首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The 65 kDa RNA-dependent RNA polymerase (NS5B), encoded by the hepatitis C virus (HCV) genome, is a key component involved in viral replication. Here we provide the direct evidence that purified HCV polymerase catalyzed de novo RNA synthesis in a primer-independent manner using homopolymers and HCV RNA as templates. The enzyme could utilize both polyC and polyU as templates for de novo RNA synthesis, suggesting that NS5B specifically recognized pyrimidine bases for initiation. More importantly, NS5B also catalyzed de novo RNA synthesis with an HCV RNA template; the resulting nascent RNA products, smaller than the template used, contained ATP as the first nucleotide. These results indicate that the newly synthesized RNAs did not result from template self-priming and suggest that a replication initiation site in the HCV RNA genome is a uridylate.  相似文献   

2.
Kao CC  Yang X  Kline A  Wang QM  Barket D  Heinz BA 《Journal of virology》2000,74(23):11121-11128
The RNA-dependent RNA polymerase (RdRp) from hepatitis C virus (HCV), nonstructural protein 5B (NS5B), has recently been shown to direct de novo initiation using a number of complex RNA templates. In this study, we analyzed the features in simple RNA templates that are required to direct de novo initiation of RNA synthesis by HCV NS5B. NS5B was found to protect RNA fragments of 8 to 10 nucleotides (nt) from RNase digestion. However, NS5B could not direct RNA synthesis unless the template contained a stable secondary structure and a single-stranded sequence that contained at least one 3' cytidylate. The structure of a 25-nt template, named SLD3, was determined by nuclear magnetic resonance spectroscopy to contain an 8-bp stem and a 6-nt single-stranded sequence. Systematic analysis of changes in SLD3 revealed which features in the stem, loop, and 3' single-stranded sequence were required for efficient RNA synthesis. Also, chimeric molecules composed of DNA and RNA demonstrated that a DNA molecule containing a 3'-terminal ribocytidylate was able to direct RNA synthesis as efficiently as a sequence composed entirely of RNA. These results define the template sequence and structure sufficient to direct the de novo initiation of RNA synthesis by HCV RdRp.  相似文献   

3.
RNA-dependent RNA polymerase, NS5B protein, catalyzes replication of viral genomic RNA, which presumably initiates from the 3'-end. We have previously shown that NS5B can utilize the 3'-end 98-nucleotide (nt) X region of the hepatitis C virus (HCV) genome as a minimal authentic template. In this study, we used this RNA to characterize the mechanism of RNA synthesis by the recombinant NS5B. We first showed that NS5B formed a complex with the 3'-end of HCV RNA by binding to both the poly(U-U/C)-rich and X regions of the 3'-untranslated region as well as part of the NS5B-coding sequences. Within the X region, NS5B bound stem II and the single-stranded region connecting stem-loops I and II. Truncation of 40 nt or more from the 3'-end of the X region abolished its template activity, whereas X RNA lacking 35 nt or less from the 3'-end retained template activity, consistent with the NS5B-binding site mapped. Furthermore, NS5B initiated RNA synthesis from a specific site within the single-stranded loop I. All of the RNA templates that have a double-stranded stem at the 3'-end had the same RNA initiation site. However, the addition of single-stranded nucleotides to the 3'-end of X RNA or removal of double-stranded structure in stem I generated RNA products of template size. These results indicate that HCV NS5B initiates RNA synthesis from a single-stranded region closest to the 3'-end of the X region. These results have implications for the mechanism of HCV RNA replication and the nature of HCV RNA templates in the infected cells.  相似文献   

4.
Shim JH  Larson G  Wu JZ  Hong Z 《Journal of virology》2002,76(14):7030-7039
De novo RNA synthesis by hepatitis C virus (HCV) nonstructural protein 5B (NS5B) RNA-dependent RNA polymerase has been investigated using short RNA templates. Various templates including those derived from the HCV genome were evaluated by examining the early steps of de novo RNA synthesis. NS5B was shown to be able to produce an initiation dinucleotide product from templates as short as 4-mer and from the 3'-terminal sequences of both plus and minus strands of the HCV RNA genome. GMP, GDP, and guanosine were able to act as an initiating nucleotide in de novo RNA synthesis, indicating that the triphosphate moiety is not absolutely required by an initiating nucleotide. Significant amounts of the initiation product accumulated in de novo synthesis, and elongation from the dinucleotide was observed when large amounts of dinucleotide were available. This result suggests that NS5B, a template, and incoming nucleotides are able to form an initiation complex that aborts frequently by releasing the dinucleotide product before transition to an elongation complex. The transition is rate limiting. Furthermore, we discovered that the secondary structure of a template was not essential for de novo initiation and that 3'-terminal bases of a template conferred specificity in selection of an initiation site. Initiation can occur at the +1, +2, or +3 position numbered from the 3' end of a template depending on base composition. Pyrimidine bases at any of the three positions are able to serve as an initiation site, while purine bases at the +2 and +3 positions do not support initiation. This result implies that HCV possesses an intrinsic ability to ensure that de novo synthesis is initiated from the +1 position and to maintain the integrity of the 3' end of its genome. This assay system should be an important tool for investigating the detailed mechanism of de novo initiation by HCV NS5B as well as other viral RNA polymerases.  相似文献   

5.
The 5' nontranslated region (NTR) and the X tail in the 3' NTR are the least variable parts of the hepatitis C virus (HCV) genome and play an important role in the initiation of RNA synthesis. By using subgenomic replicons of the HCV isolates Con1 (genotype 1) and JFH1 (genotype 2), we characterized the genotype specificities of the replication signals contained in the NTRs. The replacement of the JFH1 5' NTR and X tail with the corresponding Con1 sequence resulted in a significant decrease in replication efficiency. Exchange of the X tail specifically reduced negative-strand synthesis, whereas substitution of the 5' NTR impaired the generation of progeny positive strands. In search for the proteins involved in the recognition of genotype-specific initiation signals, we analyzed recombinant nonstructural protein 5B (NS5B) RNA polymerases of both isolates and found some genotype-specific template preference for the 3' end of positive-strand RNA in vitro. To further address genotype specificity, we constructed a series of intergenotypic replicon chimeras. When combining NS3 to NS5A of Con1 with NS5B of JFH1, we observed more-efficient replication with the genotype 2a X tail, indicating that NS5B recognizes genotype-specific signals in this region. In contrast, a combination of the NS3 helicase with NS5A and NS5B was required to confer genotype specificity to the 5' NTR. These results present the first genetic evidence for an interaction between helicase, NS5A, and NS5B required for the initiation of RNA synthesis and provide a system for the specific analysis of HCV positive- and negative-strand syntheses.  相似文献   

6.
Cai Z  Liang TJ  Luo G 《Journal of virology》2004,78(7):3633-3643
Replication of nearly all RNA viruses depends on a virus-encoded RNA-dependent RNA polymerase (RdRp). Our earlier work found that purified recombinant hepatitis C virus (HCV) RdRp (NS5B) was able to initiate RNA synthesis de novo by using purine (A and G) but not pyrimidine (C and U) nucleotides (G. Luo et al., J. Virol. 74:851-863, 2000). For most human RNA viruses, the initiation nucleotides of both positive- and negative-strand RNAs were found to be either an adenylate (A) or guanylate (G). To determine the nucleotide used for initiation and control of HCV RNA replication, a genetic mutagenesis analysis of the nucleotides at the very 5' and 3' ends of HCV RNAs was performed by using a cell-based HCV replicon replication system. Either a G or an A at the 5' end of HCV genomic RNA was able to efficiently induce cell colony formation, whereas a nucleotide C at the 5' end dramatically reduced the efficiency of cell colony formation. Likewise, the 3'-end nucleotide U-to-C mutation did not significantly affect the efficiency of cell colony formation. In contrast, a U-to-G mutation at the 3' end caused a remarkable decrease in cell colony formation, and a U-to-A mutation resulted in a complete abolition of cell colony formation. Sequence analysis of the HCV replicon RNAs recovered from G418-resistant Huh7 cells revealed several interesting findings. First, the 5'-end nucleotide G of the replicon RNA was changed to an A upon multiple rounds of replication. Second, the nucleotide A at the 5' end was stably maintained among all replicon RNAs isolated from Huh7 cells transfected with an RNA with a 5'-end A. Third, initiation of HCV RNA replication with a CTP resulted in a >10-fold reduction in the levels of HCV RNAs, suggesting that initiation of RNA replication with CTP was very inefficient. Fourth, the 3'-end nucleotide U-to-C and -G mutations were all reverted back to a wild-type nucleotide U. In addition, extra U and UU residues were identified at the 3' ends of revertants recovered from Huh7 cells transfected with an RNA with a nucleotide G at the 3' end. We also determined the 5'-end nucleotide of positive-strand RNA of some clinical HCV isolates. Either G or A was identified at the 5' end of HCV RNA genome depending on the specific HCV isolate. Collectively, these findings demonstrate that replication of positive-strand HCV RNA was preferentially initiated with purine nucleotides (ATP and GTP), whereas the negative-strand HCV RNA replication is invariably initiated with an ATP.  相似文献   

7.
The higher order structure of HCV (?)IRES containing five stem-loop structures (domain I) is essential for HCV replication because the viral RNA-dependent RNA polymerase, NS5B, recognizes it as the initiation site for plus-strand synthesis. To inhibit a de novo synthesis of plus-strand RNA molecules, in vitro selection against (?)IRES domain I was performed. One of the obtained aptamers, AP30, contained two consensus sequences within a random sequence region. Two consensus sequences form two apical loops and mutational analysis showed that both sequences were essential for binding to the target and for inhibiting NS5B-mediated RNA synthesis in vitro.  相似文献   

8.
The replication of the genomic RNA of the hepatitis C virus (HCV) of positive polarity involves the synthesis of a replication intermediate of negative polarity by the viral RNA-dependent RNA polymerase (NS5B). In vitro and likely in vivo, the NS5B initiates RNA synthesis without primers. This de novo mechanism needs specific interactions between the polymerase and viral RNA elements. Cis-acting elements involved in the initiation of (–) RNA synthesis have been identified in the 3′ non-coding region and in the NS5B coding region of the HCV RNA. However, the detailed contribution of sequences and/or structures of (–) RNA involved in the initiation of (+) RNA synthesis has been less studied. In this report, we identified an RNA element localized between nucleotides 177 and 222 from the 3′-end of the (–) RNA that is necessary for efficient initiation of RNA synthesis by the recombinant NS5B. By site-directed mutagenesis experiments, we demonstrate that the structure rather than the primary sequence of this domain is important for RNA synthesis. We also demonstrate that the intact structure of this RNA element is also needed for efficient RNA synthesis when the viral NS5B functions in association with other viral and cellular proteins in cultured hepatic cells.  相似文献   

9.
The higher order structure of HCV (-)IRES containing five stem-loop structures (domain I) is essential for HCV replication because the viral RNA-dependent RNA polymerase, NS5B, recognizes it as the initiation site for plus-strand synthesis. To inhibit a de novo synthesis of plus-strand RNA molecules, in vitro selection against (-)IRES domain I was performed. One of the obtained aptamers, AP30, contained two consensus sequences within a random sequence region. Two consensus sequences form two apical loops and mutational analysis showed that both sequences were essential for binding to the target and for inhibiting NS5B-mediated RNA synthesis in vitro.  相似文献   

10.
Classical swine fever virus nonstructural protein 5B (NS5B) encodes an RNA-dependent RNA polymerase, a key enzyme of the viral replication complex. To better understand the initiation of viral RNA synthesis and to establish an in vitro replication system, a recombinant NS5B protein, lacking the C-terminal 24-amino acid hydrophobic domain, was expressed in Escherichia coli. The truncated fusion protein (NS5Bdelta24) was purified on a Ni-chelating HisTrap affinity column and demonstrated to initiate either plus- or minus-strand viral RNA synthesis de novo in a primer-independent manner but not by terminal nucleotidyle transferase activity. De novo RNA synthesis represented the preferred mechanism for initiation of classical swine fever virus RNA synthesis by RNA-dependent RNA polymerase in vitro. Both Mg2+ and Mn2+ supported de novo initiation, however, RNA synthesis was more efficient in the presence of Mn2+ than in the presence of Mg2+. De novo initiation of RNA synthesis was stimulated by preincubation with 0.5 mm GTP, and a 3'-terminal cytidylate on the viral RNA template was preferred for de novo initiation. Furthermore, the purified protein was also shown, by North-Western blot analysis, to specifically interact with the 3'-end of both plus- and minus-strand viral RNA templates.  相似文献   

11.
Nonstructural protein 5B (NS5B) of hepatitis C virus (HCV) possesses an RNA-dependent RNA polymerase activity responsible for viral genome RNA replication. Despite several reports on the characterization of this essential viral enzyme, little is known about the reaction pathway of NS5B-catalyzed nucleotide incorporation due to the lack of a kinetic system offering efficient assembly of a catalytically competent polymerase/template/primer/nucleotide quaternary complex. In this report, specific template/primer requirements for efficient RNA synthesis by HCV NS5B were investigated. For intramolecular copy-back RNA synthesis, NS5B utilizes templates with an unstable stem-loop at the 3' terminus which exists as a single-stranded molecule in solution. A template with a stable tetraloop at the 3' terminus failed to support RNA synthesis by HCV NS5B. Based on these observations, a number of single-stranded RNA templates were synthesized and tested along with short RNA primers ranging from two to five nucleotides. It was found that HCV NS5B utilized di- or trinucleotides efficiently to initiate RNA replication. Furthermore, the polymerase, template, and primer assembled initiation-competent complexes at the 3' terminus of the template RNA where the template and primer base paired within the active site cavity of the polymerase. The minimum length of the template is five nucleotides, consistent with a structural model of the NS5B/RNA complex in which a pentanucleotide single-stranded RNA template occupies a groove located along the fingers subdomain of the polymerase. This observation suggests that the initial docking of RNA on NS5B polymerase requires a single-stranded RNA molecule. A unique beta-hairpin loop in the thumb subdomain may play an important role in properly positioning the single-stranded template for initiation of RNA synthesis. Identification of the template/primer requirements will facilitate the mechanistic characterization of HCV NS5B and its inhibitors.  相似文献   

12.
The NS5B protein, or RNA-dependent RNA polymerase of the hepatitis virus type C, catalyzes the replication of the viral genomic RNA. Little is known about the recognition domains of the viral genome by the NS5B. To better understand the initiation of RNA synthesis on HCV genomic RNA, we used in vitro transcribed RNAs as templates for in vitro RNA synthesis catalyzed by the HCV NS5B. These RNA templates contained different regions of the 3' end of either the plus or the minus RNA strands. Large differences were obtained depending on the template. A few products shorter than the template were synthesized by using the 3' UTR of the (+) strand RNA. In contrast the 341 nucleotides at the 3' end of the HCV minus-strand RNA were efficiently copied by the purified HCV NS5B in vitro. At least three elements were found to be involved in the high efficiency of the RNA synthesis directed by the HCV NS5B with templates derived from the 3' end of the minus-strand RNA: (a) the presence of a C residue as the 3' terminal nucleotide; (b) one or two G residues at positions +2 and +3; (c) other sequences and/or structures inside the following 42-nucleotide stretch. These results indicate that the 3' end of the minus-strand RNA of HCV possesses some sequences and structure elements well recognized by the purified NS5B.  相似文献   

13.
Hepatitis C virus (HCV) NS5B protein is the viral RNA-dependent RNA polymerase capable of directing RNA synthesis. In this study, an electrophoretic mobility shift assay demonstrated the interaction between a partially purified recombinant NS5B protein and a 3' viral genomic RNA with or without the conserved 98-nucleotide tail. The NS5B-RNA complexes were specifically competed away by the unlabeled homologous RNA but not by the viral 5' noncoding region and very poorly by the 3' conserved 98-nucleotide tail. A 3' coding region with conserved stem-loop structures rather than the 3' noncoding region of the HCV genome is critical for the specific binding of NS5B. Nevertheless, no direct interaction between the 3' coding region and the HCV NS5A protein was detected. Furthermore, two independent RNA-binding domains (RBDs) of NS5B were identified, RBD1, from amino acid residues 83 to 194, and RBD2, from residues 196 to 298. Interestingly, the conserved motifs of RNA-dependent RNA polymerase for putative RNA binding (220-DxxxxD-225) and template/primer position (282-S/TGxxxTxxxNS/T-292) are present in the RBD2. Nevertheless, the RNA-binding activity of RBD2 was abolished when it was linked to the carboxy-terminal half of the NS5B. These results provide some clues to understanding the initiation of HCV replication.  相似文献   

14.
All of the previously reported recombinant RNA-dependent RNA polymerases (RdRp), the NS5B enzymes, of hepatitis C virus (HCV) could function only in a primer-dependent and template-nonspecific manner, which is different from the expected properties of the functional viral enzymes in the cells. We have now expressed a recombinant NS5B that is able to synthesize a full-length HCV genome in a template-dependent and primer-independent manner. The kinetics of RNA synthesis showed that this RdRp can initiate RNA synthesis de novo and yield a full-length RNA product of genomic size (9.5 kb), indicating that it did not use the copy-back RNA as a primer. This RdRp was also able to accept heterologous viral RNA templates, including poly(A)- and non-poly(A)-tailed RNA, in a primer-independent manner, but the products in these cases were heterogeneous. The RdRp used some homopolymeric RNA templates only in the presence of a primer. By using the 3'-end 98 nucleotides (nt) of HCV RNA, which is conserved in all genotypes of HCV, as a template, a distinct RNA product was generated. Truncation of 21 nt from the 5' end or 45 nt from the 3' end of the 98-nt RNA abolished almost completely its ability to serve as a template. Inclusion of the 3'-end variable sequence region and the U-rich tract upstream of the X region in the template significantly enhanced RNA synthesis. The 3' end of minus-strand RNA of HCV genome also served as a template, and it required a minimum of 239 nt from the 3' end. These data defined the cis-acting sequences for HCV RNA synthesis at the 3' end of HCV RNA in both the plus and minus senses. This is the first recombinant HCV RdRp capable of copying the full-length HCV RNA in the primer-independent manner expected of the functional HCV RNA polymerase.  相似文献   

15.
The 3'-terminal ends of both the positive and negative strands of the hepatitis C virus (HCV) RNA, the latter being the replicative intermediate, are most likely the initiation sites for replication by the viral RNA-dependent RNA polymerase, NS5B. The structural features of the very conserved 3' plus [(+)] strand untranslated region [3' (+) UTR] are well established (K. J. Blight and C. M. Rice, J. Virol. 71:7345-7352, 1997). However, little information is available concerning the 3' end of the minus [(-)] strand RNA. In the present work, we used chemical and enzymatic probing to investigate the conformation of that region, which is complementary to the 5' (+) UTR and the first 74 nucleotides of the HCV polyprotein coding sequence. By combining our experimental data with computer predictions, we have derived a secondary-structure model of this region. In our model, the last 220 nucleotides, where initiation of the (+) strand RNA synthesis presumably takes place, fold into five stable stem-loops, forming domain I. Domain I is linked to an overall less stable structure, named domain II, containing the sequences complementary to the pseudoknot of the internal ribosomal entry site in the 5' (+) UTR. Our results show that, even though the (-) strand 3'-terminal region has the antisense sequence of the 5' (+) UTR, it does not fold into its mirror image. Interestingly, comparison of the replication initiation sites on both strands reveals common structural features that may play key functions in the replication process.  相似文献   

16.
The hepatitis C virus (HCV)-encoded protease/helicase NS3 is likely to be involved in viral RNA replication. We have expressed and purified recombinant NS3 (protease and helicase domains) and Delta pNS3 (helicase domain only) and examined their abilities to interact with the 3'-terminal sequence of both positive and negative strands of HCV RNA. These regions of RNA were chosen because initiation of RNA synthesis is likely to occur at or near the 3' untranslated region (UTR). The results presented here demonstrate that NS3 (and Delta pNS3) interacts efficiently and specifically with the 3'-terminal sequences of both positive- and negative-strand RNA but not with the corresponding complementary 5'-terminal RNA sequences. The interaction of NS3 with the 3'-terminal negative strand [called 3'(-) UTR(127)] was specific in that only homologous (and not heterologous) RNA competed efficiently in the binding reaction. A predicted stem-loop structure present at the 3' terminus (nucleotides 5 to 20 from the 3' end) of the negative-strand RNA appears to be important for NS3 binding to the negative-strand UTR. Deletion of the stem-loop structure almost totally impaired NS3 (and Delta pNS3) binding. Additional mutagenesis showed that three G-C pairs within the stem were critical for helicase-RNA interaction. The data presented here also suggested that both a double-stranded structure and the 3'-proximal guanosine residues in the stem were important determinants of protein binding. In contrast to the relatively stringent requirement for 3'(-) UTR binding, specific interaction of NS3 (or Delta pNS3) with the 3'-terminal sequences of the positive-strand RNA [3'(+) UTR] appears to require the entire 3'(+) UTR of HCV. Deletion of either the 98-nucleotide 3'-terminal conserved region or the 5' half sequence containing the variable region and the poly(U) and/or poly(UC) stretch significantly impaired RNA-protein interaction. The implication of NS3 binding to the 3'-terminal sequences of viral positive- and negative-strand RNA in viral replication is discussed.  相似文献   

17.
Hepatitis C virus (HCV) NS5B protein possesses an RNA-dependent RNA polymerase (RdRp) activity, a major function responsible for replication of the viral RNA genome. To further characterize the RdRp activity, NS5B proteins were expressed from recombinant baculoviruses, purified to near homogeneity, and examined for their ability to synthesize RNA in vitro. As a result, a highly active NS5B RdRp (1b-42), which contains an 18-amino acid C-terminal truncation resulting from a newly created stop codon, was identified among a number of independent isolates. The RdRp activity of the truncated NS5B is comparable to the activity of the full-length protein and is 20 times higher in the presence of Mn(2+) than in the presence of Mg(2+). When a 384-nucleotide RNA was used as the template, two major RNA products were synthesized by 1b-42. One is a complementary RNA identical in size to the input RNA template (monomer), while the other is a hairpin dimer RNA synthesized by a "copy-back" mechanism. Substantial evidence derived from several experiments demonstrated that the RNA monomer was synthesized through de novo initiation by NS5B rather than by a terminal transferase activity. Synthesis of the RNA monomer requires all four ribonucleotides. The RNA monomer product was verified to be the result of de novo RNA synthesis, as two expected RNA products were generated from monomer RNA by RNase H digestion. In addition, modification of the RNA template by the addition of the chain terminator cordycepin at the 3' end did not affect synthesis of the RNA monomer but eliminated synthesis of the self-priming hairpin dimer RNA. Moreover, synthesis of RNA on poly(C) and poly(U) homopolymer templates by 1b-42 NS5B did not require the oligonucleotide primer at high concentrations (>/=50 microM) of GTP and ATP, further supporting a de novo initiation mechanism. These findings suggest that HCV NS5B is able to initiate RNA synthesis de novo.  相似文献   

18.
The positive-strand RNA genome of the hepatitis C virus (HCV) is flanked by 5'- and 3'-untranslated regions (UTRs). Translation of the viral RNA is directed by the internal ribosome entry site (IRES) in the 5'-UTR, and subsequent viral RNA replication requires sequences in the 3'-UTR and in the 5'-UTR. Addressing previous conflicting reports on a possible function of the 3'-UTR for RNA translation in this study, we found that reporter construct design is an important parameter in experiments testing 3'-UTR function. A translation enhancer function of the HCV 3'-UTR was detected only after transfection of monocistronic reporter RNAs or complete RNA genomes having a 3'-UTR with a precise 3' terminus. The 3'-UTR strongly stimulates HCV IRES-dependent translation in human hepatoma cell lines but only weakly in nonliver cell lines. The variable region, the poly(U . C) tract, and the most 3' terminal stem-loop 1 of the highly conserved 3' X region contribute significantly to translation enhancement, whereas stem-loops 2 and 3 of the 3' X region are involved only to a minor extent. Thus, the signals for translation enhancement and for the initiation of RNA minus-strand synthesis in the HCV 3'-UTR partially overlap, supporting the idea that these sequences along with viral and possibly also cellular factors may be involved in an RNA 3'-5' end interaction and a switch between translation and RNA replication.  相似文献   

19.
The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp), encoded by nonstructural protein 5B (NS5B), is absolutely essential for the viral replication. Here we describe the development, characterization, and functional properties of the panel of monoclonal antibodies (mAbs) and specifically describe the mechanism of action of two mAbs inhibiting the NS5B RdRp activity. These mAbs recognize and bind to distinct linear epitopes in the fingers subdomain of NS5B. The mAb 8B2 binds the N-terminal epitope of the NS5B and inhibits both primer-dependent and de novo RNA synthesis. mAb 8B2 selectively inhibits elongation of RNA chains and enhances the RNA template binding by NS5B. In contrast, mAb 7G8 binds the epitope that contains motif G conserved in viral RdRps and inhibits only primer-dependent RNA synthesis by specifically targeting the initiation of RNA synthesis, while not interfering with the binding of template RNA by NS5B. To reveal the importance of the residues of mAb 7G8 epitope for the initiation of RNA synthesis, we performed site-directed mutagenesis and extensively characterized the functionality of the HCV RdRp motif G. Comparison of the mutation effects in both in vitro primer-dependent RdRp assay and cellular transient replication assay suggested that mAb 7G8 epitope amino acid residues are involved in the interaction of template-primer or template with HCV RdRp. The data presented here allowed us to describe the functionality of the epitopes of mAbs 8B2 and 7G8 in the HCV RdRp activity and suggest that the epitopes recognized by these mAbs may be useful targets for antiviral drugs.  相似文献   

20.
Replication of positive strand flaviviruses is mediated by the viral RNA-dependent RNA polymerases (RdRP). To study replication of dengue virus (DEN), a flavivirus family member, an in vitro RdRP assay was established using cytoplasmic extracts of DEN-infected mosquito cells and viral subgenomic RNA templates containing 5'- and 3'-terminal regions (TRs). Evidence supported that an interaction between the TRs containing conserved stem-loop, cyclization motifs, and pseudoknot structural elements is required for RNA synthesis. Two RNA products, a template size and a hairpin, twice that of the template, were formed. To isolate the function of the viral RdRP (NS5) from that of other host or viral factors present in the cytoplasmic extracts, the NS5 protein was expressed and purified from Escherichia coli. In this study, we show that the purified NS5 alone is sufficient for the synthesis of the two products and that the template-length RNA is the product of de novo initiation. Furthermore, the incubation temperature during initiation, but not elongation phase of RNA synthesis modulates the relative amounts of the hairpin and de novo RNA products. A model is proposed that a specific conformation of the viral polymerase and/or structure at the 3' end of the template RNA is required for de novo initiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号