首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Physiological activation of the sympathetic adrenomedullary (SAM) axis following both thermal and non thermal stress was assessed by changes in serum norepinephrine, glucose and/or protein as well as indices of peripheral blood flow. The occurrence of elevated serum parathyroid hormone (PTH) did not reliably reflect SAM activation as might be predicted from pharmacological studies that document a beta adrenergic receptor mechanism in the parathyroid gland that mediates catecholamine stimulated release of PTH into the circulation. The beta agonist isoproterenol at 1 microgram/min for 60 min did produce a transient increase in serum PTH at 20 min. Overall, the data raise doubts about the physiological significance of the adrenergic receptor in the parathyroid gland. Significant increases in serum PTH of 67% and 109% above basal respectively were seen following ruminal loading with cold and thermoneutral water. Associated with the PTH change were increased serum phosphorus and elevated or constant serum protein and serum total calcium.  相似文献   

2.
The primary regulator of PTH secretion is serum ionized Ca(2+); however, neuropeptide-containing nerve fibers have been localized to the parathyroid gland. The purpose of this study was to determine whether or not substance P (SP) regulates PTH secretion. In dispersed porcine parathyroid cells, SP reversibly inhibited 0.5 mM CaCl(2)-induced PTH secretion (IC(50) = 0.29 nM) and had no effect at CaCl(2) concentrations of 1.5 mM and greater. At 0.5 mM CaCl(2), treatment with a NK-1 selective receptor agonist resulted in a concentration-dependent decrease in PTH secretion (IC(50) = 0.21 nM). In contrast, NK-2 and NK-3 receptor agonists were approximately 100-fold less active than SP or the NK-1 receptor selective agonist. An enantiospecific reversal of the effects of SP on PTH secretion was observed with LY306740, a potent selective NK-1 receptor antagonist (K(i) = 0.125 nM). In porcine parathyroid cells, expression of mRNA for the NK-1 receptor was observed using RT-PCR. In summary, a novel neuroendocrine pathway is described whereby the neuropeptide, SP, regulates PTH secretion through NK-1 receptors.  相似文献   

3.
The mechanisms regulating leptin secretion were investigated in isolated rat white adipocytes. Insulin (1-100 nM) linearly stimulated leptin secretion from incubated adipocytes for at least 2 h. The adrenergic agonists norepinephrine, isoproterenol (two nonselective beta-agonists), or CL-316243 (potent beta3) all inhibited insulin (10 nM)-stimulated leptin release. The inhibitory effects of norepinephrine and isoproterenol could be reversed not only by the nonselective antagonist propranolol but also by the selective antagonists ICI-89406 (beta1) or ICI-118551 (beta2), the beta2-antagonist being less effective than the beta1. Insulin-stimulated leptin secretion could also be inhibited by a series of agents increasing intracellular cAMP levels, such as lipolytic hormones (ACTH and thyrotropin-stimulating hormone), various nonhydrolyzable cAMP analogs, pertussis toxin, forskolin, methylxanthines (caffeine, theophylline, IBMX), and specific inhibitors of phosphodiesterase III (imazodan, milrinone, and amrinone). Significantly, antilipolytic agents other than insulin (adenosine, nicotinic acid, acipimox, and orthovanadate) did not mimic the acute stimulatory effects of insulin on leptin secretion under these conditions. We conclude that norepinephrine specifically inhibits insulin-stimulated leptin secretion not only via the low-affinity beta3-adrenoceptors but also via the high-affinity beta1/beta2-adrenoceptors. Moreover, it is suggested that 1) activation of phosphodiesterase III by insulin represents an important metabolic step in stimulation of leptin secretion, and 2) lipolytic hormones competitively counterregulate the stimulatory effects of insulin by activating the adenylate cyclase system.  相似文献   

4.
The reduction of food intake in hungry rats induced by salbutamol (10 mg/kg/i.p.) was prevented by IPS 339 (5 mg/kg, i.p.) a selective beta 2 adrenergic antagonist, but not by metoprolol (10 mg/kg i.p.), a blocker of beta 1 adrenergic receptors. Similarly, bilateral injections of IPS 339 (32 micrograms/1 microliter) but not metoprolol (80 micrograms/1 microliter) in the perifornical hypothalamic area completely antagonized the anorectic effect of intraperitoneal salbutamol, suggesting an involvement of beta 2 adrenergic receptors in this brain area. Clenbuterol, a beta 2 adrenergic agonist which readily crosses the blood-brain barrier, was 10-100 times more potent than salbutamol in inhibiting feeding consumption of deprived rats when injected intraperitoneally and this effect was also selectively antagonized by pretreatment with IPS 339. Neither IPS 339 nor metoprolol injected in the perifornical hypothalamus significantly modified the anorectic effect of diethylpropion (5 mg/kg i.p.) whereas it was partially prevented by intraperifornical injection of 1-propranolol (52 micrograms/2 microliter), a non-selective beta antagonist, suggesting that both beta 1 and beta 2 adrenergic receptors in the hypothalamus contribute to the mechanism by which diethylpropion causes anorexia.  相似文献   

5.
Atrial myocardium is the source of a recently described peptide hormone termed atriopeptin. Atriopeptin is thought to have a role in the regulation of systemic arterial pressure, fluid balance and plasma electrolyte homeostasis. Isolated rat hearts release atriopeptin into the coronary effluent, and we have found that this release is stimulated by the administration of norepinephrine, a compound with alpha and beta adrenergic properties. Infusion of the pure beta-receptor agonist, isoproterenol, failed to stimulate the release; however, the alpha-1 receptor agonist phenylephrine induced the release in a dose-dependent manner. The stimulation of atriopeptin release by norepinephrine and phenylephrine was inhibited by alpha-blockade with phentolamine. Administration of BHT-920, a selective alpha-2 agonist, had no effect on atriopeptin release. We conclude that atriopeptin secretion by the atrial myocyte is stimulated by activation of the alpha-1 adrenergic receptor. This finding suggests an involvement of the sympathetic nervous system in the physiologic regulation of the secretion of this hormone.  相似文献   

6.
Cross talk between adrenergic and insulin signaling systems may represent a fundamental molecular basis of insulin resistance. We have characterized a newly established beta(3)-adrenoceptor-deficient (beta(3)-KO) brown adipocyte cell line and have used it to selectively investigate the potential role of novel-state and typical beta-adrenoceptors (beta-AR) on insulin signaling and action. The novel-state beta(1)-AR agonist CGP-12177 strongly induced uncoupling protein-1 in beta(3)-KO brown adipocytes as opposed to the beta(3)-selective agonist CL-316,243. Furthermore, CGP-12177 potently reduced insulin-induced glucose uptake and glycogen synthesis. Neither the selective beta(1)- and beta(2)-antagonists metoprolol and ICI-118,551 nor the nonselective antagonist propranolol blocked these effects. The classical beta(1)-AR agonist dobutamine and the beta(2)-AR agonist clenbuterol also considerably diminished insulin-induced glucose uptake. In contrast to CGP-12177 treatment, these negative effects were completely abrogated by metoprolol and ICI-118,551. Stimulation with CGP-12177 did not impair insulin receptor kinase activity but decreased insulin receptor substrate-1 binding to phosphatidylinositol (PI) 3-kinase and activation of protein kinase B. Thus the present study characterizes a novel cell system to selectively analyze molecular and functional interactions between novel and classical beta-adrenoceptor types with insulin action. Furthermore, it indicates insulin receptor-independent, but PI 3-kinase-dependent, potent negative effects of the novel beta(1)-adrenoceptor state on diverse biological end points of insulin action.  相似文献   

7.
5-n-Pentyl oxadiazole substituted benzenesulfonamide 8 is a potent and selective beta3 adrenergic receptor agonist (beta3 EC50 = 23 nM, beta1 IC50 = 3000 nM, beta2 IC50 = 3000 nM). The compound has high oral bioavailability in dogs (62%) and rats (36%) and is among the most orally bioavailable beta3 adrenergic receptor agonists reported to date.  相似文献   

8.
L-770,644 (9c) is a potent and selective agonist of the human beta3 adrenergic receptor (EC50 = 13 nM). It shows good oral bioavailability in both dogs and rats (%F = 27), and is a full agonist for glycerolemia in the rhesus monkey (ED50 = 0.21 mg/kg). Based on its desirable in vitro and in vivo properties, L-770,644 was chosen for further preclinical evaluation.  相似文献   

9.
In chronic experiment on dogs it has been established that the subcutaneous injection of equimolar doses of izadrine (nonselective beta-adrenergic agonist), alupent (moderately selective beta 2-adrenergic agonist) and salbutamol (predominantly beta 2-adrenergic agonist) suppresses the pentagastric secretion approximately in the same degree. The blockade of beta-adrenoreceptors by the anapriline intensifies the gastric secretion stimulated by pentagastrin. All investigated adrenoactive agents didn't effect the dogs' histamine gastric secretion. In healthy men the activation of beta 2-adrenergic receptors by alupent accompanied by the expressed intensification of basal, pentagastrin and submaximal histamine gastric secretion. The blockade of these receptors by anaprilin decreases the gastric secretion. It has been concluded that only beta 2-adrenoceptors take part in the gastric secretion regulation. Considerable specific differences in the reaction of gastric glands on the activation of beta-adrenoreceptors are revealed: in human beings it leads to the excitation, in dogs--to the suppression of secretory cells.  相似文献   

10.
A series of 4-hydroxy-3-methylsulfonanilido-1,2-diarylethylamines were prepared and evaluated for their human beta(3) adrenergic receptor agonist activity. SAR studies led to the identification of BMS-196085 (25), a potent beta(3) full agonist (K(i)=21 nM, 95% activation) with partial agonist (45%) activity at the beta(1) receptor. Based on its desirable in vitro and in vivo properties, BMS-196085 was chosen for clinical evaluation.  相似文献   

11.
This study was conducted to investigate the subtypes of muscarinic receptors involved in the action of cholinergic agents on prostacyclin synthesis in the rabbit aorta. Prostacyclin production measured as 6-keto-PGF1 alpha was assessed after exposing the aortic rings to different cholinergic agents. Acetylcholine (ACh) (M1 and M2 agonist) (1-10 microM) and arecaidine proparagyl ester (APE) (M2 selective agonist) (1-10 microM) enhanced 6-keto-PGF1 alpha output in a concentration-dependent manner. A selective M1 receptor agonist, McN-A-343, at 1 microM-1 mM did not alter 6-keto-PGF1 alpha output. ACh- and APE induced increases in 6-keto-PGF1 alpha output were attenuated by the M1/M2 antagonist atropine (0.1 microM), M2 alpha antagonist (AF-DX 116), (0.1-1.0 microM), and by selective M2 beta antagonist, hexahydro-sila-difendiol (HHSiD) (0.1-1.0 microM), but not by the M1 antagonist pirenzepine (1.0 microM). 6-Keto-PGF1 alpha output elicited by ACh- or APE was not altered by the adrenergic receptor antagonists phentolamine and propranolol or by the nicotinic receptor blocker hexamethonium. Similarly, the arachidonic acid- or norepinephrine induced 6-keto-PGF1 alpha accumulation was not altered by these muscarinic receptor antagonists. Indomethacin, a cyclooxygenase inhibitor, prevented arachidonic acid, ACh- or APE induced 6-keto-PGF1 alpha output. Removal of the endothelium abolished the production of 6-keto-PGF1 alpha elicited by ACh, APE, bradykinin, and calcium ionophore A 23187, but not that induced by angiotensin II, K+ or norepinephrine. These data suggest that vascular prostaglandin generation elicited by cholinergic agonists is mediated via activation of M2 alpha and M2 beta but not M1 muscarinic receptors, which are most likely located on the endothelium.  相似文献   

12.
Gender-related differences in brown adipose tissue (BAT) thermogenesis of 110-day-old rats were studied by determining the morphological and functional features of BAT. The adrenergic control was assessed by studying the levels of beta(3)- and alpha(2A)-adrenergic receptors (AR) and by determining the lipolytic response to norepinephrine (beta(1)-, beta(2)-, beta(3)-, and alpha(2)-AR agonist), isoprenaline (beta(1)-, beta(2)-, and beta(3)-AR agonist), and CGP12177A (selective partial beta(3)-AR agonist but beta(1)- and beta(2)-AR antagonist) together with post-receptor agents, forskolin and dibutyryl cyclic AMP. The female rats that had greater oxygen consumption showed higher UCP1 content, a higher multilocular arrangement, and both longer cristae and higher cristae dense mitochondria in BAT indicating heightened thermogenic capacity and activity; this picture is accompanied by a more sensitive beta(3)-AR to norepinephrine signal (EC(50) 10-fold lower for CGP12177A) and a lower expression of alpha(2A)-AR than male rats. Taken together, our results support the idea that the BAT hormonal environment could be involved in the control of different elements of lipolytic and thermogenic adrenergic pathways. Gender dimorphism is both at receptor (changing alpha(2A)-AR density and beta(3)-AR affinity) and post-receptor (modulating the links involved in the adrenergic signal transduction) levels. These changes in adrenergic control could be responsible, at least in part, both for the important mitochondrial recruitment differences and functional and morphological features of BAT in female rats under usual rodent housing temperatures.  相似文献   

13.
It has been suggested that adrenergic agents might modulate the L-arginine-NO pathway. Sympathomimetic agonists enhance the basal release of NO, and noradrenaline increases the synthesis of nitric oxide synthase (NOS) in the medial basal hypothalamus in vitro. In the present study possible involvement of NO in central stimulation of the hypothalamic-pituitary-adrenal (HPA) axis by adrenergic agents was investigated in conscious rats. The nitric oxide synthase blocker N(omega)-nitro-L-arginine methyl ester (L-NAME 2 and 10 microg) was administered intracerebroventricularly (i.c.v.) 15 min before the adrenergic agonist given by the same route; 1 h later the rats were decapitated. Plasma levels of ACTH and corticosterone were measured. L-NAME significantly diminished the ACTH and corticosterone response to phenylephrine (30 microg), an alpha1-adrenergic receptor agonist. These hormone responses to clonidine (10 microg), an alpha2-receptor agonist, were dose-dependently suppressed or totally abolished by L-NAME. A significant rise in the ACTH and corticosterone secretion induced by isoprenaline (10 microg), a beta-adrenergic receptor agonist, was only moderately diminished by pretreatment with L-NAME. These results indicate that NOS is considerably involved in central stimulation of the HPA axis by alpha1- and alpha2-adrenergic receptor agonists, and that NO mediates the stimulatory action of these agonists on ACTH and corticosterone secretion. The stimulation induced by beta-adrenergic receptors is only moderately affected by endogenous NO.  相似文献   

14.
Somatostatin (SST) regulates growth hormone (GH) secretion from pituitary somatotrophs by interacting with members of the SST family of G-protein-coupled receptors (sst1-5). We have used potent, nonpeptidyl SST agonists with sst2 and sst5 selectivity to determine whether these receptor subtypes are involved in regulating growth hormone releasing hormone (GHRH) stimulated secretion. GHRH stimulated GH release from pituitary cells in a dose-dependent manner, and this secretion was inhibited by Tyr(11)-SST-14, a nonselective SST analog. A sst2 selective agonist, L-779,976, potently inhibited GHRH-stimulated GH release. In addition, L-817, 818, a potent sst5 receptor selective agonist, also inhibited GH secretion, but was approximately 10-fold less potent (P < 0.01, ANOVA) in inhibiting GH release than either Tyr(11)-SST-14 or L-779, 976. These results show that both sst2 and sst5 receptor subtypes regulate GHRH-stimulated GH release from rat pituitary cells.  相似文献   

15.
Utilization of N-substituted-4-hydroxy-3-methylsulfonanilidoethanolamines 1 as selective beta(3) agonists is complicated by their propensity to undergo metabolic oxidative N-dealkylation, generating 0.01-2% of a very potent alpha(1) adrenergic agonist 2. A summary of the SAR for this hepatic microsomal conversion precedes presentation of strategies to maintain the advantages of chemotype 1 while mitigating the consequences of N-dealkylation. This effort led to the identification of 4-hydroxy-3-methylsulfonanilidopropanolamines 15 for which the SAR for the unique stereochemical requirements for binding to the beta adrenergic receptors culminated in the identification of the potent, selective beta(3) agonist 15f.  相似文献   

16.
The purpose of the present study was to determine whether an increased plasma corticosterone or dexamethasone levels induced by a single corticosterone or dexamethasone injection to conscious rats affects the hypothalamic-pituitary-adrenocortical (HPA) activity induced by adrenergic and cholinergic agonists. Male Wistar rats were pretreated subcutaneously (s.c.) with a single dose of dexamethasone (5 mg/kg) or corticosterone (25 mg/kg) 24 or 48 h before intraperitoneal (i.p.) administration of adrenergic agonists: phenylephrine, an alpha1-adrenergic receptor agonist, clenbuterol, a beta2-adrenergic agonist and noradrenaline acting predominantly on alpha1-adrenoreceptors, and cholinergic agonists: carbachol, a predominant muscarinic receptor agonist and nicotine, a nicotinic receptor agonist. Dexamethasone profoundly decreased the resting ACTH levels in control rats and given 24 h before each of the stimulatory agonist abolished the adrenergic- and cholinergic agonists-induced ACTH and corticosterone responses. Pretreatment with corticosterone of control rats did not substantially alter the resting plasma ACTH and serum corticosterone levels measured 24 and 48 h later. A single pretreatment with corticosterone abolished or powerfully inhibited, perhaps by a feedback mechanism, the ACTH and corticosterone responses induced 24 and 48 h later by all adrenergic and cholinergic agonists used in this study. These results indicate that prolonged administration of corticosterone is not necessary to induce almost complete suppression of the HPA responsiveness to adrenergic or cholinergic stimulation. Chronic treatment with corticosteroids to achieve glucocorticoid receptors desensitization does not seem to be required.  相似文献   

17.
A series of compounds possessing an N-substituted indoline-5-sulfonamide pharmacophore was prepared and evaluated for their human beta3 adrenergic receptor agonist activity. The SAR of a wide range of urea and heterocyclic substituents is discussed. 4-Octyl thiazole compound 8c was the most potent and selective compound in the series, with 2800-fold selectivity over beta1 binding and 1400-fold selectivity over beta2 binding.  相似文献   

18.
This study sought to evaluate alpha-2 and beta adrenergic modulation of cAMP production in the DDT1 MF-2 transformed smooth muscle myocyte. After stimulation with forskolin or adrenergic agonists with or without subtype specific antagonists, cAMP production was determined. These experiments confirmed an increase of cAMP in response to forskolin, isoproterenol, epinephrine, and norepinephrine; the adrenergic stimulation was inhibited by propranolol. On the other hand, the alpha-2 agonist clonidine did not inhibit cAMP production. Likewise, alpha-2 receptor blockade did not increase cAMP production in response to epinephrine. These studies, therefore, suggest that the DDT1 MF-2 myocyte does not contain a significant population of functional alpha-2 adrenergic receptors.  相似文献   

19.
Nicotine is a potent stimulus for the hypothalamic-pituitary-adrenal (HPA) axis. Systemic nicotine acts via central mechanisms to stimulate by multiple pathways the release of ACTH from the anterior pituitary corticotrops and corticosterone from the adrenal cortex. Nicotine may stimulate indirectly the hypothalamic paraventricular nucleus, the site of the corticotropin-releasing hormone (CRH) neurons which activates ACTH release. In the present studies an involvement of adrenergic system and prostaglandins synthesized by constitutive cyclooxygenase (COX-1) and inducible cyclooxygenase (COX-2) in the nicotine-induced HPA response in rats was investigated. Nicotine (2.5-5 mg/kg i.p.) significantly increased plasma ACTH and corticosterone levels measured 1 hr after administration. Adrenergic receptor antagonists or COX inhibitors were injected i.p. 15 min prior to nicotine and the rats were decapitated 1 hr after the last injection. Prazosin (0.01-0.1 mg/kg), an alpha1-adrenergic antagonist, significantly decreased the nicotine-evoked ACTH and corticosterone secretion. Yohimbine (0.1-1.0 mg/kg), an alpha2-adrenergic antagonist, moderately diminished ACTH response, and propranolol (0.1-10 mg/kg), a beta-adrenergic antagonist, did not significantly alter the nicotine-induced hormones secretion. Pretreatment with piroxicam (0.2-2.0 mg/kg), a COX-1 inhibitor, considerably impaired the nicotine-induced ACTH and corticosterone secretion. Compound NS-398 (0.2-5.0 mg/kg), a selective COX-2 blocker did not markedly alter these hormones secretion, and indomethacin (2 mg/kg), a non-selective COX inhibitor significantly diminished ACTH response. These results indicate that systemic nicotine stimulates the HPA axis indirectly, and both adrenergic system and prostaglandins are significantly involved in this stimulation. Noradrenaline, stimulating postsynaptic alpha1-adrenergic receptors, and prostaglandins, synthesized by COX-1 isoenzyme, are of crucial significance in the nicotine-induced ACTH and corticosterone secretion.  相似文献   

20.
The advent of radioligand binding studies has allowed the classification of receptor subtypes in various tissues. However, the presence of a receptor subtype in a heterogenous tissue does not insure that the receptor has a significant physiological role. beta 1- and beta 2-Adrenoceptors have been reported to coexist in the rabbit right atria. The purpose of the present investigation was to determine the physiological role of beta-adrenoceptor subtypes in catecholamine-induced chronotropic responses in the rabbit right atria through comparison of data from functional and radioligand binding studies. Rank order of potency was determined using isoproterenol, epinephrine and norepinephrine for both chronotropic and inotropic responses in the rabbit right atria and right ventricular papillary muscles, respectively. These studies indicated that the beta 1-adrenoceptor was primarily responsible for catecholamine-induced responses. Next, the beta 1-selective antagonist, atenolol, was found to inhibit the chronotropic responses of the nonselective beta-agonist, isoproterenol, and the beta 2-selective agonist, terbutaline, to the same extent. These data indicate that terbutaline produces its chronotropic effects in the rabbit right atria through stimulation of beta 1-, not beta 2-adrenoceptors. Finally, competition studies for [125I]iodocyanopindolol and the relatively selective beta 1- and beta 2-adrenoceptor antagonists (ICI 89406 and ICI 118551, respectively) indicated that the ratio of beta 1- to beta 2-adrenoceptor subtypes is 6:1. It is concluded that while both receptors may be present in the rabbit right atria, the beta 1-adrenoceptor is the predominant subtype both in density and physiological significance, while the beta 2-adrenoceptor plays little, if any role, in the chronotropic responses induced by catecholamines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号