首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The amber mutation trpD28 of Salmonella typhimurium shows a complex reversion pattern on anthranilate (AA)-supplemented minimal medium. Under such conditions it is possible to recover revertants of two phenotypes, prototrophs (MM+) and anthranilate utilizers (AA+), each phenotype brought about by several mutational events. Since one class of AA+ revertants is caused by deletion of the trpD28 mutation, this constitutes a useful system for quantitative studies of the effects of mutagenic agents and cellular factors on the production of deletions. In the present study we have tried to assess the relative contribution of chemical mutagens vs. cellular mutator factors in causing this class of mutations. Strains of S. typhimurium in which the spontaneous reversion rate of trpD28 was modified by pKM101, (strain SO1007), mutL (strain SO1018) and both (strain SO1008), as well as the wild type (strain SO939) were treated with nitrous acid (HNO2) and mitomycin C (MC), mutagens reported to induce deletions in bacteria. The results showed that while the absolute frequency of deletions increased exponentially with dose of mutagen in parallel with the total reversion frequency, the relative frequency (percent) of these mutations was characteristic for each strain and for the most part unaffected by the dose of mutagen. It appears that deletions, spontaneous or induced, occur as a fixed percentage of total mutations and are brought about by the cells' own repair capacity and characteristic DNA metabolism. Perhaps these mutations are the result of untargeted events during SOS misrepair.  相似文献   

2.
Dynamic rearrangement of the actin cytoskeleton is a significant hallmark of Helicobacter pylori (H. pylori) infected gastric epithelial cells leading to cell migration and invasive growth. Considering the cellular mechanisms, the type IV secretion system (T4SS) and the effector protein cytotoxin-associated gene A (CagA) of H. pylori are well-studied initiators of distinct signal transduction pathways in host cells targeting kinases, adaptor proteins, GTPases, actin binding and other proteins involved in the regulation of the actin lattice. In this review, we summarize recent findings of how H. pylori functionally interacts with the complex signaling network that controls the actin cytoskeleton of motile and invasive gastric epithelial cells.  相似文献   

3.
4.
The amber mutation trpD28 of Salmonella typimurium shows a complex reversion pattern on anthranilate (AA)-supplemented minimal medium. Under such conditions it is possible to recover revertants of two phenotypes, prototrophs (MM+) and anthranilate utilizers (AA+), each phenotype brought about by several mutational events. Since one class of AA+ revertants is caused by deletion of the trpD28 mutation, this constitutes a useful system for quantitative studies of the effects of mutagenic agents and cellular factors on the production of deletions. In the present study we have tried to assess the relative contribution of chemical mutagens vs. cellular mutator factors in causing this class of mutations. Strains of S. typhimurium in which the spontaneous reversion rate of trpD28 was modified by pKM101, (strain SO1007), mutL (strain SO1018) and both (strain SO1008), as well as the wild type (strain SO939) were treated with nitrous acid (HNO2) and mitomycin C (MC), mutagens reported to induce deletions in bacteria. The results showed that while the absolute frequency of deletions increased exponentially with dose of mutagen in parallel with the total reversion frequency, the relative frequency (percent) of these mutations was characteristic for each strain and for the most part unaffected by the dose of mutagen. It appears that deletions, spontaneous or induced, occur as a fixed percentage of total mutations and are brought about by the cells' own repair capacity and characteristic DNA metabolism. Perhaps these mutations are the result of untargeted events during SOS misrepair.  相似文献   

5.
Wang YP  Wang F  Wang MX  Zhu M  Ma Y  Wu RL 《生理学报》2008,60(3):409-418
气道上皮损伤修复过程包括细胞延伸、迁移和增殖.IQGAP1 (IQ domain GTPase-activating protein 1)是一个在许多细胞生命活动中非常有意义的蛋白,但其在肺上皮细胞中的作用尚未阐述清楚.本文采用目前广泛应用的刮伤气道上皮细胞的体外模型来研究IQGAP1的功能.结果显示,IQGAP1在小鼠、大鼠、猪和人气道上皮细胞中有丰富表达.它与微管骨架共定位,可被微管解聚剂nocodazole破坏.刮伤6~9h后,IQGAP1 mRNA及蛋白表达上调.过表达外源性IQGAP1导致β-catenin核转位,从而活化Tcf/Lef信号.此外,刮伤还影响IQGAP1与β-catenin、结肠腺瘤病(adenomatous polyposis coli, APC)蛋白及细胞质连接蛋白-170 (cytoplasmic linker protein-170, CLIP-170)之间的相互作用.通过小干扰RNA (small interference RNA, siRNA)沉默IQGAP1表达则明显延迟损伤愈合.结果提示,IQGAP1信号参与气道上皮细胞损伤修复过程.  相似文献   

6.
Belete HA  Hubmayr RD  Wang S  Singh RD 《PloS one》2011,6(11):e27469
Cell wounding is an important driver of the innate immune response of ventilator-injured lungs. We had previously shown that the majority of wounded alveolus resident cells repair and survive deformation induced insults. This is important insofar as wounded and repaired cells may contribute to injurious deformation responses commonly referred to as biotrauma. The central hypothesis of this communication states that extracellular adenosine-5' triphosphate (ATP) promotes the repair of wounded alveolus resident cells by a P2Y2-Receptor dependent mechanism. Using primary type 1 alveolar epithelial rat cell models subjected to micropuncture injury and/or deforming stress we show that 1) stretch causes a dose dependent increase in cell injury and ATP media concentrations; 2) enzymatic depletion of extracellular ATP reduces the probability of stretch induced wound repair; 3) enriching extracellular ATP concentrations facilitates wound repair; 4) purinergic effects on cell repair are mediated by ATP and not by one of its metabolites; and 5) ATP mediated cell salvage depends at least in part on P2Y2-R activation. While rescuing cells from wounding induced death may seem appealing, it is possible that survivors of membrane wounding become governors of a sustained pro-inflammatory state and thereby perpetuate and worsen organ function in the early stages of lung injury syndromes. Means to uncouple P2Y2-R mediated cytoprotection from P2Y2-R mediated inflammation and to test the preclinical efficacy of such an undertaking deserve to be explored.  相似文献   

7.
8.
The role of stem cells in skeletal and cardiac muscle repair.   总被引:15,自引:0,他引:15  
In postnatal muscle, skeletal muscle precursors (myoblasts) can be derived from satellite cells (reserve cells located on the surface of mature myofibers) or from cells lying beyond the myofiber, e.g., interstitial connective tissue or bone marrow. Both of these classes of cells may have stem cell properties. In addition, the heretical idea that post-mitotic myonuclei lying within mature myofibers might be able to re-form myoblasts or stem cells is examined and related to recent observations for similar post-mitotic cardiomyocytes. In adult hearts (which previously were not considered capable of repair), the role of replicating endogenous cardiomyocytes and the recruitment of other (stem) cells into cardiomyocytes for new cardiac muscle formation has recently attracted much attention. The relative contribution of these various sources of precursor cells in postnatal muscles and the factors that may enhance stem cell participation in the formation of new skeletal and cardiac muscle in vivo are the focus of this review. We concluded that, although many endogenous cell types can be converted to skeletal muscle, the contribution of non-myogenic cells to the formation of new postnatal skeletal muscle in vivo appears to be negligible. Whether the recruitment of such cells to the myogenic lineage can be significantly enhanced by specific inducers and the appropriate microenvironment is a current topic of intense interest. However, dermal fibroblasts appear promising as a realistic alternative source of exogenous myoblasts for transplantation purposes. For heart muscle, experiments showing the participation of bone marrow-derived stem cells and endothelial cells in the repair of damaged cardiac muscle are encouraging.  相似文献   

9.
Qin XQ  Xiang Y  Liu C  Tan YR  Qu F  Peng LH  Zhu XL  Qin L 《生理学报》2007,59(4):454-464
气道高反应的发病机制目前仍然不清楚,但人多数人认同是气道的一种慢性炎症。近十年来,上皮缺陷学说逐渐成为解释气道高反应机制的主流观点。气道上皮不再被仅仅看作为单纯的机械屏障,而是机体内环境与外部环境相互作用的界面。气道上皮具有广泛的生理作用,包括抗氧化、内分泌和外分泌、黏液运输、生物代谢、结构性黏附、损伤修复、应激或炎症信号传递、抗原递呈作用等。借助这些生理作用,支气管上皮细胞在气道局部微环境稳态维持中发挥重要作用。有理由相信,气道上皮的结构完整性缺陷或功能紊乱是哮喘和慢性阻塞性肺疾病等气道高反应性疾病的启动环节。  相似文献   

10.
肠粘膜上皮细胞在天然免疫中的作用   总被引:3,自引:0,他引:3  
粘膜免疫是机体防御系统的主要成分。致病性细菌侵入机体后,首先遭遇到天然免疫的抵抗,随后产生获得性免疫,两共同执行机体的防御功能,消灭入侵细菌。最近的研究表明上皮细胞对细菌感染有重要的免疫调节作用,在天然免疫与获得性免疫防御机制中起重要作用。本重点介绍肠上皮细胞在天然免疫中的作用。  相似文献   

11.
The cuboidal epithelial stem cell line Rat Mammary (Rama) 25 can differentiate in culture to droplet, alveolar-like cells that form domes, secrete small amounts of casein, and bind peanut lectin after treatment with neuraminidase. Differentiation to droplet cells is accelerated by dimethyl sulfoxide (DMSO). Morphologically intermediate states (gray and dark) which occur in the order: cuboidal----gray----dark----dark droplet----doming cells have been identified along this pathway by time-lapse cinematography. The dark and dark droplet states are associated with increased peanut lectin binding capacity whereas casein is secreted mainly by cells in domes. Cells in cultures containing low concentrations of DMSO (less than 56 mM) acquire droplets predominantly in the dark state, whereas with higher concentrations of DMSO droplet formation is seen mainly in the gray state. Kinetic analysis both from time-lapse films and conventional microscopy, shows that increasing the concentration of DMSO prolongs the time spent in the gray state, decreases the time of initial appearance of droplet cells, and increases their subsequent rate of formation, without detectable effects on the rates of the remaining morphological transitions. DMSO also reduces the average rate of DNA synthesis and increases the average cell cycle time, particularly in the second (and subsequent) cell cycles after its addition. However, neither droplet nor doming cells are terminally differentiated. Thus a linear sequence of morphological states exists between the Rama 25 stem cells and the alveolar-like or more probably alveolar bud cells in vitro, and DMSO accelerates the overall conversion predominantly by truncating one of the steps in this pathway.  相似文献   

12.
Caenorhabditis elegans has two genes, unc-59 and unc-61, encoding septin-family GTPases. Mutations in the septin genes cause defects in locomotory behavior that have been previously attributed to cytokinesis failures in postembryonic neuroblasts. We find that mutations in either septin gene frequently cause uncoordination in newly hatched larvae in the absence of cytokinesis failures. The septins exhibit developmentally regulated expression, including expression in various neurons at times when processes are extending and synapses are forming. Motor neurons in the mutant larvae display defects in multiple aspects of axonal migration and guidance that are likely to be responsible for the locomotory behavior defects. The septins are also expressed in migrating distal tip cells, which are leaders for gonad arm extension. Septin mutants affect morphology of the distal tip cells, as well as their migration and guidance during gonadogenesis. These results suggest that septins may be generally required for developmental migrations and pathfinding.  相似文献   

13.
Cell spreading and migration associated with the expression of the 92-kD gelatinase (matrix metalloproteinase 9 or MMP-9) are important mechanisms involved in the repair of the respiratory epithelium. We investigated the location of MMP-9 and its potential role in migrating human bronchial epithelial cells (HBEC). In vivo and in vitro, MMP-9 accumulated in migrating HBEC located at the leading edge of a wound and MMP-9 expression paralleled cell migration speed. MMP-9 accumulated through an actin-dependent pathway in the advancing lamellipodia of migrating cells and was subsequently found active in the extracellular matrix (ECM). Lamellipodia became anchored through primordial contacts established with type IV collagen. MMP-9 became amassed behind collagen IV where there were fewer cell-ECM contacts. Both collagen IV and MMP-9 were involved in cell migration because when cell-collagen IV interaction was blocked, cells spread slightly but did not migrate; and when MMP-9 activation was prevented, cells remained fixed on primordial contacts and did not advance at all. These observations suggest that MMP-9 controls the migration of repairing HBEC by remodeling the provisional ECM implicated in primordial contacts.  相似文献   

14.
Helicobacter pylori is a major human pathogen associated with gastric diseases such as chronic active gastritis, peptic ulcer, and gastric carcinoma. The growth factor progranulin (PGRN) is a secreted glycoprotein that functions as an important regulator of cell growth, migration, and transformation. We aimed to determine the molecular mechanisms by which H. pylori upregulates the expression of PGRN and the relationship between H. pylori infection and production of PGRN in controlling cell proliferation and migration. Levels of PGRN were examined in gastric tissues from patients and in vitro in gastric epithelial cells. Cell proliferation was measured by colony formation assay. Cell migration was monitored by wound healing migration assay. PGRN protein levels were increased in patients with gastritis and gastric cancer tissue. Infection of gastric epithelial cells with H. pylori significantly increased PGRN expression in a time-dependent manner. Blockade of the p38 and MEK1/2 pathway by inhibitor inhibited H. pylori-mediated PGRN upregulation. Activation of p38 and MEK1/2 pathway by H. pylori was also identified. Knockdown of PGRN attenuated the H. pylori-induced proliferative activity and migration of cancer cells. These findings suggest that the upregulation of PGRN in H. pylori-infected gastric epithelial cells may contribute to the carcinogenic process.  相似文献   

15.
Intrinsic epithelial cells repair the kidney after injury   总被引:4,自引:0,他引:4  
Understanding the mechanisms of nephron repair is critical for the design of new therapeutic approaches to treat kidney disease. The kidney can repair after even a severe insult, but whether adult stem or progenitor cells contribute to epithelial renewal after injury and the cellular origin of regenerating cells remain controversial. Using genetic fate-mapping techniques, we generated transgenic mice in which 94%-95% of tubular epithelial cells, but no interstitial cells, were labeled with either beta-galactosidase (lacZ) or red fluorescent protein (RFP). Two days after ischemia-reperfusion injury (IRI), 50.5% of outer medullary epithelial cells coexpress Ki67 and RFP, indicating that differentiated epithelial cells that survived injury undergo proliferative expansion. After repair was complete, 66.9% of epithelial cells had incorporated BrdU, compared to only 3.5% of cells in the uninjured kidney. Despite this extensive cell proliferation, no dilution of either cell-fate marker was observed after repair. These results indicate that regeneration by surviving tubular epithelial cells is the predominant mechanism of repair after ischemic tubular injury in the adult mammalian kidney.  相似文献   

16.
CD74 is known as the major histocompatibility complex (MHC) class II-associated invariant chain (Ii) that regulates the cell biology and functions of MHC class II molecules. Class II MHC and Ii expression was believed to be restricted to classical antigen-presenting cells (APC); however, during inflammation, other cell types, including mucosal epithelial cells, have also been reported to express class II MHC molecules. Given the importance of Ii in the biology of class II MHC, we sought to examine the expression of Ii by gastric epithelial cells (GEC) to determine whether class II MHC molecules in these nonconventional APC cells were under the control of Ii and to further support the role that these cells may play in local immune and inflammatory responses during Helicobacter pylori infection. Thus we examined the expression of Ii on GEC from human biopsy samples and then confirmed this observation using independent methods on several GEC lines. The mRNA for Ii was detected by RT-PCR, and the various protein isoforms were also detected. Interestingly, these cells have a high level expression of surface Ii, which is polarized to the apical surface. These studies are the first to demonstrate the constitutive expression of Ii by human GEC.  相似文献   

17.
18.
19.
Base excision repair (BER) is dedicated to the repair of oxidative DNA damage caused by reactive oxygen species generated by chemical and physical agents or by metabolism which can react with DNA and cause a variety of mutations. Epithelial cells are typically the first type of host cell to come into contact with potential microbial invaders. In this work, we have evaluated whether the adherence to human epithelial cells causes DNA damage and associated filamentation. Experiments concerning adherence to HEp-2 cells were carried out with mutants deficient in BER that were derived from Escherichia coli K-12. Since the removal of mannose during bacterial interaction with HEp-2 cells allows adhesion through mannose-sensitive adhesins, the experiments were also performed in the presence and the absence of mannose. Our results showed enhanced filamentation for the single xth (BW9091) and triple xth nfo nth (BW535) mutants in adherence assays with HEp-2 cells performed without d-mannose. The increased filamentation growth was inhibited by complementation of BER mutants with a wild type xth gene. Moreover, we measured SOS induction of bacteria adhered to HEp-2 cells in the presence and absence of d-mannose through of SOS-chromotest assay and we observed a higher β-galactosidase expression in the absence of mannose. In this context, data showed evidence that bacterial attachment to HEp-2 epithelial surfaces can generate DNA lesions and SOS induction.  相似文献   

20.
Proteolytic processing of the Alzheimer amyloid precursor protein (APP) results in the generation of at least two distinct classes of biologically relevant peptides: (1) the amyloid beta peptides which are believed to be involved in the pathogenesis of Alzheimer's disease and (2) the soluble N-terminal ectodomain (sAPP) which exhibits a protective but as yet ill-defined effect on neurons and epithelial cells. In this report we present an overview on the functions of sAPP as an epithelial growth factor. This function involves specific binding of sAPP to membrane rafts and results in signal transduction and various physiological effects in epithelial cells as different as keratinocytes and thyrocytes. At nanomolar concentrations sAPP induces a two to fourfold increase in the rate of cell proliferation and cell migration. Specific inhibition of APP expression by antisense techniques results in decreased sAPP release and in reduced proliferative and motogenic activities. Proliferation and migration are known to be part of complex processes such as wound healing which, therefore, might be facilitated by the growth factor function of sAPP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号