首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spatial heterogeneity of benthic communities has clear implications for estimating lake production, biodiversity as well as identifying representative sites for palaeolimnological studies. This study investigates chironomid variability and the controlling factors (i.e., environmental and spatial variables) in surface sediments from Taihu Lake (2,338 km2), a hypertrophic lake in the Yangtze delta in eastern China. The spatial distribution of chironomids shows distinct heterogeneity. Microchironomus tabarui-type and Tanypus dominate the midge communities around the estuaries, while Cricotopus sylvestris-type and Polypedilum nubifer-type are the predominant taxa in the East Bays and the East Taihu Lake. Redundancy analysis was used for exploring the relationships between chironomid variability and environmental and spatial stressors. Four variables were identified as significant factors that influence chironomid community structures. The high nutrient concentrations around the estuarial areas favor the development of nutrient-tolerant taxa. Water depth-related oxygen depletion in the open lake during algae blooms prohibits the survival of many organisms, except for a few hypoxic-resistant species. High transparency in the East Bays and the East Taihu Lake indirectly creates a favorite microhabitat for macrophyte-associated chironomid species through aquatic plants. Space per se is a significant forcing factor for organism community and distribution at scales of >1,000 km2. It might be important to consider spatial variables more explicitly in future studies of chironomids in large lakes where multiple stressors make the interactions within the ecosystem more complicated. This study aims to illustrate the ecological characteristics of specific chironomid taxa related to a “microecosystem” which is contributed by the multiple environmental gradients within a large lake, and to provide empirical support for interpretation of palaeochironomid data.  相似文献   

2.

Floodplain lakes are good metacommunity systems to study the environmental and spatial processes structuring local assemblages. They are more connected during high-water periods and are more isolated during low-water periods. We evaluated the effects of lake spatial patterning and water and sediment conditions on Unionida species assemblages. Moran Eigenvector Maps were used to generate spatial variables representing spatial patterns at different scales. We sampled 35 lakes from the Pantanal floodplain, Brazil. To understand the effects of environmental and spatial variables, we performed Redundancy Analyses and variation partitioning to separate environmental and spatial pattern effects. Environmental variables explained almost twice the variation in the Pantanal mussel assemblages than did spatial variables. Unionida species presence was driven mainly by variations in sediment coarse sand and silt contents. The weak spatial patterns observed may be related to increased connectivity between lakes during floods, which facilitates mussel host fish dispersal. Mussel abundances were driven mainly by organic matter availability, but varied between species. Changes in lake connectivity can affect the regional sediment dynamics and affect mussel assemblages.

  相似文献   

3.
Many environmental variables that are important for the development of chironomid larvae (such as water temperature, oxygen availability, and food quantity) are related to water depth, and a statistically strong relationship between chironomid distribution and water depth is therefore expected. This study focuses on the distribution of fossil chironomids in seven shallow lakes and one deep lake from the Plymouth Aquifer (Massachusetts, USA) and aims to assess the influence of water depth on chironomid assemblages within a lake. Multiple samples were taken per lake in order to study the distribution of fossil chironomid head capsules within a lake. Within each lake, the chironomid assemblages are diverse and the changes that are seen in the assemblages are strongly related to changes in water depth. Several thresholds (i.e., where species turnover abruptly changes) are identified in the assemblages, and most lakes show abrupt changes at about 1–2 and 5–7 m water depth. In the deep lake, changes also occur at 9.6 and 15 m depth. The distribution of many individual taxa is significantly correlated to water depth, and we show that the identification of different taxa within the genus Tanytarsus is important because different morphotypes show different responses to water depth. We conclude that the chironomid fauna is sensitive to changes in lake level, indicating that fossil chironomid assemblages can be used as a tool for quantitative reconstruction of lake level changes.  相似文献   

4.
We examined fossil chironomids (Diptera: Chironomidae) in the surface sediments of four maar lakes in western Alaska to determine chironomid distribution patterns with respect to within-lake gradients of water depth, LOI (loss-on-ignition), and bottom-water temperature. Linear and non-linear regressions were undertaken to test whether the within-lake distributions of fossil chironomids were uniform. Additionally, water depths where abrupt changes or breakpoints in the assemblages occur were identified using piecewise regression. Direct gradient analysis was then used to examine variation in the assemblages explained by the environmental data. For the shallowest lake, chironomid abundances of individual taxa and inferred temperatures varied little within the lake. For the three deep lakes, seven of the sixteen commonest fossil taxa varied significantly with water depth, although some lake-specific patterns were evident. Water depth was generally identified as the principal environmental variable in explaining variation in the assemblages, although sediment organic matter content and bottom-water temperature were also important. Abrupt changes in assemblages occurred at different water depths in each lake, and at only one lake did the breakpoint occur within the range of water depths defining the thermocline. Chironomid-inferred temperature trends from the lakes also showed depth-related patterns: the warmest inferred temperatures were generally from both the shallowest and deepest water depths, whereas intermediate depths yielded temperature inferences about 0.5 to 1.0°C cooler than the average within-lake value. Nevertheless, we conclude that these patterns had only a slight impact on temperature reconstructions relative to the prediction error of the model. A greater understanding of taphonomic processes is needed to determine their influence on environmental reconstructions based on chironomids. Handling editor: J. Saros  相似文献   

5.
The temporal and spatial variability in the midge assemblage found in a backwater lake of the Mississippi River was examined. Bi-weekly samples were taken during the summers of 1987 and 1988. Four taxa of chironomids were found. The population density and sizes of chironomids, and the proportion that each taxon comprised of the midge assemblage, varied significantly in time and space. In an attempt to examine whether the variability noted was related to sediment accretion in the lake, sedimentation rates were measured. There were few correlations among sedimentation rate or the organic matter content of the collected sediment and the structure of the midge assemblage. Those few correlations that were statistically significant were low and often paradoxical. For example negative relationships were found between the density and size of Chironomus spp., a detritivore, and the amount of sediment deposited or its organic matter content. Also no significant relationships were found between the density of the predator Cryptochironomus spp. and the density of other chironomids (potential prey). These negative findings indicate that factors other than food, such as sediment texture, may be more important than food availability in structuring chironomid assemblages in backwater areas. There was spatial variability in the densities and sizes of chironomids that may be explained by differences in sediment texture and organic matter. This suggests that short-term inputs of sediment (as ascertained by sediment traps) may not greatly influence midge assemblages while the long-term changes in sediment composition may have large influences.  相似文献   

6.
Lakes and their topological distribution across Earth's surface impose ecological and evolutionary constraints on aquatic metacommunities. In this study, we group similar lake ecosystems as metacommunity units influencing diatom community structure. We assembled a database of 195 lakes from the tropical Andes and adjacent lowlands (8°N–30°S and 58–79°W) with associated environmental predictors to examine diatom metacommunity patterns at two different levels: taxon and functional (deconstructed species matrix by ecological guilds). We also derived spatial variables that inherently assessed the relative role of dispersal. Using complementary multivariate statistical techniques (principal component analysis, cluster analysis, nonmetric multidimensional scaling, Procrustes, variance partitioning), we examined diatom–environment relationships among different lake habitats (sediment surface, periphyton, and plankton) and partitioned community variation to evaluate the influence of niche‐ and dispersal‐based assembly processes in diatom metacommunity structure across lake clusters. The results showed a significant association between geographic clusters of lakes based on gradients of climate and landscape configuration and diatom assemblages. Six lake clusters distributed along a latitudinal gradient were identified as functional metacommunity units for diatom communities. Variance partitioning revealed that dispersal mechanisms were a major contributor to diatom metacommunity structure, but in a highly context‐dependent fashion across lake clusters. In the Andean Altiplano and adjacent lowlands of Bolivia, diatom metacommunities are niche assembled but constrained by either dispersal limitation or mass effects, resulting from area, environmental heterogeneity, and ecological guild relationships. Topographic heterogeneity played an important role in structuring planktic diatom metacommunities. We emphasize the value of a guild‐based metacommunity model linked to dispersal for elucidating mechanisms underlying latitudinal gradients in distribution. Our findings reveal the importance of shifts in ecological drivers across climatic and physiographically distinct lake clusters, providing a basis for comparison of broad‐scale community gradients in lake‐rich regions elsewhere. This may help guide future research to explore evolutionary constraints on the rich Neotropical benthic diatom species pool.  相似文献   

7.
The late-spring quantitative relationship between epiphyton and macroinvertebrates was analyzed on the basis of units of colonizable plant surface of Typha angustifolia, Phragmites australis and Nuphar lutea (floating leaves) in the shallow euthrophic Lake Loosdrecht (the Netherlands), with a high seston load. The non-predatory chironomid larvae (Glyptotendipes viridis, Endochironomus albipennis, Pentapedilum sordens, Cricotopus sylvestris agg.) dominated among the macroinvertebrate taxa, controlling the diversity and resemblance of macroinvertebrate assemblages. There was a gradient in functional feeding groups among the chironomids from continuous filtering of the seston to prevailing utilization of epiphyton. We found no direct relationship between the total macroinvertebrate abundance and the epiphyton mass on the plants surface. We attribute this to the filter feeding-strategy of the most abundant species, Glyptotendipes viridis, that utilizes seston in the eutrophicated lake.  相似文献   

8.
We investigated chironomid fauna of surface sediments and a short sediment core (Bol’shoy Kharbey Lake) from Pechora river basin, Northern Russia. Twenty three investigated lakes have thermokarst, glacial or floodplain origin and are characterised by low mineralization, mostly hydrocarbon-calcium type of water and low concentration of nutrients. Most of the lakes have circumneutral pH around ≤7 and only two lakes are slightly more acidic with pH ≤ 6. Ninety six chironomid taxa were identified in the surface sediments. Distribution of chironomids in the studied region is driven by continentality, mean TJuly and рН. Chironomid communities from the core of the B. Kharbei Lake demonstrate the highest similarity with the fauna of the deeper lakes of the glacial origin. The glacial lakes have the highest indices of continentality and the lowest winter temperatures within the investigated data set. The chironomid fauna of the glacial lakes is composed of the profundal, oligotrophic and cold-stenotherm taxa. The fauna of the floodplain and thermokarst lakes is more closely related to TJuly and is composed of littoral and phytophilic taxa of meso–or eutrophic waters and moderate temperature conditions. The fauna of the acidic thermokarst lakes considerably differs from the other lakes. Chironomid communities here are represented by tolerant to acidification taxa, and by the typically littoral and shallow water acid-tolerant taxa that apparently also can tolerate acidification. Studied sediment record covers ca last 200 years. The reconstructed TJuly during the entire period remain slightly below the modern temperatures. From 1970 reconstructed TJuly shows steady increase to the modern level. The reconstructed water depths (WDs) of the lake are higher than today till 1980. The highest WDs are reconstructed for ca 1970. After that the WDs gradually decrease to the modern level. Changes of the WDs are most probably related to changes in the precipitation rate.  相似文献   

9.
A faunal record of chironomid remains was analyzed in the upper 280 cm of a 543 cm long sediment core from Ple?né jezero (Ple?né Lake), the Bohemian Forest (?umava, Böhmerwald), Czech Republic. The chronology of the sediment was established by means of 5 AMS-dated plant macroremains. The resolution of individual 3-cm sediment layers is ~115 years and the analyzed upper 280 cm of the sediment core represent 10.4 cal. ka BP. As the results of DCA show, two marked changes were recorded in the otherwise relatively stable Holocene chironomid composition: (1) at the beginning of the Holocene (ca. 10.4-10.1 cal. ka BP) only oligotrophic and cold-adapted taxa (Diamesa sp., M. insignilobus-type, H. grimshawi-type) were present in the chironomid assemblages, clearly reflecting a cool climate oscillation during the Preboreal period, and (2) during an event dated in the interval 1540–1771 AD, when most taxa vanished entirely and only Zavrelimyia sp. and Procladius sp. were alternately present accompanied by Tanytarsus sp. Although, the age of this event is in agreement with the dating of the Little Ice Age, the most probable reason for the elimination of many chironomid taxa was very low sums recorded in this part of the sediment, rather than cool conditions connected with the LIA. Variations in the chironomid fauna after the Preboreal period were reflected mainly by changes in abundances of dominant taxa rather than by changes in species composition. These variations could be explained by: (1) climatic changes, namely temperature and amount of rainfall resulting in oscillations in lake level, with changes in the occurrence of macrophytes in the littoral and (2) increasingly dense afforestation which led to a considerable input of organic material into the lake and a subsequent increase in the trophic status of the lake water.  相似文献   

10.
1. The distributions of subfossil remains of chironomid larvae in 28 large, deep and stratified lakes in Europe were examined in surface sediments along a latitudinal transect ranging from northern Sweden to southern Italy. 2. Canonical correspondence analysis (CCA) showed that summer surface water and July air temperature, as well as total phosphorus (TP) concentrations, hypolimnetic oxygen availability and conductivity were statistically significant (P < 0.05) explanatory variables explaining between 11 and 14% of the variance in the chironomid data. 3. Owing to the spatial scale covered by our study, many environmental variables were covarying. Temperature, TP concentration and oxygen availability were positively or negatively correlated with the first axis of a detrended correspondence analysis (DCA) of chironomid assemblages, suggesting that climatic and trophic conditions influenced profundal chironomid assemblages either in a direct (food and oxygen) or in an indirect (temperature) way. Parameters related to local environmental conditions, lake morphology and bedrock geology, such as organic matter content of the sediment, maximum lake depth, Secchi depth and pH, were not significant in explaining the distribution of chironomid assemblages in our study lakes. 4. The strong relationship between chironomid assemblages and summer temperature may be related to the covariation of temperature with parameters, such as nutrient and oxygen availability, known to affect chironomid assemblages in deep, stratified lakes. However, summer temperature explained a statistically significant proportion of the variance in the chironomid assemblages even when effects of oxygen availability and TP concentrations were partialled out. This suggests that summer temperature has an effect on chironomid assemblages in deep lakes, which is not related to its covariation with trophic state. 5. The potential of fossil chironomid analysis for quantitatively reconstructing past nutrient conditions in deep, stratified lakes was examined by calculating the Benthic Quality Index (BQI) based on subfossil chironomids and by comparing BQI values with observed TP concentrations. BQI was linearly related to log‐transformed TP. Applying this relationship to fossil chironomid assemblages from Lake Päijänne (Finland) produced a TP reconstruction in agreement with measured TP during the period 1970–1990, demonstrating that this approach can provide quantitative estimates of past nutrient concentrations in deep, stratified lakes.  相似文献   

11.
12.
We examined spatial and environmental effects on the deconstructed assemblages of littoral macroinvertebrates within a large lake. We deconstructed assemblages by three biological trait groups: body size, dispersal mode and oviposition behaviour. We expected that spatial effects on assemblage structuring decrease and environmental effects increase with increasing body size. We also expected stronger environmental filtering and weaker spatial effect on the assemblages of flying species compared with assemblages of non-flying species. Stronger effect of environmental filtering was expected on the assemblages with species attaching eggs compared with assemblages of species with free eggs. We used redundancy analysis with variation partitioning to examine spatial and environmental effects on the deconstructed assemblages. As expected, the importance of environmental filtering increased and that of spatial effects decreased with increasing body size. Opposite to our expectations, assemblages of non-flying species were more affected by environmental conditions compared to assemblages of flying species. Concurring with our expectations, the importance of environmental filtering was higher in structuring assemblages of species attaching eggs than in structuring those with freely laid eggs. The amount of unexplained variation was higher for assemblages with small-sized to medium-sized species, flying species and species with free eggs than those with large-sized species, non-flying species and species with attached eggs. Our observations of decreasing spatial and increasing environmental effects with increasing body size of assemblages deviated from the results of previous studies. These results suggest differing metacommunity dynamics between within-lake and among-lake levels and between studies covering contrasting taxonomic groups and body size ranges.  相似文献   

13.
Árva  Diána  Tóth  Mónika  Mozsár  Attila  Specziár  András 《Hydrobiologia》2017,787(1):353-373

Environmental heterogeneity plays a determinant role in structuring taxonomic and functional composition of local assemblages via various interacting processes as synthesized in the metacommunity theory. In this study, we evaluate the relative roles of local environmental and landscape filters, spatial constraints and seasonality in organization of assemblages of Chironomidae (Diptera), a diverse aquatic insect group with winged adults, in an extremely heterogeneous wetland system, Kis-Balaton, Hungary. As expected, local environmental variables explained a substantial proportion of assemblage variance mainly along sediment structure, macrophyte coverage, and decomposing plant matter gradients. Considering the narrow spatial range of the study area, pure spatial influence was unexpectedly strong, likely because of the dispersal limitation related to tall terrestrial vegetation patches and mass effect related to the uneven distribution and area of certain microhabitats and their species pools. However, landscape- and season-related variability proved to be low or negligible. Taxonomic and functional feeding guild (FFG)-based approaches revealed the same main trends in assemblage data; however, FFGs seemed to track environmental changes more tightly. We argue for the common use of taxonomic and functional-based approaches and advise the improvement of species optima and tolerance spectra databases to expand bioassessment power.

  相似文献   

14.
1. Surface-sediment assemblages of subfossil chironomid head capsules from fifty-four primarily shallow and nutrient-rich Danish lakes were analysed using multivariate numerical techniques. The species data, comprising forty-one chironomid taxa, were compared to environmental monitoring data in order to establish a relationship between chironomid faunal composition and lake trophic state.
2. The subfossil assemblages were compared to the chironomid bathymetric distributions along transects from four lakes. Correspondence analysis and similarity coefficients showed that the subfossil assemblages, sampled in the lake centre, reflect the chironomid communities in the littoral at a depth of 2–7 m.
3. Two-way indicator species analysis (TWINSPAN) was used to classify the Danish lakes into five groups defined by trophic state, lake depth and pH. Eighteen chironomid taxa showed significant differences in abundance among the five groups. Canonical correspondence analysis (CCA) showed the chlorophyll a concentration ([Chl a ]) and Secchi depth to be the variables best correlated to the faunal data, and fourteen taxa were significantly correlated to [Chl a ].
4. The strong correlation between chironomid data and the ln-transformed ([Chl a ]) was used to create a weighted averaging (WA) model to infer lake trophic state. Several models were tested by cross validation (leave-one-out jack-knifing), and a simple WA model using inverse de-shrinking had a RMSEPjack of 0.65 (ln units) and a r 2jack of 0.67.
5. The results can be used in the assessment and reconstruction of lake trophic state for long-term monitoring and palaeoecological investigations of shallow, temperate lakes in the mesotrophic to hypertrophic nutrient range.  相似文献   

15.
The effects of chironomid larvae,Chironomus plumosus, and tubificid worms,Limnodrilus spp., on particle redistribution in lake sediment were investigated experimentally using pots containing sediments obtained from Lake Suwa, Japan. The chironomids and tubificids increased the water content of surface sediment. The chironomid larvae had no effect on particle size distribution, while tubificids continuously accumulated small particles on the surface sediment through their selective feeding activity. Particles larger than 0.125 mm were buried at a sediment depth of 6 cm. In Lake Suwa, long diatom frustules, large plant debris and blue-green algal flocs were found to accumulate in the deeper layer of the lake sediment inhabited by tubificids at high density.  相似文献   

16.
1. We investigated the distribution of chironomid taxa in urban wetlands in the greater Melbourne area, Australia, to test if their distribution was influenced by sediment pollution and other environmental variables. 2. For identification of the Chironomidae, DNA markers generated via polymerase chain reaction–restriction fragment length polymorphism of cytochrome c oxidase sub unit I (COI) were validated against morphology and reference specimens for more than 5000 chironomids representing over 80 species. DNA‐based identification generally concurred with morphological separation, but also indicated the existence of cryptic diversity in some genera. 3. Non‐metric multidimensional scaling (NMS) and canonical correspondence analysis (CCA) showed chironomid assemblages were structured among wetlands and could be linked to several habitat characteristics. However, Chironomidae assemblages were only weakly linked to sediment pollution. 4. Logistic regressions identified potential bioindicators of sediment pollution. Riethia stictoptera, Tanytarsus inextentus, Coelopynia and Chironomus ‘februarius’ were negatively associated and Chironomus duplex was positively associated with sediment pollution. Thresholds for the pollution sensitivities of specific species were mostly similar to those established with previous microcosm tests. 5. Several other environmental factors influenced the distribution of specific chironomid taxa. Salinity, substratum type and submerged and riparian vegetation were particularly important. 6. We conclude that specific chironomid taxa rather than assemblages have potential as bioindicators of sediment pollution provided their ecological preferences are considered and their pollution sensitivities are characterized using multiple methods. The integration of DNA‐based techniques should facilitate accurate and rapid identification of bioindicators species.  相似文献   

17.
Aim Predictions of aquatic ecosystem change with global warming require basic data that accurately reflect the environmental conditions underlying species distributions. However, in remote arctic areas such baseline data are scarce. We assess the influence of environmental variables on chironomid distribution and taxon richness in shallow, isothermal lakes in a poorly studied arctic region. We pay particular attention to community variation along the treeline ecotonal zone where many environmental variables change abruptly in a relatively small area. Location Lake transect in Finnish Lapland spanning from boreal coniferous forest to arctic tundra. Methods Chironomid assemblages were determined from surface‐sediment samples of 50 shallow (< 10 m) natural lakes. Abundance and taxon richness data were related to 24 limnological variables using canonical ordination techniques (DCA, CCA, RDA). A Monte Carlo permutation procedure was used to assess the explanatory power of single variables. Between‐vegetation zone differences of richness were tested for statistical significance using one‐way anova . Results In total, 7771 chironomid head capsules were identified, consisting of 13 species, 10 species groups, four subgenera, 41 genera, four genus groups, five types and three with uncertain taxonomic affiliation. A hump‐shaped relationship between taxon richness and elevation was noted along the study transect with a peak in taxon richness occurring in mountain birch woodland lakes at middle elevations, decreasing then towards both warmer and colder ends of the elevation/temperature gradient. Of the individual parameters, sediment organic content, total organic carbon, pH, and lake‐specific air temperature accounted for the greatest amount of variation in the chironomid data. Main conclusions Maximum taxon richness occurred at mid‐elevations where aquatic algae also reached their maximum diversity. This area coincides with an ecotonal transitional zone, which seems more likely to account for the peak in species richness. Our study demonstrates that the factors most strongly affecting chironomids in Finnish Lapland (i.e. temperature, and ecosystem features) are those that with great probability will also change as a result of future climate change. This will likely have an effect on the distribution of chironomids in subarctic and arctic areas.  相似文献   

18.
通过对沙湖41 cm沉积岩芯摇蚊亚化石组合进行分析, 结合210Pb测年、长江中下游摇蚊-总磷转换函数模型、降趋势对应分析(Detrended Correspondence Analysis, DCA)方法及武汉市历史资料数据, 定量重建湖泊水体总磷浓度, 揭示了沙湖自20世纪70年代以来环境演化历史。结果表明: (1) 1973—1989年, 摇蚊组合以水生植被相关属种Cricotopus sylvestris-type和Dicrotendipes nervosus-type占优势, 揭示湖泊水生植被发育; 这一时期摇蚊重建水体总磷浓度为47—55 μg/L, 沉积物总磷维持在700 mg/kg; (2) 1989—2002年, 沉积物总磷增加近一倍, 与此同时水体总磷逐渐上升到100 μg/L以上, 水生植被相关摇蚊属种相对丰度显著减少, 湖泊由此进入富营养态; (3) 2002年以来, 沉积物总磷持续升高到2000 mg/kg以上, 摇蚊组合以富营养属种Tanypus和Propsilocerus akamusi-type占绝对优势, 水体总磷浓度维持在150 μg/L以上。DCA第一轴解释了摇蚊组合变化的62.1%, 且样品点在DCA第一轴得分与沉积物总磷呈显著负相关, 表明摇蚊组合主要响应于湖泊营养富集过程, 这主要与武汉市城市化发展导致湖泊面积萎缩和入湖污水增加相关。研究表明沙湖水体营养本底值约为50 μg/L, 减少外源营养盐输入是保护沙湖水环境的重要途径。  相似文献   

19.
Most functional feeding types are represented within the species rich group of aquatic chironomids. Thus, we hypothesized that different lake types and microhabitats within lakes would (1) host specific chironomid communities and (2) that the individual communities would show specific δ 13C stable isotope signatures reflecting the prevailing origin of food source. To test our hypotheses, five lakes in southwest Greenland were investigated at a high taxonomic resolution and with detailed information on δ 13C signature of the chironomids and of individual microhabitats (macrophytes, sediment, stones, and profundal). We found that there was a significant difference in δ 13C between the chironomid assemblages of freshwater lakes and oligosaline lakes, while assemblages of the littoral microhabitats did not differ significantly. The δ 13C of chironomids reflected the wide variety of habitat signals, particularly in the freshwater lakes. Our results indicate that many chironomid taxa are ubiquitous and are found in several microhabitats, suggesting that they can adjust their feeding strategy according to the habitat. The implication is that chironomid assemblage composition has only limited use as indicator of littoral microhabitats in the Arctic. On the other hand, the δ 13C signature of fossil chironomids might have a potential as indicator of microhabitats in freshwater lakes.  相似文献   

20.
A major challenge in community ecology is to understand the underlying factors driving metacommunity (i.e., a set of local communities connected through species dispersal) dynamics. However, little is known about the effects of varying spatial scale on the relative importance of environmental and spatial (i.e., dispersal related) factors in shaping metacommunities and on the relevance of different dispersal pathways. Using a hierarchy of insect metacommunities at three spatial scales (a small, within‐stream scale, intermediate, among‐stream scale, and large, among‐sub‐basin scale), we assessed whether the relative importance of environmental and spatial factors shaping metacommunity structure varies predictably across spatial scales, and tested how the importance of different dispersal routes vary across spatial scales. We also studied if different dispersal ability groups differ in the balance between environmental and spatial control. Variation partitioning showed that environmental factors relative to spatial factors were more important for community composition at the within‐stream scale. In contrast, spatial factors (i.e., eigenvectors from Moran's eigenvector maps) relative to environmental factors were more important at the among‐sub‐basin scale. These results indicate that environmental filtering is likely to be more important at the smallest scale with highest connectivity, while dispersal limitation seems to be more important at the largest scale with lowest connectivity. Community variation at the among‐stream and among‐sub‐basin scales were strongly explained by geographical and topographical distances, indicating that overland pathways might be the main dispersal route at the larger scales among more isolated sites. The relative effect of environmental and spatial factors on insect communities varied between low and high dispersal ability groups; this variation was inconsistent among three hierarchical scales. In sum, our study indicates that spatial scale, connectivity, and dispersal ability jointly shape stream metacommunities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号