首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We found that recombinant human adult hemoglobin (rHb A) expressed in Escherichia coli showed heterogeneity of components with the intensity of a positive CD band at 260 nm and that it could be resolved into three components (SP-1, SP-2, and SP-3) by SP-Sepharose column chromatography. 1H NMR revealed that SP-1 is identical with native Hb A, while SP-2 and SP-3 largely contain the reversed heme isomer in both the alpha and beta subunits, with contents of approximately 50 and >80% in SP-2 and SP-3, respectively. Rotation of the heme 180 degrees about the 5,15-meso axis (reversed heme) causes an interexchange of the methyl groups at positions 2 and 7 with the vinyl groups at positions 8 and 3, respectively. To examine the effect of the modification of the heme-protein contact on the structure and function of Hb A, we compared the 1H NMR, CD, and oxygen binding properties of the three components with those of native Hb A. Native Hb A exhibits a distinct positive CD band in both the near-UV and Soret regions, but rHb A with reversed heme exhibits a very weak positive CD band at 260 nm and a prominent negative CD band in the Soret region. Cooperativity, as measured by Hill's n value, decreased from 3.18 (SP-1) to 2.94 (SP-2) to 2.63 (SP-3) with an increase in the reversed heme orientation. The effect of an allosteric effector, inositol hexaphosphate (IHP), on the oxygen binding properties was also reduced in rHb A with reversed heme. These results indicate that changes in the heme-globin contact exert a discernible influence on CD spectra and cooperative oxygen binding.  相似文献   

2.
M Nagai  S Nagatomo  Y Nagai  K Ohkubo  K Imai  T Kitagawa 《Biochemistry》2012,51(30):5932-5941
The aromatic residues such as tryptophan (Trp) and tyrosine (Tyr) in human adult hemoglobin (Hb A) are known to contribute to near-UV circular dichroism (CD) and UV resonance Raman (RR) spectral changes upon the R → T quaternary structure transition. In Hb A, there are three Trp residues per αβ dimer: at α14, β15, and β37. To evaluate their individual contributions to the R → T spectral changes, we produced three mutant hemoglobins in E. coli; rHb (α14Trp→Leu), rHb (β15Trp→Leu), and rHb (β37Trp→His). Near-UV CD and UVRR spectra of these mutant Hbs were compared with those of Hb A under solvent conditions where mutant rHbs exhibited significant cooperativity in oxygen binding. Near-UV CD and UVRR spectra for individual Trp residues were extracted by the difference calculations between Hb A and the mutants. α14 and β15Trp exhibited negative CD bands in both oxy- and deoxy-Hb A, whereas β37Trp showed positive CD bands in oxy-Hb A but decreased intensity in deoxy-form. These differences in CD spectra among the three Trp residues in Hb A were ascribed to surrounding hydrophobicity by examining the spectral changes of a model compound of Trp, N-acetyl-l-Trp ethyl ester, in various solvents. Intensity enhancement of Trp UVRR bands upon the R → T transition was ascribed mostly to the hydrogen-bond formation of β37Trp in deoxy-Hb A because similar UVRR spectral changes were detected with N-acetyl-l-Trp ethyl ester upon addition of a hydrogen-bond acceptor.  相似文献   

3.
Cheng Y  Shen TJ  Simplaceanu V  Ho C 《Biochemistry》2002,41(39):11901-11913
To investigate the roles of beta93 cysteine in human normal adult hemoglobin (Hb A), we have constructed four recombinant mutant hemoglobins (rHbs), rHb (betaC93G), rHb (betaC93A), rHb (betaC93M), and rHb (betaC93L), and have prepared two chemically modified Hb As, Hb A-IAA and Hb A-NEM, in which the sulfhydryl group at beta93Cys is modified by sulfhydryl reagents, iodoacetamide (IAA) and N-ethylmaleimide (NEM), respectively. These variants at the beta93 position show higher oxygen affinity, lower cooperativity, and reduced Bohr effect relative to Hb A. The response of some of these Hb variants to allosteric effectors, 2,3-bisphosphoglycerate (2,3-BPG) and inositol hexaphosphate (IHP), is decreased relative to that of Hb A. The proton nuclear magnetic resonance (NMR) spectra of these Hb variants show that there is a marked influence on the proximal heme pocket of the beta-chain, whereas the environment of the proximal heme pocket of the alpha-chain remains unchanged as compared to Hb A, suggesting that higher oxygen affinity is likely to be determined by the heme pocket of the beta-chain rather than by that of the alpha-chain. This is further supported by NO titration of these Hbs in the deoxy form. For Hb A, NO binds preferentially to the heme of the alpha-chain relative to that of the beta-chain. In contrast, the feature of preferential binding to the heme of the alpha-chain becomes weaker and even disappears for Hb variants with modifications at beta93Cys. The effects of IHP on these Hbs in the NO form are different from those on HbNO A, as characterized by (1)H NMR spectra of the T-state markers, the exchangeable resonances at 14 and 11 ppm, reflecting that these Hb variants have more stability in the R-state relative to Hb A, especially rHb (betaC93L) and Hb A-NEM in the NO form. The changes of the C2 proton resonances of the surface histidyl residues in these Hb variants in both the deoxy and CO forms, compared with those of Hb A, indicate that a mutation or chemical modification at beta93Cys can result in conformational changes involving several surface histidyl residues, e.g., beta146His and beta2His. The results obtained here offer strong evidence to show that the salt bridge between beta146His and beta94Asp and the binding pocket of allosteric effectors can be affected as the result of modifications at beta93Cys, which result in the destabilization of the T-state and a reduced response of these Hbs to allosteric effectors. We further propose that the impaired alkaline Bohr effect can be attributed to the effect on the contributions of several surface histidyl residues which are altered because of the environmental changes caused by mutations and chemical modifications at beta93Cys.  相似文献   

4.
Jin Y  Sakurai H  Nagai Y  Nagai M 《Biopolymers》2004,74(1-2):60-63
The deoxy-form of human adult hemoglobin (Hb A) exhibits a distinct negative CD band at 287 nm that disappears in the oxy-form. It has been suggested that the negative CD band is due to the environmental alteration of Tyr-alpha 42 or Trp-beta 37 at the alpha(1)beta(2) contact upon deoxygenation. To evaluate the contributions of the aromatic residues at the alpha(1)beta(2) contact and the penultimate tyrosine residues of the alpha and beta subunits (alpha 140 and beta 145) to the negative CD band, three recombinant (r) Hbs (rHb Ser-alpha 42, rHb His-beta 37, and rHb Thr-beta 145) were produced in Escherichia coli, and we compared the near-uv CD spectra of these three rHbs and Hb Rouen (Tyr-alpha 140-->His) with the spectra of Hb A under the condition in which all mutant Hbs were able to undergo the T-->R transition (Hill's n > 2.0). The contributions of Tyr-alpha 42, Trp-beta 37, Tyr-alpha 140, and Tyr-beta 145 to the negative CD band were estimated from changes in the ellipticity of the negative CD band at 287 nm to be 4, 18, 32, and 27%, respectively. These results indicate that environmental alteration of the penultimate tyrosine residues caused by the formation of salt bridges upon the R-->T transition is primarily responsible for the negative CD band.  相似文献   

5.
The underlying stereochemical mechanisms for the dramatic differences in autooxidation and hemin loss rates of fish versus mammalian hemoglobins (Hb) have been examined by determining the crystal structures of perch, trout IV, and bovine Hb at high and low pH. The fish Hbs autooxidize and release hemin approximately 50- to 100-fold more rapidly than bovine Hb. Five specific amino acid replacements in the CD corner and along the E helix appear to cause the increased susceptibility of fish Hbs to oxidative degradation compared with mammalian Hbs. Ile is present at the E11 helical position in most fish Hb chains whereas a smaller Val residue is present in all mammalian alpha and beta chains. The larger IleE11 side chain sterically hinders bound O(2) and facilitates dissociation of the neutral superoxide radical, enhancing autooxidation. Lys(E10) is found in most mammalian Hb and forms favorable electrostatic and hydrogen bonding interactions with the heme-7-propionate. In contrast, Thr(E10) is present in most fish Hbs and is too short to stabilize bound heme, and causes increased rates of hemin dissociation. Especially high rates of hemin loss in perch Hb are also due to a lack of electrostatic interaction between His(CE3) and the heme-6 propionate in alpha subunits whereas this interaction does occur in trout IV and bovine Hb. There is also a larger gap for solvent entry into the heme crevice near beta CD3 in the perch Hb (approximately 8 A) compared with trout IV Hb (approximately 6 A) which in turn is significantly higher than that in bovine Hb (approximately 4 A) at low pH. The amino acids at CD4 and E14 differ between bovine and the fish Hbs and have the potential to modulate oxidative degradation by altering the orientation of the distal histidine and the stability of the E-helix. Generally rapid rates of lipid oxidation in fish muscle can be partly attributed to the fact that fish Hbs are highly susceptible to oxidative degradation.  相似文献   

6.
Three recombinant mutant hemoglobins (rHbs) of human normal adult hemoglobin (Hb A), rHb (αT67V), rHb (βS72A), and rHb (αT67V, βS72A), have been constructed to test the role of the tertiary intra-subunit H-bonds between α67T and α14W and between β72S and β15W in the cooperative oxygenation of Hb A. Oxygen-binding studies in 0.1 M sodium phosphate buffer at 29 °C show that rHb (αT67V), rHb (βS72A), and rHb (αT67V, βS72A) exhibit oxygen-binding properties similar to those of Hb A. The binding of oxygen to these rHbs is highly cooperative, with a Hill coefficient of approximately 2.8, compared to approximately 3.1 for Hb A. Proton nuclear magnetic resonance (NMR) studies show that rHb (αT67V), rHb (βS72A), rHb (αT67V, βS72A), and Hb A have similar quaternary structures in the α1β2 subunit interfaces. In particular, the inter-subunit H-bonds between α42Tyr and β99Asp and between β37Trp and α94Asp are maintained in the mutants in the deoxy form. There are slight perturbations in the distal heme pocket region of the α- and β-chains in the mutants. A comparison of the exchangeable 1H resonances of Hb A with those of these three rHbs suggests that α67T and β72S are H-bonded to α14W and β15W, respectively, in the CO and deoxy forms of Hb A. The absence of significant free energy changes for the oxygenation process of these three rHbs compared to those of Hb A, even though the inter-helical H-bonds are abolished, indicates that these two sets of H-bonds are of comparable strength in the ligated and unligated forms of Hb A. Thus, the mutations at αT67V and βS72A do not affect the overall energetics of the oxygenation process. The preserved cooperativity in the binding of oxygen to these three mutants also implies that there are multiple interactions involved in the oxygenation process of Hb A.  相似文献   

7.
Human hemoglobin (Hb), which is an α2β2 tetramer and binds four O2 molecules, changes its O2-affinity from low to high as an increase of bound O2, that is characterized by ‘cooperativity’. This property is indispensable for its function of O2 transfer from a lung to tissues and is accounted for in terms of T/R quaternary structure change, assuming the presence of a strain on the Fe-histidine (His) bond in the T state caused by the formation of hydrogen bonds at the subunit interfaces. However, the difference between the α and β subunits has been neglected. To investigate the different roles of the Fe-His(F8) bonds in the α and β subunits, we investigated cavity mutant Hbs in which the Fe-His(F8) in either α or β subunits was replaced by Fe-imidazole and F8-glycine. Thus, in cavity mutant Hbs, the movement of Fe upon O2-binding is detached from the movement of the F-helix, which is supposed to play a role of communication. Recombinant Hb (rHb)(αH87G), in which only the Fe-His in the α subunits is replaced by Fe-imidazole, showed a biphasic O2-binding with no cooperativity, indicating the coexistence of two independent hemes with different O2-affinities. In contrast, rHb(βH92G), in which only the Fe-His in the β subunits is replaced by Fe-imidazole, gave a simple high-affinity O2-binding curve with no cooperativity. Resonance Raman, 1H NMR, and near-UV circular dichroism measurements revealed that the quaternary structure change did not occur upon O2-binding to rHb(αH87G), but it did partially occur with O2-binding to rHb(βH92G). The quaternary structure of rHb(αH87G) appears to be frozen in T while its tertiary structure is changeable. Thus, the absence of the Fe-His bond in the α subunit inhibits the T to R quaternary structure change upon O2-binding, but its absence in the β subunit simply enhances the O2-affinity of α subunit.  相似文献   

8.
The heme-regulated eukaryotic initiation factor-2alpha (eIF2alpha) kinase (HRI) regulates the initiation of protein synthesis in reticulocytes. The binding of NO to the N-terminal heme-binding domain (NTD) of HRI positively modulates its kinase activity. By utilizing UV-visible absorption, resonance Raman, EPR and CD spectroscopies, two histidine residues have been identified that are crucial for the binding of heme to the NTD. The UV-visible absorption and resonance Raman spectra of all the histidine to alanine mutants constructed were similar to those of the unmutated NTD. However, the change in the CD spectra of the NTD construct containing mutation of His78 to Ala (H78A) indicated loss of the specific binding of heme. The EPR spectrum for the ferric H78A mutant was also substantially perturbed. Thus, His78 is one of the axial ligands for the NTD of HRI. Significant changes in the EPR spectrum of the H123A mutant were also observed, and heme readily dissociated from both the H123A and the H78A NTD mutants, suggesting that His123 was also an axial heme ligand. However, the CD spectrum for the Soret region of the H123A mutant indicated that this mutant still bound heme specifically. Thus, while both His78 and His123 are crucial for stable heme binding, the effects of their mutations on the structure of the NTD differed. His78 appears to play the primary role in the specific binding of heme to the NTD, acting analogously to the "proximal histidine" ligand of globins, while His123 appears to act as the "distal" heme ligand.  相似文献   

9.
Although nonsymbiotic hemoglobins (Hbs) are found in different tissues of dicots and monocots, very little is known about hb genes in monocots and the function of Hbs in nonsymbiotic tissues. We report the cloning and analysis of two rice (Oryza sativa L.) hb genes, hb1 and hb2, that code for plant Hbs. Rice hb1 and hb2 genes contain four exons and three introns, as with all of the known plant hb genes. At least three copies of the hb gene were detected in rice DNA, and analysis of gene expression shows that hb1 and hb2 are expressed in leaves but only hb1 is expressed in roots. A cDNA for rice Hb1 was expressed in Escherichia coli, and the recombinant Hb (rHb1) shows an unusually high affinity for O2 because of a very low dissociation constant. The absorbance spectra of the ferric and deoxyferrous rHb1 indicate that, in contrast to symbiotic Hbs, a distal ligand is coordinated to the ligand-binding site. Mutation of the distal His demonstrates that this residue coordinates the heme Fe of ferric and deoxyferrous rHb1 and stabilizes O2 in oxy-rHb1. The biochemical properties of rice rHb1 suggest that this protein probably does not function to facilitate the diffusion of O2.  相似文献   

10.
Apohemoglobin (apoHb) is a dimeric globular protein with two vacant heme-binding pockets that can bind heme or other hydrophobic ligands. Purification of apoHb is based on partial hemoglobin (Hb) unfolding to facilitate heme extraction into an organic solvent. However, current production methods are time consuming, difficult to scale up, and use highly flammable and toxic solvents. In this study, a novel and scalable apoHb production method was developed using an acidified ethanol solution to extract the hydrophobic heme ligand into solution and tangential flow filtration to separate heme from the resultant apoprotein. Total protein and active protein yields were >95% and ~75%, respectively, with <1% residual heme in apoHb preparations and >99% purity from sodium dodecyl sulfate–polyacrylamide gel electrophoresis analysis. Virtually no loss of apoHb activity was detected at 4°C, −80°C, and in lyophilized form during long term storage. Structurally, size exclusion chromatography (SEC) and circular dichroism indicated that apoHb was dimeric with a ~25% reduction of helical content compared to Hb. Furthermore, mass spectroscopy and reverse-phase chromatography indicated that the mass of the α and β subunits were virtually identical to the theoretical mass of these subunits in Hb and had no detectable oxidative modifications upon heme removal from Hb. SEC confirmed that apoHb bound to haptoglobin at a similar ratio to that of native Hb. Finally, reconstituted Hb (rHb) was processed via a hemichrome removal method to isolate functional rHb for biophysical characterization in which the O2 equilibrium curve, O2 dissociation, and CO association kinetics of rHb were virtually identical to native Hb. Overall, this study describes a novel and improved method to produce apoHb, as well as presents a comprehensive biochemical analysis of apoHb and rHb.  相似文献   

11.
Four recombinant mutants of human fetal hemoglobin [Hb F (alpha2gamma2)] with amino acid substitutions at the position 43 of the gamma-chain, rHb (gammaD43L), rHb (gammaD43E), rHb (gammaD43W), and rHb (gammaD43R), have been expressed in our Escherichia coli expression system and used to investigate their inhibitory effect on the polymerization of deoxygenated sickle cell hemoglobin (Hb S). Oxygen-binding studies show that rHb (gammaD43E), rHb (gammaD43W), and rHb (gammaD43R) exhibit higher oxygen affinity than human normal adult hemoglobin (Hb A), Hb F, or rHb (gammaD43L), and all four rHbs are cooperative in binding O2. Proton nuclear magnetic resonance (NMR) studies of these four rHbs indicate that the quaternary and tertiary structures around the heme pockets are similar to those of Hb F in both deoxy (T) and liganded (R) states. Solution light-scattering experiments indicate that these mutants remain mostly tetrameric in the liganded (R) state. In equimolar mixtures of Hb S and each of the four rHb mutants (gammaD43L, gammaD43E, gammaD43R, and gammaD43W), the solubility (Csat) of each of the pairs of Hbs is higher than that of a similar mixture of Hb S and Hb A, as measured by dextran-Csat experiments. Furthermore, the Csat values for Hb S/rHb (gammaD43L), Hb S/rHb (gammaD43E), and Hb S/rHb (gammaD43R) mixtures are substantially higher than that for Hb S/Hb F. The results suggest that these three mutants of Hb F are more effective than Hb F in inhibiting the polymerization of deoxy-Hb S in equimolar mixtures.  相似文献   

12.
The cysteine residue at F9(93) of the human hemoglobin (Hb A) beta chain, conserved in mammalian and avian hemoglobins, is located near the functionally important alpha1-beta2 interface and C-terminal region of the beta chain and is reactive to sulfhydryl reagents. The functional roles of this residue are still unclear, although regulation of local blood flow through allosteric S-nitrosylation of this residue is proposed. To clarify the role of this residue and its functional homology to F9(88) of the alpha chain, we measured oxygen equilibrium curves, UV-region derivative spectra, Soret-band absorption spectra, the number of titratable -SH groups with p-mercuribenzoate and the rate of reaction of these groups with 4, 4'-dipyridine disulfide for three recombinant mutant Hbs with single amino acid substitutions: Ala-->Cys at 88alpha (rHb A88alphaC), Cys-->Ala at 93beta (rHb C93betaA) and Cys-->Thr at 93beta (rHb C93betaT). These Hbs showed increased oxygen affinities and impaired allosteric effects. The spectral data indicated that the R to T transition upon deoxygenation was partially restricted in these Hbs. The number of titratable -SH groups of liganded form was 3.2-3.5 for rHb A88alphaC compared with 2.2 for Hb A, whereas those for rHb C93betaA and rHb C93betaT were negligibly small. The reduction of rate of reaction with 4,4'-dipyridine disulfide upon deoxygenation in rHb A88alphaC was smaller than that in Hb A. Our experimental data have shown that the residues at 88alpha and 93beta have definite roles but they have no functional homology. Structure-function relationships in our mutant Hbs are discussed.  相似文献   

13.
This study is aimed at investigating the molecular basis of environmental adaptation of woolly mammoth hemoglobin (Hb) to the harsh thermal conditions of the Pleistocene ice ages. To this end, we have carried out a comparative biochemical-biophysical characterization of the structural and functional properties of recombinant hemoglobins (rHb) from woolly mammoth (rHb WM) and Asian elephant (rHb AE) in relation to human hemoglobins Hb A and Hb A(2) (a minor component of human blood). We have obtained oxygen equilibrium curves and calculated O(2) affinities, Bohr effects, and the apparent heat of oxygenation (ΔH) in the presence and absence of allosteric effectors [inorganic phosphate and inositol hexaphosphate (IHP)]. Here, we show that the four Hbs exhibit distinct structural properties and respond differently to allosteric effectors. In addition, the apparent heat of oxygenation (ΔH) for rHb WM is less negative than that of rHb AE, especially in phosphate buffer and the presence of IHP, suggesting that the oxygen affinity of mammoth blood was also less sensitive to temperature change. Finally, (1)H NMR spectroscopy data indicates that both α(1)(β/δ)(1) and α(1)(β/δ)(2) interfaces in rHb WM and rHb AE are perturbed, whereas only the α(1)δ(1) interface in Hb A(2) is perturbed compared to that in Hb A. The distinct structural and functional features of rHb WM presumably facilitated woolly mammoth survival in the Arctic environment.  相似文献   

14.
A series of terminally blocked peptides (to the pentamer level) from l ‐Ala and the cyclic Cα,α‐disubstituted Gly residue Afc and one Gly/Afc dipeptide have been synthesized by solution method and fully characterized. The molecular structure of the amino acid derivative Boc‐Afc‐OMe and the dipeptide Boc‐Afc‐Gly‐OMe were determined in the crystal state by X‐ray diffraction. In addition, the preferred conformation of all of the model peptides was assessed in deuterochloroform solution by FT‐IR absorption and 1H‐NMR. The experimental data favour the conclusion that the Afc residue tends to adopt either the fully‐extended (C5) or a folded/helical structure. In particular, the former conformation is highly populated in solution and is also that found in the crystal state in the two compounds investigated. A comparison with the structural propensities of the strictly related Cα,α‐disubstituted Gly residues Ac5c and Dϕg is made and the implications for the use of the Afc residue in conformationally constrained analogues of bioactive peptides are briefly examined. A spectroscopic (UV absorption, fluorescence, CD) characterization of this novel aromatic Cα,α‐disubstituted Gly residue is also reported. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
The heme of bacteria, plant and animal hemoglobins (Hbs) must be in the ferrous state to bind O2 and other physiological ligands. Here we have characterized the full set of non‐symbiotic (class 1 and 2) and ‘truncated’ (class 3) Hbs of Lotus japonicus. Class 1 Hbs are hexacoordinate, but class 2 and 3 Hbs are pentacoordinate. Three of the globins, Glb1‐1, Glb2 and Glb3‐1, are nodule‐enhanced proteins. The O2 affinity of Glb1‐1 (50 pm ) was the highest known for any Hb, and the protein may function as an O2 scavenger. The five globins were reduced by free flavins, which transfer electrons from NAD(P)H to the heme iron under aerobic and anaerobic conditions. Class 1 Hbs were reduced at very fast rates by FAD, class 2 Hbs at slower rates by both FMN and FAD, and class 3 Hbs at intermediate rates by FMN. The members of the three globin classes were immunolocalized predominantly in the nuclei. Flavins were quantified in legume nodules and nuclei, and their concentrations were sufficient to maintain Hbs in their functional state. All Hbs, except Glb1‐1, were expressed in a flavohemoglobin‐deficient yeast mutant and found to confer tolerance to oxidative stress induced by methyl viologen, copper or low temperature, indicating an anti‐oxidative role for the hemes. However, only Glb1‐2 and Glb2 afforded protection against nitrosative stress induced by S‐nitrosoglutathione. Because this compound is specifically involved in transnitrosylation reactions with thiol groups, our results suggest a contribution of the single cysteine residues of both proteins in the stress response.  相似文献   

16.
Hemoglobins (Hbs) reversibly bind gaseous diatomic ligands (e.g., O2) as the sixth heme axial ligand of the penta-coordinate deoxygenated form. Selected members of the Hb superfamily, however, display a functionally relevant hexa-coordinate heme Fe atom in their deoxygenated state. Endogenous heme hexa-coordination is generally provided in these Hbs by the E7 residue (often His), which thus modulates accessibility to the heme distal pocket and reactivity of the heme toward exogenous ligands. Such a pivotal role of the E7 residue is prominently shown by analysis of the functional and structural properties of insect Hbs. Here, we report the 2.6 A crystal structure of oxygenated Gasterophilus intestinalis Hb1, a Hb known to display a penta-coordinate heme in the deoxygenated form. The structure is analyzed in comparison with those of Drosophila melanogaster Hb, exhibiting a hexa-coordinate heme in its deoxygenated derivative, and of Chironomus thummi thummi HbIII, which displays a penta-coordinate heme in the deoxygenated form. Despite evident structural differences in the heme distal pockets, the distinct molecular mechanisms regulating O2 binding to the three insect Hbs result in similar O(2 affinities (P50 values ranging between 0.12 torr and 0.46 torr).  相似文献   

17.
Jin Y  Nagai M  Nagai Y  Nagatomo S  Kitagawa T 《Biochemistry》2004,43(26):8517-8527
The alpha-abnormal hemoglobin (Hb) M variants show physiological properties different from the beta-abnormal Hb M variants, that is, extremely low oxygen affinity of the normal subunit and extraordinary resistance to both enzymatic and chemical reduction of the abnormal met-subunit. To get insight into the contribution of heme structures to these differences among Hb M's, we examined the 406.7-nm excited resonance Raman (RR) spectra of five Hb M's in the frequency region from 1700 to 200 cm(-1). In the high-frequency region, profound differences between met-alpha and met-beta abnormal subunits were observed for the in-plane skeletal modes (the nu(C=C), nu(37), nu(2), nu(11), and nu(38) bands), probably reflecting different distortions of heme structure caused by the out-of-plane displacement of the heme iron due to tyrosine coordination. Below 900 cm(-1), Hb M Iwate [alpha(F8)His --> Tyr] exhibited a distinct spectral pattern for nu(15), gamma(11), delta(C(beta)C(a)C(b))(2,4), and delta(C(beta)C(c)C(d))(6,7) compared to that of Hb M Boston [alpha(E7)His --> Tyr], although both heme irons are coordinated by Tyr. The beta-abnormal Hb M variants, namely, Hb M Hyde Park [beta(F8)His --> Tyr], Hb M Saskatoon [beta(E7)His --> Tyr], and Hb M Milwaukee [beta(E11)Val --> Glu], displayed RR band patterns similar to that of metHb A, but with some minor individual differences. The RR bands characteristic of the met-subunits of Hb M's totally disappeared by chemical reduction, and the ferrous heme of abnormal subunits was no longer bonded with Tyr or Glu. They were bonded to the distal (E7) or proximal (F8) His, and this was confirmed by the presence of the nu(Fe-His) mode at 215 cm(-1) in the 441.6-nm excited RR spectra. A possible involvement of heme distortion in differences of reducibility of abnormal subunits and oxygen affinity of normal subunits is discussed.  相似文献   

18.
Tsai CH  Fang TY  Ho NT  Ho C 《Biochemistry》2000,39(45):13719-13729
Using our Escherichia coli expression system, we have constructed rHb (beta N108Q), a new recombinant hemoglobin (rHb), with the amino acid substitution located in the alpha(1)beta(1) subunit interface and in the central cavity of the Hb molecule. rHb (beta N108Q) exhibits low oxygen affinity, high cooperativity, enhanced Bohr effect, and slower rate of autoxidation of the heme iron atoms from the Fe(2+) to the Fe(3+) state than other low-oxygen-affinity rHbs developed in our laboratory, e.g., rHb (alpha V96W) and rHb (alpha V96W, beta N108K). It has been reported by Olson and co-workers [Carver et al. (1992) J. Biol. Chem. 267, 14443-14450; Brantley et al. (1993) J. Biol. Chem. 268, 6995-7010] that the substitution of phenylalanine for leucine at position 29 of myoglobin can inhibit autoxidation in myoglobin and at position 29 of the alpha-chain of hemoglobin can lower NO reaction in both the deoxy and the oxy forms of human normal adult hemoglobin. Hence, we have further introduced this mutation, alpha L29F, into beta N108Q. rHb (alpha L29F, beta N108Q) is stabilized against auto- and NO-induced oxidation as compared to rHb (beta N108Q), but exhibits lower oxygen affinity at pH below 7.4 and good cooperativity as compared to Hb A. Proton nuclear magnetic resonance (NMR) studies show that rHb (beta N108Q) has similar tertiary structure around the heme pockets and quaternary structure in the alpha(1)beta(1) and alpha(1)beta(2) subunit interfaces as compared to those of Hb A. The tertiary structure of rHb (alpha L29F, beta N108Q) as measured by (1)H NMR, especially the alpha-chain heme pocket region (both proximal and distal histidyl residues), is different from that of CO- and deoxy-Hb A, due to the amino acid substitution at alpha L29F. (1)H NMR studies also demonstrate that rHb (beta N108Q) can switch from the R quaternary structure to the T quaternary structure without changing ligation state upon adding an allosteric effector, inositol hexaphosphate, and reducing the temperature. On the basis of its low oxygen affinity, high cooperativity, and stability against autoxidation, rHb (beta N108Q) is considered a potential candidate for the Hb-based oxygen carrier in a blood substitute system.  相似文献   

19.
Using various mutants, we investigated to date the roles of the Fe-histidine (F8) bonds in cooperative O2 binding of human hemoglobin (Hb) and differences in roles between α- and β-subunits in the α2β2 tetramer. An Hb variant with a mutation in the heme cavity exhibited an unexpected feature. When the β mutant rHb (βH92G), in which the proximal histidine (His F8) of the β-subunit is replaced by glycine (Gly), was subjected to ion-exchange chromatography (Q Sepharose column) and eluted with an NaCl concentration gradient in the presence of imidazole, yielded two large peaks, whereas the corresponding α-mutant, rHb (αH87G), gave a single peak similar to Hb A. The β-mutant rHb proteins under each peak had identical isoelectric points according to isoelectric focusing electrophoresis. Proteins under each peak were further characterized by Sephadex G-75 gel filtration, far-UV CD, 1H NMR, and resonance Raman spectroscopy. We found that rHb (βH92G) exists as a mixture of αβ-dimers and α2β2 tetramers, and that hemes are released from β-subunits in a fraction of the dimers. An approximate amount of released hemes were estimated to be as large as 30% with Raman relative intensities. It is stressed that Q Sepharose columns can distinguish differences in structural flexibility of proteins having identical isoelectric points by altering the exit rates from the porous beads. Thus, the role of Fe-His (F8) bonds in stabilizing the Hb tetramer first described by Barrick et al. was confirmed in this study. In addition, it was found in this study that a specific Fe-His bond in the β-subunit minimizes globin structural flexibility.  相似文献   

20.
α‐Dioxygenases (α‐DOX) are heme‐containing enzymes found predominantly in plants and fungi, where they generate oxylipins in response to pathogen attack. α‐DOX oxygenate a variety of 14–20 carbon fatty acids containing up to three unsaturated bonds through stereoselective removal of the pro‐R hydrogen from the α‐carbon by a tyrosyl radical generated via the oxidation of the heme moiety by hydrogen peroxide (H2O2). We determined the X‐ray crystal structures of wild type α‐DOX from Oryza sativa, the wild type enzyme in complex with H2O2, and the catalytically inactive Y379F mutant in complex with the fatty acid palmitic acid (PA). PA binds within the active site cleft of α‐DOX such that the carboxylate forms ionic interactions with His‐311 and Arg‐559. Thr‐316 aids in the positioning of carbon‐2 for hydrogen abstraction. Twenty‐five of the twenty eight contacts made between PA and residues lining the active site occur within the carboxylate and first eight carbons, indicating that interactions within this region of the substrate are responsible for governing selectivity. Comparison of the wild type and H2O2 structures provides insight into enzyme activation. The binding of H2O2 at the distal face of the heme displaces residues His‐157, Asp‐158, and Trp‐159 ~2.5 Å from their positions in the wild type structure. As a result, the Oδ2 atom of Asp‐158 interacts with the Ca atom in the calcium binding loop, the side chains of Trp‐159 and Trp‐213 reorient, and the guanidinium group of Arg‐559 is repositioned near Tyr‐379, poised to interact with the carboxylate group of the substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号