation of the major cytochrome P-450 isozyme catalyzing 7-pentoxyresorufin O-dealkylation (the guinea pig ortholog of P-450IIB1) compared with those isozymes catalyzing 7-ethoxyresorufin O-deethylation or benzphetamine N-demethylation (88 +/- 3% loss of activity vs. 35 +/- 11 and 13 +/- 7%, respectively). N-Benzyl-1-aminobenzotriazole was also selective for the inactivation of 7-pentoxyresorufin O-dealkylase activity, but to a lesser degree (56 +/- 6 vs. 31 +/- 8 and 21 +/- 8%, respectively). In hepatic microsomes from untreated guinea pigs, the two N-substituted analogues were selective for the inhibition of 7-pentoxyresorufin O-dealkylation compared with benzphetamine N-demethylation, but not 7-ethoxyresorufin O-deethylation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Incubation of rabbit liver microsomes with alkaline phosphatase resulted in a marked decrease of NADPH-dependent monooxygenase activities. This decrease was found to be correlated with the decrease of NADPH-cytochrome c reductase activity catalyzed by NADPH-cytochrome P-450 reductase. Neither the content of cytochrome P-450, as determined from its CO difference spectrum, nor the peroxide-supported demethylase activity catalyzed by cytochrome P-450 alone was affected by the phosphatase treatment. NADH-cytochrome b5 reductase and cytochrome b5 were not affected by the phosphatase either. NADPH-cytochrome P-450 reductase purified from rabbit liver microsomes lost its NADPH-dependent cytochrome c reductase activity upon incubation with phosphatase in a way similar to that of microsome-bound reductase. Flavin analysis showed that the phosphatase treatment caused a decrease of FMN with concomitant appearance of riboflavin. Alkaline phosphatase, therefore, inactivates the reductase by attacking its FMN, and the inactivation of the reductase, in turn, leads to a decrease of the microsomal monooxygenase activities.  相似文献   

15.
Cytochrome P-450d was isolated from isosafrol-induced rat liver microsomes by affinity chromatography on 1.8-diaminooctyl-Sepharose 4B and chromatography on hydroxylapatite using a linear potassium phosphate gradient (45-250 mM). The enzyme has a molecular mass of 54 kDa, CO-maximum 448 nm is characterized by a high spin state; the rate of 4-aminobiphenyl hydroxylation is 54 nmol/min/nmol of cytochrome P-450d (37 degrees C), those, of 7-ethoxyresorufin O-deethylation and benz (a) pyrene oxidation are 1 nmol/min/nmol of cytochrome P-450d (22 degrees C) and 2 nmol/min/nmol of cytochrome P-450d (37 degrees C), respectively. The properties of cytochrome P-450d were compared to those of cytochrome P-450c isolated from 3-methylcholanthrene-induced rats. The yield of these cytochromes under the conditions used (10% P-450d from isosafrol-induced microsomes and 15% P-450c from 3-methylcholanthrene-induced microsomes) was relatively high. Antibodies to cytochromes P-450d and P-450c were obtained. Using rocket immunoelectrophoresis the percentage of these hemoprotein forms in 3-methylcholanthrene-induced (P-450d-20%, P-450c-70%) and isosafrol-induced rat liver microsomes (P-450d-50%, P-450c-15%) was determined.  相似文献   

16.
Benzo(a)pyrene [B(a)P] treatment of gilthead seabream, 25 mg/kg, i.p. for 5 consecutive days, did not cause any significant changes in ethylmorphine N-demethylase and aniline 4-hydroxylase activities of liver microsomes. The same treatment did not alter the liver microsomal cytochrome b5 content, NADH-cytochrome b5 reductase and NADPH-cytochrome P450 reductase activities. However, benzo(a)pyrene treatment caused a 2–3-fold increase in 7-ethoxyresorufin O-deethylase (7-EROD) activity of gilthead seabream liver microsomes. Although, upon treatment, total cytochrome P450 content of liver microsomes increased about 1.7-fold in 1990 fall, no such increase was observed in spring 1991. However, a new cytochrome P450 with an apparent Mr of 58,000 was observed on SDS-PAGE of liver microsomes obtained from benzo(a)pyrene treated gilthead seabream. Besides, in vitro addition of 0.2 × 10−6 M benzo(a)pyrene to the incubation mixture inhibited 7-ethoxyresorufin O-deethylase activity by 93%. Gilthead seabream liver microsomal 7-ethoxyresorufin O-deethylase activity was characterized with respect to substrate concentration, amount of enzyme, type of buffer used, incubation period and temperature.  相似文献   

17.
The fractionation of the liver of goldfish (Carassius auratus) was studied, and the properties of the microsomal fraction were examined. The microsomal fraction contained cytochrome P-450 and catalyzed the oxidation of aminopyrine, aniline, 7-ethoxycoumarin and benzo(a)pyrene. The oxidation activities were significantly lower than those of rat liver microsomes. The titration of cytochrome P-450 by potassium cyanide indicated the presence of multiple forms of cytochrome P-450 in goldfish liver microsomes. Feeding of goldfish with 3-methylcholanthrene-containing food greatly induced benzo(a)pyrene hydroxylation activity of the liver microsomes. The Soret peak of the carbon monoxide compound of cytochrome P-450 was shifted from 450 to 448 nm.  相似文献   

18.
Two forms of cytochrome P-450 (P-450 human-1 and P-450 human-2) have been purified from human liver microsomes to electrophoretic homogeneity. P-450 human-1 and P-450 human-2 differ in their apparent molecular weights (52,000 and 56,000, respectively) and Soret peak maxima in the CO-binding reduced difference spectrum (447.6 and 450.3 nm, respectively). In the reconstituted system using rat liver NADPH-cytochrome c (P-450) reductase, P-450 human-2 more effectively oxidized benzo(a)pyrene (80-fold), ethylmorphine (2-fold), and 7-ethoxycoumarin (2-fold) than did P-450 human-1. However, P-450 human-1 showed higher testosterone 6 beta-hydroxylase activity, and the activity was markedly increased by the inclusion of cytochrome b5 or spermine in the reconstituted system. Antibodies raised against P-450 human-1 inhibited more than 80% of microsomal testosterone 6 beta-hydroxylase activity in human liver. Immunoblotting analysis using anti-P-450 human-1 IgG revealed a single immuno-staining band near Mr 52,000 in all human liver samples examined. The amount of immunochemically determined P-450 human-1 varied in parallel with the testosterone 6 beta-hydroxylase activity in human liver. These results indicate that P-450 human-1 is a major form of cytochrome P-450 responsible for microsomal testosterone 6 beta-hydroxylation. Thus, this paper is the first report on human cytochrome P-450 responsible for testosterone 6 beta-hydroxylation, which is the major hydroxylation pathway in human liver microsomes.  相似文献   

19.
Renal microsomal cytochrome P-450-dependent arachidonic acid metabolism was correlated with the level of cytochrome P-450 in the rabbit kidney. Cobalt, an inducer of haem oxygenase, reduced cytochrome P-450 in both the cortex and medulla in association with a 2-fold decrease in aryl-hydrocarbon hydroxylase, an index of cytochrome P-450 activity, and a similar decrease in the formation of cytochrome P-450-dependent arachidonic acid metabolites by renal microsomes (microsomal fractions). Formation of the latter was absolutely dependent on NADPH addition and was prevented by SKF-525A, an inhibitor of cytochrome P-450-dependent enzymes. Arachidonate metabolites of cortical microsomes were identified by g.c.-m.s. as 20- and 19-hydroxyeicosatetraenoic acid, 11,12-epoxyeicosatrienoic acid and 11,12-dihydroxyeicosatrienoic acid. The profile of arachidonic acid metabolites was the same for the medullary microsomes. Induction of cytochrome P-450 by 3-methylcholanthrene and beta-naphthoflavone increased cytochrome P-450 content and aryl-hydrocarbon hydroxylase activity by 2-fold in the cortex and medulla, and this correlated with a 2-fold increase in arachidonic acid metabolites via the cytochrome P-450 pathway. These changes can also be demonstrated in cells isolated from the medullary segment of the thick ascending limb of the loop of Henle, which previously have been shown to metabolize arachidonic acid specifically via the cytochrome P-450-dependent pathway. The specific activity for the formation of arachidonic acid metabolites by this pathway is higher in the kidney than in the liver, the highest activity being in the outer medulla, namely 7.9 microgram as against 2.5 micrograms of arachidonic acid transformed/30 min per nmol of cytochrome P-450 for microsomes obtained from outer medulla and liver respectively. These findings are consistent with high levels of cytochrome P-450 isoenzyme(s), specific for arachidonic acid metabolism, primarily localized in the outer medulla.  相似文献   

20.
The metabolism of xenobiotics by human lung has been investigated in tissue obtained from 10 patients undergoing pneumonectomy and compared with human liver activities in 6 different subjects. Lung microsomal fractions contain no detectable cytochrome P-450 while cytochrome b5 values were 25% of those for human liver. NADH and NADPH-cytochrome c reductase activity are in the range of those reported for other species. Human lung microsomes possess < 3% of the metabolic activity of liver for the oxidation of benzpyrene, phenacetin and 7-ethoxycoumarin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号