首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Activated sludge was fed phenol as the sole carbon source, and the phenol-loading rate was increased stepwise from 0.5 to 1.0 g liter−1 day−1 and then to 1.5 g liter−1 day−1. After the loading rate was increased to 1.5 g liter−1 day−1, nonflocculating bacteria outgrew the sludge, and the activated-sludge process broke down within 1 week. The bacterial population structure of the activated sludge was analyzed by temperature gradient gel electrophoresis (TGGE) of PCR-amplified 16S ribosomal DNA (rDNA) fragments. We found that the population diversity decreased as the phenol-loading rate increased and that two populations (designated populations R6 and R10) predominated in the sludge during the last several days before breakdown. The R6 population was present under the low-phenol-loading-rate conditions, while the R10 population was present only after the loading rate was increased to 1.5 g liter−1 day−1. A total of 41 bacterial strains with different repetitive extragenic palindromic sequence PCR patterns were isolated from the activated sludge under different phenol-loading conditions, and the 16S rDNA and gyrB fragments of these strains were PCR amplified and sequenced. Some bacterial isolates could be associated with major TGGE bands by comparing the 16S rDNA sequences. All of the bacterial strains affiliated with the R6 population had almost identical 16S rDNA sequences, while the gyrB phylogenetic analysis divided these strains into two physiologically divergent groups; both of these groups of strains could grow on phenol, while one group (designated the R6F group) flocculated in laboratory media and the other group (the R6T group) did not. A competitive PCR analysis in which specific gyrB sequences were used as the primers showed that a population shift from R6F to R6T occurred following the increase in the phenol-loading rate to 1.5 g liter−1 day−1. The R10 population corresponded to nonflocculating phenol-degrading bacteria. Our results suggest that an outbreak of nonflocculating catabolic populations caused the breakdown of the activated-sludge process. This study also demonstrated the usefulness of gyrB-targeted fine population analyses in microbial ecology.  相似文献   

2.
The ammonia-oxidizing and nitrite-oxidizing bacterial populations occurring in the nitrifying activated sludge of an industrial wastewater treatment plant receiving sewage with high ammonia concentrations were studied by use of a polyphasic approach. In situ hybridization with a set of hierarchical 16S rRNA-targeted probes for ammonia-oxidizing bacteria revealed the dominance of Nitrosococcus mobilis-like bacteria. The phylogenetic affiliation suggested by fluorescent in situ hybridization (FISH) was confirmed by isolation of N. mobilis as the numerically dominant ammonia oxidizer and subsequent comparative 16S rRNA gene (rDNA) sequence and DNA-DNA hybridization analyses. For molecular fine-scale analysis of the ammonia-oxidizing population, a partial stretch of the gene encoding the active-site polypeptide of ammonia monooxygenase (amoA) was amplified from total DNA extracted from ammonia oxidizer isolates and from activated sludge. However, comparative sequence analysis of 13 amoA clone sequences from activated sludge demonstrated that these sequences were highly similar to each other and to the corresponding amoA gene fragments of Nitrosomonas europaea Nm50 and the N. mobilis isolate. The unexpected high sequence similarity between the amoA gene fragments of the N. mobilis isolate and N. europaea indicates a possible lateral gene transfer event. Although a Nitrobacter strain was isolated, members of the nitrite-oxidizing genus Nitrobacter were not detectable in the activated sludge by in situ hybridization. Therefore, we used the rRNA approach to investigate the abundance of other well-known nitrite-oxidizing bacterial genera. Three different methods were used for DNA extraction from the activated sludge. For each DNA preparation, almost full-length genes encoding small-subunit rRNA were separately amplified and used to generate three 16S rDNA libraries. By comparative sequence analysis, 2 of 60 randomly selected clones could be assigned to the nitrite-oxidizing bacteria of the genus Nitrospira. Based on these clone sequences, a specific 16S rRNA-targeted probe was developed. FISH of the activated sludge with this probe demonstrated that Nitrospira-like bacteria were present in significant numbers (9% of the total bacterial counts) and frequently occurred in coaggregated microcolonies with N. mobilis.  相似文献   

3.
A real-time PCR SYBR green assay was developed to quantify populations of 2,4-diacetylphloroglucinol (2,4-DAPG)-producing (phlD+) strains of Pseudomonas fluorescens in soil and the rhizosphere. Primers were designed and PCR conditions were optimized to specifically amplify the phlD gene from four different genotypes of phlD+ P. fluorescens. Using purified genomic DNA and genomic DNA extracted from washes of wheat roots spiked with bacteria, standard curves relating the threshold cycles (CTs) and copies of the phlD gene were generated for P. fluorescens strains belonging to genotypes A (Pf-5), B (Q2-87), D (Q8r1-96 and FTAD1R34), and I (FTAD1R36). The detection limits of the optimized real-time PCR assay were 60 to 600 fg (8 to 80 CFU) for genomic DNA isolated from pure cultures of P. fluorescens and 600 fg to 6.0 pg (80 to 800 CFU, corresponding to log 4 to 5 phlD+ strain CFU/rhizosphere) for bacterial DNA extracted from plant root washes. The real-time PCR assay was utilized to quantify phlD+ pseudomonads in the wheat rhizosphere. Regression analysis of population densities detected by real-time PCR and by a previously described phlD-specific PCR-based dilution endpoint assay indicated a significant linear relationship (P = 0.0016, r2 = 0.2). Validation of real-time PCR assays with environmental samples was performed with two different soils and demonstrated the detection of more than one genotype in Quincy take-all decline soil. The greatest advantage of the developed real-time PCR is culture independence, which allows determination of population densities and the genotype composition of 2,4-DAPG producers directly from the plant rhizospheres and soil.  相似文献   

4.
Activated sludge was fed phenol as the sole carbon source, and the phenol-loading rate was increased stepwise from 0.5 to 1.0 g liter-1 day-1 and then to 1.5 g liter-1 day-1. After the loading rate was increased to 1.5 g liter-1 day-1, nonflocculating bacteria outgrew the sludge, and the activated-sludge process broke down within 1 week. The bacterial population structure of the activated sludge was analyzed by temperature gradient gel electrophoresis (TGGE) of PCR-amplified 16S ribosomal DNA (rDNA) fragments. We found that the population diversity decreased as the phenol-loading rate increased and that two populations (designated populations R6 and R10) predominated in the sludge during the last several days before breakdown. The R6 population was present under the low-phenol-loading-rate conditions, while the R10 population was present only after the loading rate was increased to 1.5 g liter-1 day-1. A total of 41 bacterial strains with different repetitive extragenic palindromic sequence PCR patterns were isolated from the activated sludge under different phenol-loading conditions, and the 16S rDNA and gyrB fragments of these strains were PCR amplified and sequenced. Some bacterial isolates could be associated with major TGGE bands by comparing the 16S rDNA sequences. All of the bacterial strains affiliated with the R6 population had almost identical 16S rDNA sequences, while the gyrB phylogenetic analysis divided these strains into two physiologically divergent groups; both of these groups of strains could grow on phenol, while one group (designated the R6F group) flocculated in laboratory media and the other group (the R6T group) did not. A competitive PCR analysis in which specific gyrB sequences were used as the primers showed that a population shift from R6F to R6T occurred following the increase in the phenol-loading rate to 1.5 g liter-1 day-1. The R10 population corresponded to nonflocculating phenol-degrading bacteria. Our results suggest that an outbreak of nonflocculating catabolic populations caused the breakdown of the activated-sludge process. This study also demonstrated the usefulness of gyrB-targeted fine population analyses in microbial ecology.  相似文献   

5.
In this study, a polyphasic approach was used to study the ecology of fresh sausages and to characterize populations of lactic acid bacteria (LAB). The microbial profile of fresh sausages was monitored from the production day to the 10th day of storage at 4°C. Samples were collected on days 0, 3, 6, and 10, and culture-dependent and -independent methods of detection and identification were applied. Traditional plating and isolation of LAB strains, which were subsequently identified by molecular methods, and the application of PCR-denaturing gradient gel electrophoresis (DGGE) to DNA and RNA extracted directly from the fresh sausage samples allowed the study in detail of the changes in the bacterial and yeast populations during storage. Brochothrix thermosphacta and Lactobacillus sakei were the main populations present. In particular, B. thermosphacta was present throughout the process, as determined by both DNA and RNA analysis. Other bacterial species, mainly Staphylococcus xylosus, Leuconostoc mesenteroides, and L. curvatus, were detected by DGGE. Moreover, an uncultured bacterium and an uncultured Staphylococcus sp. were present, too. LAB strains isolated at day 0 were identified as Lactococcus lactis subsp. lactis, L. casei, and Enterococcus casseliflavus, and on day 3 a strain of Leuconostoc mesenteroides was identified. The remaining strains isolated belonged to L. sakei. Concerning the yeast ecology, only Debaryomyces hansenii was established in the fresh sausages. Capronia mansonii was initially present, but it was not detected after the first 3 days. At last, L. sakei isolates were characterized by randomly amplified polymorphic DNA PCR and repetitive DNA element PCR. The results obtained underlined how different populations took over at different steps of the process. This is believed to be the result of the selection of the particular population, possibly due to the low storage temperature employed.  相似文献   

6.
The aims of this study were to determine the power of discrimination of the real-time PCR assay for monitoring fluctuations in microbial populations within activated sludge and to identify sample processing points where methodological changes are needed to minimize the variability in target quantification. DNA was extracted using a commercially available kit from mixed liquor samples taken from the aeration tank of four bench-scale activated-sludge reactors operating at 2-, 5-, 10-, and 20-day solid retention times, with mixed-liquor volatile suspended solid (MLVSS) values ranging from 260 to 2,610 mg/liter. Real-time PCR assays for bacterial and Nitrospira 16S rRNA genes were chosen because they represent, respectively, a highly abundant and a less-abundant bacterial target subject to clustering within the activated sludge matrix. The mean coefficient of variation in DNA yields (measured as microgram of DNA per milligram of MLVSS) in triplicate extractions of 12 different samples was 12.2%. Based on power analyses, the variability associated with DNA extraction had a small impact on the overall variability of the real-time PCR assay. Instead, a larger variability was associated with the PCR assay. The less-abundant target (Nitrospira 16S rRNA gene) had more variability than the highly abundant target (bacterial 16S rRNA gene), and samples from the lower-biomass reactors had more variability than samples from the higher-biomass reactors. Power analysis of real-time PCR assays indicated that three to five samples were necessary to detect a twofold increase in bacterial 16S rRNA genes, whereas three to five samples were required to detect a fivefold increase in Nitrospira 16S rRNA genes.  相似文献   

7.
Assessments of bacterial community diversity and dynamics are fundamental for the understanding of microbial ecology as well as biotechnological applications. We show that the choice of PCR primers has great impact on the results of analyses of diversity and dynamics using gene libraries and DNA fingerprinting. Two universal primer pairs targeting the 16S rRNA gene, 27F&1492R and 63F&M1387R, were compared and evaluated by analyzing the bacterial community in the activated sludge of a large-scale wastewater treatment plant. The two primer pairs targeted distinct parts of the bacterial community, none encompassing the other, both with similar richness. Had only one primer pair been used, very different conclusions had been drawn regarding dominant phylogenetic and putative functional groups. With 27F&1492R, Betaproteobacteria would have been determined to be the dominating taxa while 63F&M1387R would have described Alphaproteobacteria as the most common taxa. Microscopy and fluorescence in situ hybridization analysis showed that both Alphaproteobacteria and Betaproteobacteria were abundant in the activated sludge, confirming that the two primer pairs target two different fractions of the bacterial community. Furthermore, terminal restriction fragment polymorphism analyses of a series of four activated sludge samples showed that the two primer pairs would have resulted in different conclusions about community stability and the factors contributing to changes in community composition. In conclusion, different PCR primer pairs, although considered universal, target different ranges of bacteria and will thus show the diversity and dynamics of different fractions of the bacterial community in the analyzed sample. We also show that while a database search can serve as an indicator of how universal a primer pair is, an experimental assessment is necessary to evaluate the suitability for a specific environmental sample.  相似文献   

8.
Thirteen isolates of Nocardia asteroides from both soils and aquatic samples (lake and moat sediments, as well as scum from activated sludge), together with a type strain and two known clinical isolates of this species, were characterized by repetitive extragenic palindromic-PCR fingerprinting with the BOX-A1R primer. The resulting DNA fingerprint patterns proved to be strain specific, and cluster analysis distinguished the soil isolates, the aquatic isolates, and the known strains as being in separate groups.  相似文献   

9.
Horizontal transfer of antibiotic resistance genes in a membrane bioreactor   总被引:1,自引:0,他引:1  
Growing attention has been paid to the dissemination of antibiotic resistance genes (ARGs) in wastewater microbial communities. The application of membrane bioreactors (MBRs) in wastewater treatment is becoming increasingly widespread. We hypothesized that the transfer of ARGs among bacteria could occur in MBRs, which combine a high density of bacterial cells, biofilms, and antibiotic resistance bacteria or ARGs. In this study, the transfer discipline and dissemination of the RP4 plasmid in MBRs were investigated by the counting plate method, the MIDI microorganism identification system, and quantitative polymerase chain reaction (qPCR) techniques. The results showed that the average transfer frequency of the RP4 plasmid from the donor strain to cultivable bacteria in activated sludge was 2.76 × 10−5 per recipient, which was greater than the transfer frequency in wastewater and bacterial sludge reported previously. In addition, many bacterial species in the activated sludge had received RP4 by horizontal transfer, while the genera of Shewanella spp., Photobacterium spp., Pseudomonas spp., Proteus spp., and Vibrio spp. were more likely to acquire this plasmid. Interestingly, the abundance of the RP4 plasmid in total DNA remained at high levels and relatively stable at 104 copies/mg of biosolids, suggesting that ARGs were transferred from donor strains to activated sludge bacteria in our study. Thus, the presence of ARGs in sewage sludge poses a potential health threat.  相似文献   

10.
A highly sensitive and specific PCR-based method of monitoring 16S rRNA genes of Pseudomonas stutzeri was developed for searching P. stutzeri DNA in environmental samples. This monitoring was combined with a reliable and sensitive method for isolating P. stutzeri colony formers from soil and sediment, depending on their utilization of ethylene glycol, starch, and maltose. With these techniques, P. stutzeri populations (n = 2 to 170) were obtained from five of six sites giving positive PCR signals (including three marine sediment and two soil samples). The phylogenetic positions of isolates from the five sites, based on their 16S ribosomal DNA sequences, indicated that the environmental isolates were affiliated with different genomovars of P. stutzeri. Using the broad-host-range plasmid pNS1 with kanamycin and gentamicin resistance determinants as the transforming DNA, naturally transformable strains were identified among the isolates from all sites. For one population from soil, the genetic relationship of the 120 members was determined by randomly amplified polymorphic DNA-PCR with three PCR primers. Among the population members which are taxonomically closely related as determined by 16S sequence comparisons of group representatives, a rather high genetic diversity and a characteristic clustering into subgroups were found. Remarkably, within the population, nontransformability and different levels of transformability (a frequency between about 10−9 and 10−4 per cell) were often associated with distinct genetic subgroups. It is concluded that transformability is widespread among environmental P. stutzeri strains and that its specific level is a heritable trait that may vary strongly within a local population.  相似文献   

11.
A real-time PCR-based method targeting the 18S rRNA gene was developed for the quantitative detection of Hartmannella vermiformis, a free-living amoeba which is a potential host for Legionella pneumophila in warm water systems and cooling towers. The detection specificity was validated using genomic DNA of the closely related amoeba Hartmannella abertawensis as a negative control and sequence analysis of amplified products from environmental samples. Real-time PCR detection of serially diluted DNA extracted from H. vermiformis was linear for microscopic cell counts between 1.14 × 10−1 and 1.14 × 104 cells per PCR. The genome of H. vermiformis harbors multiple copies of the 18S rRNA gene, and an average number (with standard error) of 1,330 ± 127 copies per cell was derived from real-time PCR calibration curves for cell suspensions and plasmid DNA. No significant differences were observed between the 18S rRNA gene copy numbers for trophozoites and cysts of strain ATCC 50237 or between the copy numbers for this strain and strain KWR-1. The developed method was applied to water samples (200 ml) collected from a variety of lakes and rivers serving as sources for drinking water production in The Netherlands. Detectable populations were found in 21 of the 28 samples, with concentrations ranging from 5 to 75 cells/liter. A high degree of similarity (≥98%) was observed between sequences of clones originating from the different surface waters and between these clones and the reference strains. Hence, H. vermiformis, which is highly similar to strains serving as hosts for L. pneumophila, is a common component of the microbial community in fresh surface water.  相似文献   

12.
This study aims at development of an approach for selection of strain, which has capability for oxidation of broad-range of chloro-substitute phenols. A multiplex PCR was optimized targeting loci involved in phenol and chlorophenol degradation, which was used to select activated sludge samples and also to assess the degradative genotype of isolates. The isolated strains were screened on the basis of RAPD analysis. In parallel, physiological experiments were carried out with activated sludge samples and isolated bacteria by respirometric analysis. Based on cluster analysis of RAPD pattern and respirometric data, the isolate G20 was selected and identified by using 16S rDNA sequence analysis as Citrobacter freundii strain HPC255. The strain could oxidize different substituted chlorophenol molecules. Such strains could provide the pool of intermediates, which can further be degraded by the associated population, thus helping in maintaining the synergistic association of catabolic activity in activated sludge.  相似文献   

13.
For restriction fragment length polymorphism (RFLP) analysis of 16S rRNA genes, the rDNA fragments of 1.5 kb were amplified by polymerase chain reaction (PCR) from crude cell lysates of various methanogenic species which were prepared by a combined technique of ultrasonic treatment and protease digestion. The PCR products were purified by the polyethylene glycol precipitation method and treated with various restriction enzymes. The 16S rDNA fragments digested with HaeIII or HhaI gave species-specific RFLP profiles on simplified agarose gel electrophoresis. 16S rDNA gragments of 0.4 kb from the bulk DNA extracted from mixed populations of anaerobic sludge were also amplified by PCR with a pair of methanogen-specific primers and cloned directly by the T-A cloning technique. The cloned 16S rDNAs from recombinants were reamplified by PCR, and RFLP pattern analysis was performed following digestion with HhaI. The PCR-RFLP analysis of 16S rDNA with the present protocol can be completed within one day, provided that sufficient amounts of test cells are available, and has great promise as a simple and rapid technique for identification of methanogens. A combined method consisting of PCR amplification, direc cloning with T vectors, and RFLP analysis of 16S rDNA is also useful for rapid estimation of the mixed population structure of methanogens without the need for cultivation and isolation.  相似文献   

14.
Bacterial community structure and the predominant nitrifying activities and populations in each compartment of a three-compartment activated sludge system were determined. Each compartment was originally inoculated with the same activated sludge community entrapped in polyethylene glycol gel granules, and ammonium nitrogen was supplied to the system in an inorganic salts solution at a rate of 5.0 g of N liter of granular activated sludge−1 day−1. After 150 days of operation, the system was found to comprise a series of sequential nitrifying reactions (K. Noto, T. Ogasawara, Y. Suwa, and T. Sumino, Water Res. 32:769–773, 1998), presumably mediated by different bacterial populations. Activity data showed that all NH4-N was completely oxidized in compartments one and two (approximately half in each), but no significant nitrite oxidation was observed in these compartments. In contrast, all available nitrite was oxidized to nitrate in compartment three. To study the microbial populations and communities in this system, total bacterial DNA isolated from each compartment was analyzed for community structure based on the G+C contents of the component populations. Compartment one showed dominant populations having 50 and 67% G+C contents. Compartment two was similar in structure to compartment one. The bacterial community in compartment three had dominant populations with 62 and 67% G+C contents and retained the 50% G+C content population only at a greatly diminished level. The 50% G+C content population from compartment one hybridized strongly with amo (ammonia monooxygenase) and hao (hydroxylamine oxidoreductase) gene probes from Nitrosomonas europaea. However, the 50% G+C content population from compartment two hybridized strongly with the hao probe but only weakly with the amo probe, suggesting that the predominant ammonia-oxidizing populations in compartments one and two might be different. Since different activities and populations come to dominate in each compartment from an identical inoculum, it appears that the nitrification processes may be somewhat incompatible, resulting in a series of sequential reactions and different communities in this three-compartment system.  相似文献   

15.
Molecular and physiological analyses were used to study the evolution of the yeast population, from alcoholic fermentation to biological aging in the process of “fino” sherry wine making. The four races of “flor” Saccharomyces cerevisiae (beticus, cheresiensis, montuliensis, and rouxii) exhibited identical restriction patterns for the region spanning the internal transcribed spacers 1 and 2 (ITS-1 and ITS-2) and the 5.8S rRNA gene, but this pattern was different, from those exhibited by non-flor S. cerevisiae strains. This flor-specific pattern was detected only after wines were fortified, never during alcoholic fermentation, and all the strains isolated from the velum exhibited the typical flor yeast pattern. By restriction fragment length polymorphism of mitochondrial DNA and karyotyping, we showed that (i) the native strain is better adapted to fermentation conditions than commercial strains; (ii) two different populations of S. cerevisiae strains are involved in the process of elaboration, of fino sherry wine, one of which is responsible for must fermentation and the other, for wine aging; and (iii) one strain was dominant in the flor population integrating the velum from sherry wines produced in González Byass wineries, although other authors have described a succession of races of flor S. cerevisiae during wine aging. Analyzing all these results together, we conclude that yeast population dynamics during biological aging is a complex phenomenon and differences between yeast populations from different wineries can be observed.  相似文献   

16.
We used a culture-independent approach, namely, thermal gradient gel electrophoresis (TGGE) analysis of ribosomal sequences amplified directly from community DNA, to determine changes in the structure of the microbial community following phenol shocks in the highly complex activated sludge ecosystem. Parallel experimental model sewage plants were given shock loads of chlorinated and methylated phenols and simultaneously were inoculated (i) with a genetically engineered microorganism (GEM) able to degrade the added substituted phenols or (ii) with the nonengineered parental strain. The sludge community DNA was extracted, and 16S rDNA was amplified and analyzed by TGGE. To allow quantitative analysis of TGGE banding patterns, they were normalized to an external standard. The samples were then compared with each other for similarity by using the coefficient of Dice. The Shannon index of diversity, H, was calculated for each sludge sample, which made it possible to determine changes in community diversity. We observed a breakdown in community structure following shock loads of phenols by a decrease in the Shannon index of diversity from 1.13 to 0.22 in the noninoculated system. Inoculation with the GEM (Pseudomonas sp. strain B13 SN45RE) effectively protected the microbial community, as indicated by the maintenance of a high diversity throughout the shock load experiment (H decreased from 1.03 to only 0.82). Inoculation with the nonengineered parental strain, Pseudomonas sp. strain B13, did not protect the microbial community from being severely disturbed; H decreased from 1.22 to 0.46 for a 3-chlorophenol–4-methylphenol shock and from 1.03 to 0.70 for a 4-chlorophenol–4-methylphenol shock. The catabolic trait present in the GEM allowed for bioprotection of the activated sludge community from breakdown caused by toxic shock loading. In-depth TGGE analysis with similarity and diversity algorithms proved to be a very sensitive tool to monitor changes in the structure of the activated sludge microbial community, ranging from subtle shifts during adaptation to laboratory conditions to complete collapse following pollutant shocks.  相似文献   

17.
Using consensus regions in gene sequences encoding the two forms of nitrite reductase (Nir), a key enzyme in the denitrification pathway, we designed two sets of PCR primers to amplify cd1- and Cu-nir. The primers were evaluated by screening defined denitrifying strains, denitrifying isolates from wastewater treatment plants, and extracts from activated sludge. Sequence relationships of nir genes were also established. The cd1 primers were designed to amplify a 778 to 799-bp region of cd1-nir in the six published sequences. Likewise, the Cu primers amplified a 473-bp region in seven of the eight published Cu-nir sequences. Together, the two sets of PCR primers amplified nir genes in nine species within four genera, as well as in four of the seven sludge isolates. The primers did not amplify genes of nondenitrifying strains. The Cu primers amplified the expected fragment in all 13 sludge samples, but cd1-nir fragments were only obtained in five samples. PCR products of the expected sizes were verified as nir genes after hybridization to DNA probes, except in one case. The sequenced nir fragments were related to other nir sequences, demonstrating that the primers amplified the correct gene. The selected primer sites for Cu-nir were conserved, while broad-range primers targeting conserved regions of cd1-nir seem to be difficult to find. We also report on the existence of Cu-nir in Paracoccus denitrificans Pd1222.  相似文献   

18.
Aflatoxin B1 is a potent hepatotoxin and carcinogen that poses a serious safety hazard to both humans and animals. Aspergillus flavus is the most common aflatoxin-producing species on corn, cotton, peanuts, and tree nuts. Application of atoxigenic strains to compete against aflatoxigenic strains of A. flavus has emerged as one of the most practical strategies for ameliorating aflatoxin contamination in food. Genes directly involved in aflatoxin biosynthesis are clustered on an 82-kb region of the genome. Three atoxigenic strains (CA12, M34, and AF123) were each paired with each of four aflatoxigenic strains (CA28, CA42, CA90, and M52), inoculated into soil and incubated at 28 °C for 2 weeks and 1 month. TaqMan probes, omtA-FAM, and norA-HEX were designed for developing a droplet digital PCR (ddPCR) assay to analyze the soil population of mixtures of A. flavus strains. DNA was extracted from each soil sample and used for ddPCR assays. The data indicated that competition between atoxigenic and aflatoxigenic was strain dependent. Variation in competitive ability among different strains of A. flavus influenced the population reduction of the aflatoxigenic strain by the atoxigenic strain. Higher ratios of atoxigenic to aflatoxigenic strains increased soil population of atoxigenic strains. This is the first study to demonstrate the utility of ddPCR to quantify mixtures of both atoxigenic and aflatoxigenic A. flavus strains in soil and allows for rapid and accurate determination of population sizes of atoxigenic and aflatoxigenic strains. This method eliminates the need for isolation and identification of individual fungal isolates from experimental soil samples.  相似文献   

19.
Utilizing the principle of competitive PCR, we developed two assays to enumerate Nitrosomonas oligotropha-like ammonia-oxidizing bacteria and nitrite-oxidizing bacteria belonging to the genus Nitrospira. The specificities of two primer sets, which were designed for two target regions, the amoA gene and Nitrospira 16S ribosomal DNA (rDNA), were verified by DNA sequencing. Both assays were optimized and applied to full-scale, activated sludge wastewater treatment plant (WWTP) samples. If it was assumed that there was an average of 3.6 copies of 16S rDNA per cell in the total population and two copies of the amoA gene per ammonia-oxidizing bacterial cell, the ammonia oxidizers examined represented 0.0033% ± 0.0022% of the total bacterial population in a municipal WWTP. N. oligotropha-like ammonia-oxidizing bacteria were not detected in an industrial WWTP. If it was assumed that there was one copy of the 16S rDNA gene per nitrite-oxidizing bacterial cell, Nitrospira spp. represented 0.39% ± 0.28% of the biosludge population in the municipal WWTP and 0.37% ± 0.23% of the population in the industrial WWTP. The number of Nitrospira sp. cells in the municipal WWTP was more than 62 times greater than the number of N. oligotropha-like cells, based on a competitive PCR analysis. The results of this study extended our knowledge of the comparative compositions of nitrifying bacterial populations in wastewater treatment systems. Importantly, they also demonstrated that we were able to quantify these populations, which ultimately will be required for accurate prediction of process performance and stability for cost-effective design and operation of WWTPs.  相似文献   

20.
Aims:  To evaluate the use of Enterobacterial Repetitive Intergenic Consensus PCR (ERIC-PCR)-derived probes and primers to specifically detect bacterial strains in an activated sludge microbial community.
Methods and Results:  ERIC-PCR was performed on two phenol-degrading bacterial strains, Arthrobacter nicotianae P1-7 and Klebsiella sp. P8-14. Their amplicons were DIG labelled for use as probes and then hybridized with ERIC-PCR fingerprints. The results showed the distinct band patterns for both bacterial strains. Strain-specific PCR primers were designed based on the sequences of ERIC-PCR bands. The DNA of each of these strains was successfully detected from its mixture with activated sludge DNA, either by using their respective ERIC-PCR-based probes for hybridization or by using species-specific primers for amplification, with higher sensitivity by latter method.
Conclusions:  Two phenol-degrading bacterial strains were identified from a mixture of activated sludge by using ERIC-PCR-based methods.
Significance and Impact of the Study:  The study demonstrated that the bacteria, which have important functions in complex wastewater treatment microbial communities, could be specifically detected by using ERIC-PCR fingerprint-based hybridization or amplification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号