首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 2 毫秒
1.
Quantum‐mechanical calculations of chiroptical properties have rapidly become the most popular method for assigning absolute configurations (AC) of organic compounds, including natural products. Black‐box time‐dependent Density Functional Theory (TDDFT) calculations of electronic circular dichroism (ECD) spectra are nowadays readily accessible to nonexperts. However, an uncritical attitude may easily deliver a wrong answer. We present to the Chirality Forum a discussion on what can be called good computational practice in running TDDFT ECD calculations, highlighting the most crucial points with several examples from the recent literature. Chirality 28:466–474, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

2.
A molecular docking study, using molecular mechanics calculations with AutoDock and semi‐empirical PM3 calculations, was used to predict the enantiodiscrimination of heptakis(2,3,6‐tri‐O‐methyl)‐β‐cyclodextrin (TMβCD) and ketoconazole (KTZ) enantiomers. A Density Functional Theory (DFT) single‐point calculation at the level of B3LYP/6‐311G (d,p) was performed for the PM3‐optimized complexes to obtain more accurate binding energy and the electronic structures of the complexes. The difference in energies of the inclusion complexes between the KTZ enantiomers and TMβCD is probably a measure of chiral discrimination, which results in the separation of the enantiomers as observed in the experimental studies. Chirality 28:209–214, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
We review the present status of experiments and calculations for circularly polarized luminescence (CPL) of simple organic molecules and of stimuli‐responsive organic molecules. Together with the historical report of the main instrumental approaches, a few crucial points about experiments are tackled, with the aim of defining measurement protocols, in view of the wide availability of commercial apparatuses in the near future. The calculations aimed at interpreting the CPL spectra, mostly based on time‐dependent Density Functional Theory (TD‐DFT) calculations, which started around 2010, are reviewed, limiting the discussion to small to mid‐sized molecules. Some applications of CPL spectra of organic molecules‐based systems are presented, with a focus especially on two fields: material science and biology. Chirality 28:696–707, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

4.
Elucidating the catalytic mechanism of DNA polymerase is crucial for a progress in the understanding of the control of replication fidelity. This work tries to advance the mechanistic understanding by analyzing the observed effect of mutations of the acidic groups in the active site of Polymerase β as well as the pH effect on the rate constant. The analysis involves both empirical valence bond (EVB) free energy calculations and considerations of the observed pH dependence of the reaction. The combined analysis indicates that the proton transfer (PT) from the nucleophilic O3′ has two possible pathways, one to D256 and the second to the bulk. We concluded based on calculations and the experimental pH profile that the most likely path for the wild‐type (WT) and the D256E and D256A mutants is a PT to the bulk, although the WT may also use a PT to Asp 256. Our analysis highlights the need for very extensive sampling in the calculations of the activation barrier and also clearly shows that ab initio QM/MM calculations that do not involve extensive sampling are unlikely to give a clear quantitative picture of the reaction mechanism. Proteins 2016; 84:1644–1657. © 2016 Wiley Periodicals, Inc.  相似文献   

5.
Monensin is a natural antibiotic that exhibits high affinity to certain metal ions. In order to explore its potential in coordination chemistry, circular dichroism (CD) spectra of monensic acid A (MonH) and its derivatives containing monovalent cations (Li+, Na+, K+, Rb+, Ag+, and Et4N+) in methanolic solutions were measured and compared to computational models. Whereas the conventional CD spectroscopy allowed recording of the transitions down to 192 nm, synchrotron radiation circular dichroism (SRCD) revealed other bands in the 178–192 nm wavelength range. CD signs and intensities significantly varied in the studied compounds, in spite of their similar crystal structure. Computational modeling based on the Density Functional Theory (DFT) and continuum solvent model suggests that the solid state monensin structure is largely conserved in the solutions as well. Time‐dependent Density Functional Theory (TDDFT) simulations did not allow band‐to‐band comparison with experimental spectra due to their limited precision, but indicated that the spectral changes were caused by a combination of minor conformational changes upon the monovalent cation binding and a direct involvement of the metal electrons in monensin electronic transitions. Both the experiment and simulations thus show that the CD spectra of monensin complexes are very sensitive to the captured ions and can be used for their discrimination. Chirality 28:420–428, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
The chiral separation of enantiomeric couples of three potential A3 adenosine receptor antagonists: (R/S)‐N‐(6‐(1‐phenylethoxy)‐2‐(propylthio)pyrimidin‐4‐yl)acetamide ( 1 ), (R/S)‐N‐(2‐(1‐phenylethylthio)‐6‐propoxypyrimidin‐4‐yl)acetamide ( 2 ), and (R/S)‐N‐(2‐(benzylthio)‐6‐sec‐butoxypyrimidin‐4‐yl)acetamide ( 3 ) was achieved by high‐performance liquid chromatography (HPLC). Three types of chiroptical spectroscopies, namely, optical rotatory dispersion (ORD), electronic circular dichroism (ECD), and vibrational circular dichroism (VCD), were applied to enantiomeric compounds. Through comparison with Density Functional Theory (DFT) calculations, encompassing extensive conformational analysis, full assignment of the absolute configuration (AC) for the three sets of compounds was obtained. Chirality 28:434–440, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

7.
Histone PTMs play a crucial role in regulating chromatin structure and function, with impact on gene expression. MS is nowadays widely applied to study histone PTMs systematically. Because histones are rich in arginine and lysine, classical shot‐gun approaches based on trypsin digestion are typically not employed for histone modifications mapping. Instead, different protocols of chemical derivatization of lysines in combination with trypsin have been implemented to obtain “Arg‐C like” digestion products that are more suitable for LC‐MS/MS analysis. Although widespread, these strategies have been recently described to cause various side reactions that result in chemical modifications prone to be misinterpreted as native histone marks. These artefacts can also interfere with the quantification process, causing errors in histone PTMs profiling. The work of Paternoster V. et al. 1 is a quantitative assessment of methyl‐esterification and other side reactions occurring on histones after chemical derivatization of lysines with propionic anhydride [Proteomics 2016, 16, 2059–2063]. The authors estimate the effect of different solvents, incubation times, and pH on the extent of these side reactions. The results collected indicate that the replacement of methanol with isopropanol or ACN not only blocks methyl‐esterification, but also significantly reduces other undesired unspecific reactions. Carefully titrating the pH after propionic anhydride addition is another way to keep methyl‐esterification under control. Overall, the authors describe a set of experimental conditions that allow reducing the generation of various artefacts during histone propionylation.  相似文献   

8.
Multistage enantioselective liquid–liquid extraction (ELLE) of 2‐phenylpropionic acid (2‐PPA) enantiomers using hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD) as extractant was studied experimentally in a counter‐current cascade of centrifugal contactor separators (CCSs). Performance of the process was evaluated by purity (enantiomeric excess, ee) and yield (Y). A multistage equilibrium model was established on the basis of single‐stage model for chiral extraction of 2‐PPA enantiomers and the law of mass conservation. A series of experiments on the extract phase/washing phase ratio (W/O ratio), extractant concentration, the pH value of aqueous phase, and the number of stages was conducted to verify the multistage equilibrium model. It was found that model predictions were in good agreement with the experimental results. The model was applied to predict and optimize the symmetrical separation of 2‐PPA enantiomers. The optimal conditions for symmetric separation involves a W/O ratio of 0.6, pH of 2.5, and HP‐β‐CD concentration of 0.1 mol L?1 at a temperature of 278 K, where eeeq (equal enantiomeric excess) can reach up to 37% and Yeq (equal yield) to 69%. By simulation and optimization, the minimum number of stages was evaluated at 98 and 106 for eeeq > 95% and eeeq > 97%. Chirality 28:235–244, 2016. © 2016 Wiley Periodicals, Inc. Research highlights are as follows:
    相似文献   

9.
UV–Vis and electronic circular dichroism (ECD) spectroscopy, complemented with Density Functional Theory (DFT) calculations, were used to elucidate the structural diversities of three multidentate nitrogen donor ligands and two associated copper complexes in solution directly. The three chiral salen ligands all consist of trans‐cyclohexane‐1,2‐diamine as a chiral scaffold and also of pyridine rings as chromophores, differing only in the linking groups between the two functional groups mentioned above. Very different ECD intensities and somewhat different ECD patterns were observed for these ligands and satisfactorily interpreted theoretically. For the geometry optimization and spectral simulation of the open‐shell metal complexes, the LANL2DZ basis set with effective core potential for the Cu and Cl atoms and pure cc‐pVTZ for the rest of the atoms was utilized. The performance of the same calculations with the polarization functions (f,g) from the cc‐pVTZ basis added to the LANL2DZ basis was compared. While the three ligands exhibit different conformational flexibility, the associated copper complexes show great rigidity imposed by the metal–ligand coordination, taking on a single structure in each case. In addition, dispersion interactions were shown to change the conformational stability ordering of the ligands noticeably and to exert considerable influence on the simulated UV–Vis and ECD spectra. Chirality 28:545–555, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

10.
Enantiomerization of allylic trifluoromethyl sulfoxides occurs spontaneously at room temperature through the corresponding allylic trifluoromethanesulfenates via a [2,3]‐sigmatropic rearrangement. Dynamic enantioselective high‐performance liquid chromatography (HPLC) analysis revealed the stereodynamics of these sulfoxides ranging from chromatographic resolution to peak coalescence at temperatures between 5 and 53 °C. The rate constant of enantiomerization and activation parameters were determined and compared with Density Functional Theory (DFT) calculations. Chirality 28:136–142, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

11.
Innate lymphoid cells (ILCs) are a heterogeneous family of immune cells that play a critical role in a variety of immune processes including host defence against infection, wound healing and tissue repair. Whether these cells are involved in lipid‐dependent immunity remains unexplored. Here we show that murine ILCs from a variety of tissues express the lipid‐presenting molecule CD1d, with group 3 ILCs (ILC3s) showing the highest level of expression. Within the ILC3 family, natural cytotoxicity triggering receptor (NCR)?CCR6+ cells displayed the highest levels of CD1d. Expression of CD1d on ILCs is functionally relevant as ILC3s can acquire lipids in vitro and in vivo and load lipids on CD1d to mediate presentation to the T‐cell receptor of invariant natural killer T (iNKT) cells. Conversely, engagement of CD1d in vitro and administration of lipid antigen in vivo induce ILC3 activation and production of IL‐22. Taken together, our data expose a previously unappreciated role for ILCs in CD1d‐mediated immunity, which can modulate tissue homeostasis and inflammatory responses.  相似文献   

12.
It is estimated that over two thirds of all new crystal structures of proteins are determined via the protein selenium derivatization (selenomethionine (Se‐Met) strategy). This selenium derivatization strategy via MAD (multi‐wavelength anomalous dispersion) phasing has revolutionized protein X‐ray crystallography. Through our pioneer research, similarly, Se has also been successfully incorporated into nucleic acids to facilitate the X‐ray crystal‐structure and function studies of nucleic acids. Currently, Se has been stably introduced into nucleic acids by replacing nucleotide O‐atom at the positions 2′, 4′, 5′, and in nucleobases and non‐bridging phosphates. The Se derivatization of nucleic acids can be achieved through solid‐phase chemical synthesis and enzymatic methods, and the Se‐derivatized nucleic acids (SeNA) can be easily purified by HPLC, FPLC, and gel electrophoresis to obtain high purity. It has also been demonstrated that the Se derivatization of nucleic acids facilitates the phase determination via MAD phasing without significant perturbation. A growing number of structures of DNAs, RNAs, and protein–nucleic acid complexes have been determined by the Se derivatization and MAD phasing. Furthermore, it was observed that the Se derivatization can facilitate crystallization, especially when it is introduced to the 2′‐position. In addition, this novel derivatization strategy has many advantages over the conventional halogen derivatization, such as more choices of the modification sites via the atom‐specific substitution of the nucleotide O‐atom, better stability under X‐ray radiation, and structure isomorphism. Therefore, our Se‐derivatization strategy has great potentials to provide rational solutions for both phase determination and high‐quality crystal growth in nucleic‐acid crystallography. Moreover, the Se derivatization generates the nucleic acids with many new properties and creates a new paradigm of nucleic acids. This review summarizes the recent developments of the atomic site‐specific Se derivatization of nucleic acids for structure determination and function study. Several applications of this Se‐derivatization strategy in nucleic acid and protein research are also described in this review.  相似文献   

13.
Background: Helicobacter pylori infection is associated with development of chronic inflammation and infiltration of immune cells into the gastric mucosa. As unconventional T‐lymphocytes expressing natural killer cell receptors are considered to play central roles in the immune response against infection, a study investigating their frequencies in normal and H. pylori‐infected gastric mucosa was undertaken. Materials and Methods: Flow cytometry was used to quantify T‐cells expressing the natural killer cell markers CD161, CD56, and CD94 in freshly isolated lymphocytes from the epithelial and lamina propria layers of gastric mucosa. Thirteen H. pylori‐positive and 24 H. pylori‐negative individuals were studied. Results: CD94+ T‐cells were the most abundant (up to 40%) natural killer receptor‐positive T‐cell population in epithelial and lamina propria layers of H. pylori‐negative gastric mucosa. CD161+ T‐cells accounted for about one‐third of all T‐cells in both compartments, but the lowest proportion were of CD56+ T‐cells. Compared with H. pylori‐negative mucosa, in H. pylori‐infected mucosa the numbers of CD161+ T‐cells were significantly greater (p = .04) in the epithelium, whereas the numbers of CD56+ T‐cells were lower (p = .01) in the lamina propria. A minor population (< 2%) of T‐cells in both mucosal layers of H. pylori‐negative subjects were natural killer T‐cells, and whose proportions were not significantly different (p > .05) to those in H. pylori‐infected individuals. Conclusions: The predominance, heterogeneity, and distribution of natural killer cell receptor‐positive T‐cells at different locations within the gastric mucosa reflects a potential functional role during H. pylori infection and warrants further investigation.  相似文献   

14.
The use of ortho‐phthalaldehyde (OPA) for the derivatization of amino acids (AA) is well known. It enables the separation of the derivatives on common reversed phase columns and improves the sensitivity with fluorescence detection. With the use of a chiral thiol an indirect enantioseparation of chiral amines and AAs is feasible. The major drawback of the OPA‐derivatization is the poor stability of the products. Here, a method with an in‐needle derivatization procedure is optimized to facilitate a quantitative conversion of the AA with OPA and the chiral thiols N‐acetyl‐L‐cysteine or N‐isobutyryl‐L‐cysteine, followed by a subsequent analysis, eluding the stability issue. Both enantiomers of a single AA were separated as OPA‐derivatives with a pentafluorophenyl column and a gradient program consisting of 50 mM sodium acetate buffer pH = 5.0 and acetonitrile. Fluorescence detection is commonly used to achieve sufficient sensitivity. In this study, the enantiomeric impurity of an AA can be detected indirectly with common UV spectrophotometric detection with a limit of quantitation of 0.04%. Seventeen different L‐AAs were tested and the amount of D‐AA for each individual AA was calculated by means of area normalization, which ranged from not detectable up to 4.29%. The recovery of the minor enantiomer of L‐ and D‐AA was demonstrated for three AAs at a 0.04% level and ranged between 92.3 and 113.3%, with the relative standard deviation between 1.7 and 8.2%.  相似文献   

15.
A direct chiral liquid chromatography–circular dichroism (LC‐CD) method was developed for the simple and rapid identification of N‐octylnortadalafil [(6R, 12aR)‐6‐(1,3‐benzodioxol‐5‐yl)‐2‐octyl‐2,3,6,7,12,12a‐hexahydropyrazino[1’,2’:1,6]pyrido[3,4‐b]indole‐1,4‐dione; RR‐OTDF] and its stereoisomers in dietary supplements. Samples were extracted with methanol. Compounds were then separated by chiral LC‐CD using Chiralcel OD‐RH (4.6 × 1 50 mm, 5 µm) with 5 mM ammonium formate (pH 3)/0.1% formic acid in acetonitrile (95:5, v/v) mixture solution (mobile phase A) and 0.1% formic acid in acetonitrile (mobile phase B). The isocratic elution used was mobile phase A / mobile phase B (3:7, v/v) at a flow rate of 1 ml/min. The column temperature was held at 30°C. RR‐OTDF and its stereoisomers were separated within 20 min with the resolution factors being over 2.0. Using this method, RR‐OTDF and (6R, 12aS)‐6‐(1,3‐benzodioxol‐5‐yl)‐2‐octyl‐2,3,6,7,12,12a‐hexahydropyrazino[1’,2’:1,6]pyrido[3,4‐b]indole‐1,4‐dione were detected in a dietary supplement. Chirality 28:204–208, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

16.
Vibrational circular dichroism (VCD) spectroscopy was applied to gelation by a chiral low‐molecular mass weight gelator, N,N’‐diperfluoroalkanoyl‐1,2‐trans‐diaminocyclohexane. Attention was focused on the winding effects of (–CF2)n chains on the gelating ability. For this purpose, a series of gelators were synthesized with perfluoroalkyl chains of different length (n = 6–8). When gelation was studied using acetonitrile as a solvent, the fibrils took different morphologies, depending on the chain length: twisted saddle‐like ribbon or helical ribbon from fibril (n = 6) and a helical ribbon from platelet (n = 8). The signs of VCD peaks assigned to the couplet of C=O stretching and to the C‐F stretching were also dependent on n, indicating that a gelator molecule changed conformation on elongating perfluoroalkyl chains. A model is proposed for the aggregation modes in fibrils. Chirality 28:361–364, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

17.
Brown citrus aphid Toxoptera citricida Kirkadly is considered as an important pest of citrus because it vectors citrus tristeza closterovirus. Aphids secrete a fluid from their cornicles as a defensive mechanism against natural enemies. Earlier studies on cornicle secretions of aphids focus only on triglycerides and fatty acids. In the present study, three different methods are used to investigate the chemical composition of the cornicle fluid of T. citricida. Gas chromatography with flame ionization detection is used to detect and quantify the triglycerides after trimethylsilyl derivatization, and gas chromatography‐mass spectrometry (GC‐MS) is used to determine the fatty acid composition after derivatization with boron trifluoride–methanol. Other compounds are detected using GC‐MS after methoxyamine hydrochloride and N‐methyl‐N‐(trimethylsilyl)trifluoroacetamide derivatization. The major fatty acid in the cornicle secretion of T. citricida is palmitic acid. Oleic, stearic, myristic, myristoleic and sorbic acids are also detected, although in low amounts. Sorboyl, dipalmitoyl (C6‐2, C16, C16) and disorboyl, stearoyl (C6‐2, C6‐2, C18) are the main triglycerides detected in cornicle secretion. Trehalose is the most predominant sugar (558.2 mm ), followed by glucose (92.0 mm ) and inositol (48.8 mm ). Many amino acids, including proline, glycine, alanine and serine, are also detected. In addition, the cornicle secretion is rich in many organic acids, including malic, citric, succinic and lactic acid. Information obtained from the present study improves our understanding of the chemical composition of the cornicle secretion of the brown citrus aphid.  相似文献   

18.
The absolute configurations of four resorcylic acid lactones (RALs), paecilomycins J ? M ( 1 ? 3 and 5 ), were assigned by Time‐Dependent Density‐Functional Theory (TDDFT) calculations of their electronic circular dichroism (CD) spectra. The previously reported structure 4 for paecilomycin M was found to be incorrect and should be changed to structure 5 . Analysis of structure‐spectrum relationship for this group of RALs suggested that V′‐shape conformations give type I CD spectra (two negative Cotton effects around 300 and 260 nm, a positive Cotton effect around 220 nm) while V‐shape conformations yield type II spectra (signs of three Cotton effects were opposite to those in type I). Chirality 26:44–50, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
Caffeic acid‐derived polyethers are a class of natural products isolated from the root extracts of comfrey and bugloss, which are endowed with intriguing pharmacological properties as anticancer agents. The synthesis of new polyether derivatives is achieved through ring‐opening polymerization of chiral 2,3‐disubstituted oxiranes, whose absolute configurations define the overall stereochemistry of the produced polymer. The absolute stereochemistry of one of these building blocks, methyl trans‐3‐(3,4‐dimethoxy‐phenyl)glycidate ( 3 ), was therefore characterized by the combination of enantioselective high‐performance liquid chromatography (HPLC), electronic circular dichroism (ECD) spectroscopy, and time‐dependent density functional theory (TD‐DFT) calculations. Initial efforts aiming at the isolation of enantiomers by means of a standard preparative HPLC protocol followed by offline ECD analysis failed due to unexpected degradation of the samples after collection. The stopped‐flow HPLC‐CD approach, by which the ECD spectra of enantiomers are measured online with the HPLC system, was applied to overcome this issue and allowed a fast, reliable, and chemical‐saving analysis, while avoiding the risks of sample degradation during the collection and processing of enantiomeric fractions. Subsequent TD‐DFT calculations identified ( (2S,3R)-3 as the first eluted enantiomeric fraction on the Lux Cellulose‐2 column, therefore achieving a full stereochemical characterization of the chiral oxirane under investigation. Chirality 27:914–918, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

20.
Materials inspired by natural proteins have a great appeal in tissue engineering for their biocompatibility and similarity to extracellular matrix (ECM). Chimeric polypeptides inspired by elastomeric proteins such as silk, elastin, and collagen are of outstanding interest in the field. A recombinant polypeptide constituted of three different blocks, each of them having sequences derived from elastin, resilin, and collagen proteins, was demonstrated to be a good candidate as biomaterial for its self‐assembling characteristics and biocompatibility. Herein, taking advantage of the primary amine functionalities present in the linear polypeptide, we crosslinked it with 1,6‐hexamethylene‐diisocyanate (HMDI). The characterization of the obtained polypeptide was realized by CD spectroscopy, AFM, and SEM microscopies. The obtained results, although not conclusive, demonstrate that the crosslinked polypeptide gave rise to porous networks, thin nanowires, and films not observable for the linear polypeptide. Chirality 28:606–611, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号