首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two ALVAC (canarypox virus)-based recombinant viruses expressing the feline leukemia virus (FeLV) subgroup A env and gag genes were assessed for their protective efficacy in cats. Both recombinant viruses contained the entire gag gene. ALVAC-FL also expressed the entire envelope glycoprotein, while ALVAC-FL(dl IS) expressed an env-specific gene product deleted of the putative immunosuppressive region. Although only 50% of the cats vaccinated with ALVAC-FL(dl IS) were protected against persistent viremia after oronasal exposure to a homologous FeLV isolate, all cats administered ALVAC-FL resisted the challenge exposure. Significantly, protection was afforded in the absence of detectable FeLV-neutralizing antibodies. These results represent the first effective vaccination of cats against FeLV with a poxvirus-based recombinant vector and have implications that are relevant not only to FeLV vaccine development but also to developing vaccines against other retroviruses, including human immunodeficiency virus.  相似文献   

2.
An important question in feline leukemia virus (FeLV) pathogenesis is whether, as in murine leukemia virus infection, homologous recombination between the infecting FeLV and the noninfectious endogenous FeLV-like proviruses serves as a significant base for the generation of proximal pathogens. To begin an analysis of this issue, several recombinant FeLVs were produced by using two different approaches: (i) the regions of the viral envelope (env) gene of a cloned FeLV (subgroup B virus [FeLV-B], Gardner-Arnstein strain) and those of two different endogenous proviral loci were exchanged to create specific FeLV chimeras, and (ii) vectors containing endogenous env and molecularly cloned infectious FeLV-C (Sarma strain) DNA sequences were coexpressed by transfection in nonfeline cells to facilitate recombination. The results of these combined approaches showed that up to three-fourths of the envelope glycoprotein (gp70), beginning from the N-terminal end, could be replaced by endogenous FeLV sequences to produce biologically active chimeric FeLVs. The in vitro replication efficiency or cell tropism of the recombinants appeared to be influenced by the amount of gp70 sequences replaced by the endogenous partner as well as by the locus of origin of the endogenous sequences. Additionally, a characteristic biological effect, aggregation of feline T-lymphoma cells (3201B cell line), was found to be specifically induced by replicating FeLV-C or FeLV-C-based recombinants. Multiple crossover sites in the gp70 protein selected under the conditions used for coexpression were identified. The results of induced coexpression were also supported by rapid generation of FeLV recombinants when FeLV-C was used to infect the feline 3201B cell line that constitutively expresses high levels of endogenous FeLV-specific mRNAs. Furthermore, a large, highly conserved open reading frame in the pol gene of an endogenous FeLV provirus was identified. This observation, particularly in reference to our earlier finding of extensive mutations in the gag gene, reveals a target area for potentially productive homologous recombination upstream of the functional endogenous env gene.  相似文献   

3.
The nucleotide sequence of a feline v-myc gene and feline leukemia virus (FeLV) flanking regions was determined. Both the nucleotide and predicted amino acid sequences are very similar to the murine and human c-myc genes (ca. 90% identity). The entire c-myc coding sequence is represented in feline v-myc and replaces portions of the gag and env genes and the entire pol gene. The coding sequence is in phase with the gag gene reading frame; v-myc, therefore, appears to be expressed as a gag-myc fusion protein. Viral sequences at the 3' myc-FeLV junction begin with the hexanucleotide CTCCTC, which is also found at the 3' fes-FeLV junction of both Gardner-Arnstein and Snyder-Theilen feline sarcoma viruses. These similarities suggest that some sequence specificity may exist for the transduction of cellular genes by FeLV. Feline v-myc lacks a potential phosphorylation site at amino acid 343 in the putative DNA-binding domain, whereas both human and murine c-myc have such sites. Avian v-myc has lost a potential phosphorylation site which is present in avian c-myc five amino acids from the potential mammalian site. If these sites are actually phosphorylated in normal c-myc proteins, their loss may alter the DNA-binding affinity of v-myc proteins.  相似文献   

4.
Endogenous feline leukemia virus (FeLV)-related sequences (enFeLV) are a family of proviral elements found in domestic cats and their close relatives. These elements can recombine with exogenous, infectious FeLVs of subgroup A (FeLV-A), giving rise to host range variants of FeLV-B. We found that a subset of defective enFeLV proviruses is highly expressed in lymphoma cell lines and in a variety of primary tissues, including lymphoid tissues from healthy specific-pathogen-free cats. At least two RNA species were detected, a 4.5-kb RNA containing gag, env, and long terminal repeat sequences and a 2-kb RNA containing env and long terminal repeat sequences. Cloning of enFeLV cDNA from two FeLV-free lymphoma cell lines (3201 and MCC) revealed a long open reading frame (ORF) encoding a truncated env gene product corresponding to the N-terminal portion of gp70env. Interestingly, all of three natural FeLV-B isolates include 3' env sequences which are missing from the highly transcribed subset and hence must be derived from other enFeLV elements. The enFeLV env ORF cDNA clones were closely similar to a previously characterized enFeLV provirus, CFE-16, but were polymorphic at a site corresponding to an exogenous FeLV neutralization epitope. Site-specific antiserum raised to a C-terminal 30-amino-acid peptide of the enFeLV env ORF detected an intracellular product of 35 kDa which was also shed from cells in stable form. Expression of the 35-kDa protein correlated with enFeLV RNA levels and was negatively correlated with susceptibility to infection with FeLV-B. Cell culture supernatant containing the 35-kDa protein specifically blocked infection of permissive fibroblast cells with FeLV-B isolates. We suggest that the truncated env protein mediates resistance by receptor blockade and that this form of enFeLV expression mediates the natural resistance of cats to infection with FeLV-B in the absence of FeLV-A.  相似文献   

5.
Using a polymerase chain reaction strategy aimed at detecting recombinant feline leukemia virus (FeLV) genomes with 5' env sequences originating from an endogenous source and 3' env sequences resulting from FeLV subgroup A (FeLV-A), we detected recombinant proviruses in approximately three-fourths of naturally occurring thymic and alimentary feline lymphosarcomas (LSAs) and one-third of the multicentric LSAs from cats determined to be FeLV capsid antigen positive by immunofluorescence assay. In contrast, only 1 of 22 naturally arising FeLV-negative feline LSAs contained recombinant proviruses, and no recombinant env gene was detected in seven samples from normal tissues or tissues from FeLV-positive animals that died from other diseases. Four preferred structural motifs were identified in the recombinants; one is FeLV-B like (recognizing that FeLV-B itself is a product of recombination between FeLV-A and endogenous env genes), and three contain variable amounts of endogenous-like env gene before crossing over to FeLV-A-related sequences: (i) a combination of full-length and deleted env genes with recombination at sites in the middle of the surface glycoprotein (SU), (ii) the entire SU encoded by endogenous-like sequences, and (iii) the entire SU and approximately half of the transmembrane protein encoded by endogenous-like sequences. Additionally, three of the thymic tumors contained recombinant proviruses with mutations in the vicinity of the major neutralizing determinant for the SU protein. These molecular genetic analyses of the LSA DNAs correspond to our previous results in vitro and support the occurrence and association of viral recombinants and mutants in vivo in FeLV-induced leukemogenesis.  相似文献   

6.
Nucleotide sequence analysis of the env gene of two different endogenous feline leukemia virus (FeLV) loci, CFE-6 and CFE-16, of domestic cats revealed the following characteristics. (i) Both proviruses contain an open reading frame in the env region; (ii) whereas the full complement of the exogenous FeLV env is generally present in CFE-6 DNA, it is truncated in CFE-16 DNA such that the 5' half of the gp70 domain and the untranslated region 3' to the p15E domain have been fused by an internal deletion, resulting in loss of the C-terminal half of the gp70- and all of the p15E-coding sequences; (iii) endogenous env is highly homologous to large sequence domains conserved in all three exogenous FeLV subgroups (A, B, and C) but is similar to FeLV-B sequence domains in the variable regions detected in these viruses; and (iv) there are four other sequence domains, one residing at the C terminus of gp70 and three scattered in p15E, which are unique for the endogenous env, thereby distinguishing it from the FeLV-B gene.  相似文献   

7.
The structural proteins of murine type C retroviruses are proteolytic cleavage products of two different precursor polyproteins coded by the viral gag and env genes. To further investigate the nature and number of proteolytic cleavages involved in virus maturation, we quantitatively isolated the structural proteins of the Rauscher and Moloney strains of type C murine leukemia virus (R-MuLV and M-MuLV, respectively) by reversed-phase high-pressure liquid chromatography. Proteins and polypeptides isolated from R-MuLV included p10, p12, p15, p30, p15(E), gp69, and gp71 and three previously undescribed virus components designated here as p10', p2(E), and p2(E). Homologous proteins and polypeptides were isolated from M-MuLV. Complete or partial amino acid sequences of all the proteins listed above were either determined in this study or were available in previous reports from this laboratory. These data were compared with those from the translation of the M-MuLV proviral DNA sequence (Shinnick et al., Nature [London] 293:543-548, 1981) to determine the exact nature of proteolytic cleavages for all the structural proteins described above and to determine the origin of p10' and p2(E)s. The results showed that, during proteolytic processing of gp80env from M-MuLV (M-gp 80env), a single Arg residue was excised between gp70 and p15(E) and a single peptide bond was cleaved between p15(E) and p2(E). The structure of M-gPr80env is gp70-(Arg)-p15(E)-p2(E). The data suggest that proteolytic cleavage sites in R-gp85env are identical to corresponding cleavage sites in M-gp80env. The p2(E)s are shown to be different genetic variants of p2(E) present in the uncloned-virus preparations. The data for R- and M-p10's shows that they are cleavage products of the gag precursor with the structure p10-Thr-Leu-Asp-Asp-OH. The complete structure of Pr65gag is p15-p12-p30-p10'. Stoichiometries of the gag and env cleavage products in mature R- and M-MuLV were determined. In each virus, gag cleavage products (p15, p12, p30, and p10 plus p10') were found in equimolar amounts and p15(E)s were equimolar with p2(E)s. The stoichiometry of gag to env cleavage products was 4:1. These data are consistent with the proposal that proteolytic processing of precursor polyproteins occurs after virus assembly and that the C-terminal portion of Pr15(E) [i.e., p15(E)-p2(E)] is located on the inner side of the lipid bilayer of the virus.  相似文献   

8.
Retrovirus infection is initiated by the binding of virus envelope glycoprotein to a receptor molecule present on cell membranes. To characterize a receptor for feline leukemia virus (FeLV), we extensively purified the viral envelope glycoprotein, gp70, from culture supernatants of FeLV-61E (subgroup A)-infected cells by immunoaffinity chromatography. Binding of purified 125I-labeled gp70 to the feline T-cell line 3201 was specific and saturable, and Scatchard analysis revealed a single class of receptor binding sites with an average number of 1.6 x 10(5) receptors per cell and an apparent affinity constant (Ka) of 1.15 x 10(9) M-1. Cross-linking experiments identified a putative gp70-receptor complex of 135 to 140 kDa. Similarly, coprecipitation of 125I-labeled cell surface proteins with purified gp70 and a neutralizing but noninterfering anti-gp70 monoclonal antibody revealed a single cell surface protein of approximately 70 kDa. These results indicate that FeLV-A binds to feline T cells via a 70-kDa cell surface protein, its presumptive receptor.  相似文献   

9.
Feline herpesvirus 1 (FHV) is the causative agent of viral rhinotracheitis in cats. Current vaccination programs employing attenuated live and killed FHV vaccines have been effective in reducing the incidence of this disease. As an initial step in the development of recombinant FHVs for use in the vaccination of cats, we have identified the thymidine kinase (TK) gene of this feline-specific alphaherpesvirus. Comparisons of the amino acid sequences of other herpesvirus TK proteins have shown that these proteins are highly divergent, sharing only short regions of imperfect amino acid identity. We have used the polymerase chain reaction method of DNA amplification to increase the specificity associated with the use of short, highly degenerate oligonucleotide probes derived from regions of imperfect amino acid conservation. These methods were used to isolate the TK gene of FHV and should prove to be useful in the identification of new members of other viral and cellular gene families. A recombinant FHV bearing a deletion in the identified TK gene was constructed and shown to possess the expected TK- phenotype. The FHV TK gene is located at a position of approximately 40% in the long unique component of the FHV genome. The location of the TK gene and the location and orientation of flanking FHV genes, homologs of herpes simplex virus type 1 UL24 and UL22, are conserved among alphaherpesviruses.  相似文献   

10.
An effective candidate subunit vaccine consisting of the gp 70/85 of feline leukemia virus (FeLV) was prepared by using the immunostimulating complex (iscom) method for the presentation of membrane proteins of enveloped viruses. Two 32-wk-old specific pathogen-free (SPF) cats were immunized with a FeLV iscom vaccine prepared from the supernatant fluid of the FL74 tumor cell line without adjuvant. Both cats developed FeLV serum antibodies, as measured in an enzyme-linked immunosorbent assay (ELISA) and in a virus neutralization test. A proportion of the antibodies were directed to an epitope located on gp70/85, which was shown in competition ELISA with a peroxidase-labeled virus-neutralizing monoclonal antibody to be shared by all three subtypes of FeLV. The protective effect of FeLV iscom was studied by vaccinating six 8-wk-old SPF cats with iscom prepared from cell culture supernatant of another tumor cell line F422, followed by oronasal challenge with 10(6) ffu FeLV-A (strain Glasgow-1). Six unvaccinated cats were also challenged with the same dose of FeLV. The vaccinated cats developed FeLV serum antibodies, some of which were directed to the shared epitope on gp70/85. At 10 wk after challenge, none was viremic, whereas three of the control cats had developed FeLV viremia. The potential of FeLV iscom as a vaccine against FeLV-associated disease in cats, and of iscom vaccines for protection against mammalian retrovirus infections, is discussed.  相似文献   

11.
12.
The genetic structure of the McDonough strain of feline sarcoma virus (SM-FeSV) was deduced by analysis of molecularly cloned, transforming proviral DNA. The 8.2-kilobase pair SM-FeSV provirus is longer than those of other feline sarcoma viruses and contains a transforming gene (v-fms) flanked by sequences derived from feline leukemia virus. The order of genes with respect to viral RNA is 5'-gag-fms-env-3', in which the entire feline leukemia virus env gene and an almost complete gag sequence are represented. Transfection of NIH/3T3 cells with cloned SM-FeSV proviral DNA induced foci of morphologically transformed cells which expressed SM-FeSV gene products and contained rescuable sarcoma viral genomes. Cells transformed by viral infection or after transfection with cloned proviral DNA expressed the polyprotein (P170gag-fms) characteristic of the SM-FeSV strain. Two proteolytic cleavage products (P120fms and pp55gag) were also found in immunoprecipitates from metabolically labeled, transformed cells. An additional polypeptide, detected at comparatively low levels in SM-FeSV transformants, was indistinguishable in size and antigenicity from the envelope precursor (gPr85env) of feline leukemia virus. The complexity of the v-fms gene (3.1 +/- 0.3 kilobase pairs) is approximately twofold greater than the viral oncogene sequences (v-fes) of Snyder-Theilen and Gardner-Arnstein FeSV. By heteroduplex, restriction enzyme, and nucleic acid hybridization analyses, v-fms and v-fes sequences showed no detectable homology to one another. Radiolabeled DNA fragments representing portions of the two viral oncogenes hybridized to different EcoRI and HindIII fragments of normal cat cellular DNA. Cellular sequences related to v-fms (designated c-fms) were much more complex than c-fes and were distributed segmentally over more than 40 kilobase pairs in cat DNA. Comparative structural studies of the molecularly cloned proviruses of Synder-Theilen, Gardner-Arnstein, and SM-FeSV showed that a region of the feline-leukemia virus genome derived from the pol-env junction is represented adjacent to v-onc sequences in each FeSV strain and may have provided sequences preferred for recombination with cellular genes.  相似文献   

13.
Six persistently feline leukemia virus (FeLV)-infected pet cats were treated by extracorporeal immunoadsorption with Staphylococcus aureus Cowan I (SAC) to remove circulating immune complexes and immunoglobulin G (IgG) from plasma. In three of these cats, the FeLV infection was eliminated, whereas in the other three cats the infection persisted. The amounts of peripheral blood leukocyte (PBL)-associated FeLV, soluble FeLV envelope glycoprotein (gp70) antigens in serum, and FeLV-gp70-specific antibodies were determined in all six cats at different times during treatment. In all of the cats, there were fluctuations in the amounts of FeLV-positive PBL and of serum antigen related to FeLV gp70. The one serologic parameter that always correlated with complete clearance of FeLV in the responder cats was the development of free antibodies to gp70. These results suggest that extracorporeal immunoadsorption treatment stimulates an existing low level antibody response to FeLV in some cats, and that these antibodies mediate the clearance of FeLV. The results also suggest that determination of antibody titer to FeLV is of value in predicting the outcome of extracorporeal immunoadsorption treatments as well as when treatment may be terminated.  相似文献   

14.
The role of cellular immunity in the establishment and progression of immunosuppressive lentivirus infection remains equivocal. To develop a model system with which these aspects of the host immune response can be studied experimentally, we examined the response of cats to a hybrid peptide containing predicted T-and B-cell epitopes from the gag and env genes of feline immunodeficiency virus (FIV). Cats were immunized with an unmodified 17-residue peptide incorporating residues 196 to 208 (from gag capsid protein p24) and 395 to 398 (from env glycoprotein gp120) of the FIV Glasgow-8 strain by using Quil A as an adjuvant. Virus-specific lymphocytotoxicity was measured by chromium-51 release assays. The target cells were autologous or allogeneic skin fibroblasts either infected with recombinant FIV gag vaccinia virus or pulsed with FIV peptides. Effector cells were either fresh peripheral blood mononuclear cells or T-cell lines stimulated with FIV peptides in vitro. Cytotoxic effector cells from immunized cats lysed autologous, but not allogeneic, target cells when they were either infected with recombinant FIV gag vaccinia virus or pulsed with synthetic peptides comprising residues 196 to 205 or 200 to 208 plus 395. Depletion of CD8+ T cells, from the effector cell population abrogated the lymphocytotoxicity. Immunized cats developed an antibody response to the 17-residue peptide immunogen and to recombinant p24. However, no antibodies which recognized smaller constituent peptides could be detected. This response correlated with peptide-induced T-cell proliferation in vitro. This study demonstrates that cytotoxic T lymphocytes specific for FIV can be induced following immunization with an unmodified short synthetic peptide and defines a system in which the protective or pathological role of such responses can be examined.  相似文献   

15.
Diagnostic reagents for detection of human immunodeficiency virus (HIV) exposure with improved reliability may be provided by viral encoded proteins produced by recombinant DNA techniques or by synthetic peptides corresponding to appropriate viral epitopes. We have expressed at high levels in E. coli a gag gene segment corresponding to approximately 97% of the p55 gag precursor protein, as well as a novel gag/env fusion protein that contains antigenic determinants in common with gag p24, env gp41, and env gp120. The gag and gag/env proteins were purified from insoluble inclusion bodies by sequential extraction with increasing concentrations of urea. These components were tested for reactivity with antisera to HIV proteins and peptides. We have also chemically synthesized a peptide corresponding to env residues 578-608, representing a portion of env gp41. The final preparation of gag and gag/env proteins in 8 M urea reacted with sheep anti-HTLV-III p24 gag antibodies and acquired immune deficiency syndrome (AIDS) patient sera. The gag/env fusion protein also reacted with rabbit anti-HIV env 500-511 peptide antibody. Both recombinant proteins and the env peptide were suitable as reagents for evaluation of serum samples by enzyme-linked immunosorbent assay (ELISA). Results of ELISA assays utilizing the recombinant viral proteins and synthetic peptide were in good agreement with results obtained using disrupted virus as antigen in ELISA assays and immunoblotting.  相似文献   

16.
The synthesis and processing of feline leukemia virus (FeLV) polypeptides were studied in a chronically infected feline thymus tumor cell line, F-422, which produces the Rickard strain of FeLV. Immune precipitation with antiserum to FeLV p30 and subsequent sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) were used to isolate intracellular FeLV p30 and possible precursor polypeptides. SDS-PAGE of immune precipitates from cells pulse-labeled for 2.5 min with [35S]methionin revealed the presence of a 60,000-dalton precursor polypeptide (Pp60) as well as a 30,000-dalton polypeptide. When cells were grown in the presence of the proline analogue L-azetidine-2-carboxylic acid, a 70,000-dalton precursor polypeptide (Pp70) was found in addition to Pp60 after a 2.5-min pulse. The cleavage of Pp60 could be partially inhibited by the general protease inhibitor phenyl methyl sulfonyl fluoride (PMSF). This partial inhibition was found to occur only if PMSF was present during pulse-labeling. Intracellular Pp70 and Pp60 and FeLV virion p70, p30, p15, p11, and p10 were subjected to tryptic peptide analysis. The results of this tryptic peptide analysis demonstrated that intracellular Pp70 and virion p70 were identical and that both contained the tryptic peptides of FeLV p30, p15, p11, and p10. Pp60 contained the tryptic peptides of FeLV P30, P15, and P10, but lacked the tryptic peptides of P11. The results of pactamycin gene ordering experiments indicated that the small structural proteins of FeLV are ordered p11-p15-p10-p30. The data indicate that the small structural proteins of FeLV are synthesized as part of a 70,000-dalton precursor. A cleavage scheme for the generation of FeLV p70, p30, p15, p11, and p10 from precursor polypeptides is proposed.  相似文献   

17.
Extrachromosomal DNA obtained from mink cells acutely infected with the Snyder-Theilen (ST) strain of feline sarcoma virus (feline leukemia virus) [FeSV(FeLV)] was fractionated electrophoretically, and samples enriched for FeLV and FeSV linear intermediates were digested with EcoRI and cloned in lambda phage. Hybrid phages were isolated containing either FeSV or FeLV DNA "inserts" and were characterized by restriction enzyme analysis, R-looping with purified 26 to 32S viral RNA, and heteroduplex formation. The recombinant phages (designated lambda FeSV and lambda FeLV) contain all of the genetic information represented in FeSV and FeLV RNA genomes but lack one extended terminally redundant sequence of 750 bases which appears once at each end of parental linear DNA intermediates. Restriction enzyme and heteroduplex analyses confirmed that sequences unique to FeSV (src sequences) are located at the center of the FeSV genome and are approximately 1.5 kilobase pairs in length. With respect to the 5'-3' orientation of genes in viral RNA, the order of genes in the FeSV genome is 5'-gag-src-env-c region-3'; only 0.9 kilobase pairs of gag and 0.6 kilobase pairs of env-derived FeLV sequences are represented in ST FeSV. Heteroduplex analyses between lambda FeSV or lambda FeLV DNA and Moloney murine sarcoma virus DNA (strain m1) were performed under conditions of reduced stringency to demonstrate limited regions of base pair homology. Two such regions were identified: the first occurs at the extreme 5' end of the leukemia and both sarcoma viral genomes, whereas the second corresponds to a 5' segment of leukemia virus "env" sequences conserved in both sarcoma viruses. The latter sequences are localized at the 3' end of FeSV src and at the 5' end of murine sarcoma virus src and could possibly correspond to regions of helper virus genomes that are required for retroviral transforming functions.  相似文献   

18.
We report the assembly of human immunodeficiency virus (HIV)-like particles in African green monkey kidney cells coinfected with two recombinant vaccinia viruses, one carrying the HIV-1 gag and protease genes and the other the env gene. Biochemical analysis of particles sedimented from culture supernatants of doubly infected cells revealed that they were composed of gag proteins, primarily p24, as well as the env proteins gp120 and gp41. Thin-section immunoelectron microscopy showed that these particles were 100 to 120 nm in diameter, were characterized by the presence of cylindrical core structures, and displayed the mature gp120-gp41 complexes on their surfaces. Furthermore, thin-section immunoelectron microscopy analysis of infected cells showed that particle assembly and budding occurred at the plasma membrane. Nucleic acid hybridization suggested that the particles packaged only the gag mRNA but not the env mRNA. Therefore, the system we present is well suited for studies of HIV virion maturation. In addition, the HIV-like particles provide a novel and attractive approach for vaccine development.  相似文献   

19.
We describe the molecular cloning of an anemogenic feline leukemia virus (FeLV), FeLV-C-Sarma, from the productively infected human rhabdomyosarcoma cell line RD(FeLV-C-S). Molecularly cloned FeLV-C-S proviral DNA yielded infectious virus (mcFeLV-C-S) after transfection of mammalian cells, and virus interference studies using transfection-derived virus demonstrated that our clone encodes FeLV belonging to the C subgroup. mcFeLV-C-S did not induce viremia in eight 8-week-old outbred specific-pathogen-free (SPF) cats. It did, however, induce viremia and a rapid, fatal aplastic anemia due to profound suppression of erythroid stem cell growth in 9 of 10 inoculated newborn, SPF cats within 3 to 8 weeks (21 to 58 days) postinoculation. Thus, the genome of mcFeLV-C-S encodes the determinants responsible for the genetically dominant induction of irreversible erythroid aplasia in outbred cats. A potential clue to the pathogenic determinants of this virus comes from previous work indicating that all FeLV isolates belonging to the C subgroup, an envelop-gene-determined property, and only those belonging to the C subgroup, are potent, consistent inducers of aplastic anemia in cats. To approach the molecular mechanism underlying the induction of this disease, we first determined the nucleotide sequence of the envelope genes and 3' long terminal repeat of FeLV-C-S and compared it with that of FeLV-B-Gardner-Arnstein (mcFeLV-B-GA), a subgroup-B feline leukemia virus that consistently induces a different disease, myelodysplastic anemia, in neonatal SPF cats. Our analysis revealed that the p15E genes and long terminal repeats of the two FeLV strains are highly homologous, whereas there are major differences in the gp70 proteins, including five regions of significant amino acid differences and apparent sequence substitution. Some of these changes are also reflected in predicted glycosylation sites; the gp70 protein of FeLV-B-GA has 11 potential glycosylation sites, only 8 of which are present in FeLV-C-S.  相似文献   

20.
The expectation that cell-mediated immunity is important in the control of feline leukemia virus (FeLV) infection led us to test a DNA vaccine administered alone or with cytokines that favored the development of a Th1 immune response. The vaccine consisted of two plasmids, one expressing the gag/pol genes and the other expressing the env gene of FeLV-A/Glasgow-1. The genetic adjuvants were plasmids encoding the feline cytokines interleukin-12 (IL-12), IL-18, or gamma interferon (IFN-gamma). Kittens were immunized by three intramuscular inoculations of the FeLV DNA vaccine alone or in combination with plasmids expressing IFN-gamma, IL-12, or both IL-12 and IL-18. Control kittens were inoculated with empty plasmid. Following immunization, anti-FeLV antibodies were not detected in any kitten. Three weeks after the final immunization, the kittens were challenged by the intraperitoneal inoculation of FeLV-A/Glasgow-1 and were then monitored for a further 15 weeks for the presence of virus in plasma and, at the end of the trial, for latent virus in bone marrow. The vaccine consisting of FeLV DNA with the IL-12 and IL-18 genes conferred significant immunity, protecting completely against transient and persistent viremia, and in five of six kittens protecting against latent infection. None of the other vaccines provided significant protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号