首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Alpha-crystallin, a major protein of mammalian lens, consists of two subunits, alpha A-crystallin and alpha B-crystallin. They interact to form an aggregate and play a prominent role in the maintenance of lens transparency. We evaluated the interaction between these subunits via surface plasmon resonance (SPR) using four combinations of immobilized protein and analyte: 1) AA: alpha A-crystallin was ligand immobilized onto the sensor and alpha A-crystallin was passed over the ligand, 2) AB: ligand - alpha A-crystallin, analyte - alpha B-crystallin, 3) BB: ligand - alpha B-crystallin, analyte- alpha B-crystallin, 4) BA: ligand - alpha B-crystallin, analyte - alpha A-crystallin. The order of rate of dissociation was AA approximately BA>BB approximately AB. We also examined the dissociation of gamma irradiated alpha A- and alpha B-crystallins. As radiation dose increased, so did the dissociation rate of all of the crystallins. The order of rate of dissociation of irradiated crystallins was BB>AB approximately BA>AA. The results indicate that BB is the most susceptible to gamma-irradiation and that alpha B-crystallin forms a more stable aggregate than alpha A-crystallin under normal conditions. However, when alpha B is irradiated the aggregate becomes unstable.  相似文献   

2.
Lens alpha-crystallin, alpha A- and alpha B-crystallin, and Hsp27 are members of the small heat shock protein family. Both alpha A- and alpha B-crystallin are expressed in the lens and serve as structural proteins and as chaperones, but alpha B-crystallin is also expressed in nonlenticular organs where Hsp27, rather than alpha A-crystallin, is expressed along with alpha B-crystallin. It is not known what additional function Hsp27 has besides as a heat shock protein, but it may serve, as alpha A-crystallin does in the lens, to stabilize alpha B-crystallin. In this study, we investigate aspects on conformation and thermal stability for the mixture of Hsp27 and alpha B-crystallin. Size exclusion chromatography, circular dichroism (CD), and light scattering measurements indicated that Hsp27 prevented alpha B-crystallin from heat-induced structural changes and high molecular weight (HMW) aggregation. The results indicate that Hsp27 indeed promotes stability of alpha B-crystallin.  相似文献   

3.
4.
The 20 kDa alpha A and alpha B subunits of alpha-crystallin from mammalian eye lenses form large aggregates with an average molecular weight of 800,000. To get insight into the interactions responsible for aggregate formation, we expressed in Escherichia coli the putative N- and C-terminal domains of alpha A-crystallin, as well as the intact alpha A-crystallin chain. The proteins are expressed in a stable form and in relatively high amounts (20-60% of total protein). Recombinant alpha A-crystallin and the C-terminal domain are expressed in a water-soluble form. Recombinant alpha A-crystallin forms aggregates comparable with alpha-crystallin aggregates from calf lenses, whereas the C-terminal domain forms dimers or tetramers. The N-terminal domain is expressed in an initially water-insoluble form. After solubilization, denaturation and reaggregation the N-terminal domain exists in a high molecular weight multimeric form. These observations suggest that the interactions leading to aggregation of alpha A-crystallin subunits are mainly located in the N-terminal half of the chain.  相似文献   

5.
alpha A-crystallin is expressed in non-ocular tissues.   总被引:6,自引:0,他引:6  
alpha-Crystallin, the predominant structural protein of the ocular lens, has been considered to be composed of two subunits, alpha A-crystallin and alpha B-crystallin. Of these two, alpha B-crystallin has been previously shown to be an extralenticular protein while alpha A-crystallin has been considered to be a lens-specific polypeptide. Using an antiserum directed against an N-terminal peptide of alpha-crystallin, we have detected a 20-kDa protein in various rat tissues including the brain, liver, lung, spleen, skin, and small intestine and in a number of established epithelial and fibroblast cell lines. PCR analysis of poly(A)-enriched RNA and Southern blot analysis indicated the presence of alpha A-crystallin mRNA sequences in different non-lenticular tissues. Among the non-ocular tissues examined, spleen showed the highest levels of alpha A-crystallin protein and mRNA. The identity of alpha A-crystallin sequences in the spleen was established by cloning and sequencing a polymerase chain reaction-amplified region of alpha A-crystallin mRNA. Sequences derived from spleen and eye revealed almost 100% identity at the nucleotide level. Interestingly, alpha A-crystallin and alpha B-crystallin seem to exist in an inverse quantitative relationship in the spleen and the heart, the two non-ocular tissues where they show highest concentrations, respectively. The known conserved evolution of alpha A-crystallin and the definitive demonstration of the non-ocular expression of this polypeptide suggest important non-crystallin functions for this protein.  相似文献   

6.
Summary. Lens alpha-crystallin, composed of two subunits alpha A- and alpha B-crystallin, forms large aggregates in the lens of the eye. The present study investigated the aggregate of human lens alpha-crystallin from elderly and young donors. Recombinant alpha A- and alpha B-crystallins in molar ratios of alpha A to alpha B at 1:1, corresponding to the aged sample, were also studied in detail. We found by ultra-centrifugation analysis that the alpha-crystallin aggregate from elderly donors was large and heterogeneous with an average sedimentation coefficient of 30 S and a range of 20–60 S at 37 °C. This was higher compared to the young samples that had an average sedimentation coefficient of 17 S. The sedimentation coefficients of recombinant alpha A- and alpha B-crystallins were approximately 12 S and 15 S, respectively. Even when recombinant alpha-crystallins were mixed in molar ratios equivalent to those found in vivo, similar S values as the native aged alpha-crystallin aggregates were not obtained. Changes in the self-association of alpha-crystallin aggregate were correlated to changes in chaperone activity. Alpha-crystallin from young donors, and recombinant alpha A- and alpha B-crystallin and their mixtures showed chaperone activity, which was markedly lost in samples from the aged alpha-crystallin aggregates.  相似文献   

7.
Calf lens αA-crystallin isolated by reversed-phase HPLC demonstrates a slightly more hydrophobic profile than αB-crystallin. Fluorescent probes in addition to bis-ANS, like cis-parinaric acid (PA) and pyrene, show higher quantum yields or Ham ratios when bound to αA-crystallin than to αB-crystallin at room temperature. Bis-ANS binding to both αA- and αB-crystallin decreases with increase in temperature. At room temperature, the chaperone-like activity of αA-crystallin is lower than that of αB-crystallin whereas at higher temperatures, αA-crystallin shows significantly higher protection against aggregation of substrate proteins compared to αB-crystallin. Therefore, calf lens αA-crystallin is more hydrophobic than αB-crystallin and chaperone-like activity of α-crystallin subunits is not quantitatively related to their hydrophobicity.  相似文献   

8.
Small heat shock proteins (sHsps) are necessary for several cellular functions and in stress tolerance. Most sHsps are oligomers; intersubunit interactions leading to changes in oligomeric structure and exposure of specific regions may modulate their functioning. Many sHsps, including alpha A- and alpha B-crystallin, contain a well conserved SRLFDQFFG sequence motif in the N-terminal region. Sequence-based prediction shows that it exhibits helical propensity with amphipathic character, suggesting that it plays a critical role in the structure and function of alpha-crystallins. In order to investigate the role of this motif in the structure and function of sHsps, we have made constructs deleting this sequence from alpha A- and alpha B-crystallin, overexpressed, purified, and studied these engineered proteins. Circular dichroism spectroscopic studies show changes in tertiary and secondary structure on deletion of the sequence. Glycerol density gradient centrifugation and dynamic light scattering studies show that the multimeric size of the mutant proteins is significantly reduced, indicating a role for this motif in higher order organization of the subunits. Both deletion mutants exhibit similar oligomeric size and increased chaperone-like activity. Urea-induced denaturation study shows that the SRLFDQFFG sequence contributes significantly to the structural stability. Fluorescence resonance energy transfer studies show that the rate of exchange of the subunits in the alpha Adel-crystallin oligomer is higher compared with that in the alpha A-crystallin oligomer, suggesting that this region contributes to the oligomer dynamics in addition to the higher order assembly and structural stability. Thus, our study shows that the SRLFDQFFG sequence is one of the critical motifs in structure-function regulation of alpha A- and alpha B-crystallin.  相似文献   

9.
Crystallin is essential not only for the maintenance of eye lens transparency, but also in the biology of other tissues. Eye lens α-crystallin exists as a heteropolymer composed of two homologous subunits, αA and αB. Despite the critical role of α-crystallin in many tissues, little is known regarding structural and functional significance of the two subunits. Herein, we describe a unique feature of αB-crystallin. At high temperatures (>70 °C) not only αB-crystallin aggregates but also enhances the aggregation of other lens proteins. Intriguingly, αB-crystallin-mediated coaggregation at and above 70 °C involves β- but not γ-crystallin. Further, αA-crystallin, but not a mutant (F71L) αA-crystallin, prevented aggregation of αB-crystallin and also reduced coaggregation of αB- and β-crystallin. These studies explain the rationale for the existence of α-crystallin heteropolymer with αA subunit as a major partner that is vital for lens transparency and provide insights into αB-crystallin-induced coaggregation which may have a bearing in some pathological conditions where αB-crystallin is overexpressed.  相似文献   

10.
The time and place of the accumulation of alpha A-, beta B1- and gamma-crystallin RNA in the developing rat lens have been studied by in situ hybridization. alpha A- and gamma-crystallin RNA were first detected in the lens vesicle, while beta B1-crystallin RNA could be seen only after elongation of the primary fiber cells. Both beta B1- and gamma-crystallin RNA were confined to the fiber cells of fetal lenses, while alpha A-crystallin mRNA could also be detected in the epithelial cells. A quantification of the hybridization pattern obtained in the differentiation zone of the newborn rat lens showed that alpha A-crystallin RNA is concentrated in the cortical zone. alpha B-crystallin mRNA has the same distribution pattern. beta B1-crystallin RNA was relatively poorly detectable by in situ hybridization in both fetal and newborn rat lenses. The grain densities obtained with this probe increased from the periphery of the lens toward the interior, indicating that beta B1-crystallin RNA accumulated during differentiation of the secondary fiber cells. A similar accumulation pattern was obtained for gamma-crystallin mRNA, but, unexpectedly, this RNA could also be detected in the elongating epithelial cells. Our results show that gamma-crystallin RNA starts to accumulate as soon as visible elongation of epithelial cells occurs, during differentiation of the primary as well as the secondary fiber cells.  相似文献   

11.
The effects of cobalt-60 gamma-rays, 10 MeV electrons and 52 MeV deutrons on the survival of plaque-forming ability has been studied in various strains of herpes simplex virus (HSV). The results show that the D0 for the loss of plaque-forming ability in different HSV strains lies in the range 1-3 kGy. Irradiation of isolated HSV-1 DNA with cobalt-60 gamma-rays resulted in damage, as indicated by electrophoresis of purified viral DNA and by restriction endonuclease analysis, at doses of 1 kGy, with complete loss of structure at doses above 4 kGy. The infectivity of the irradiated naked DNA was lost at doses above 4 kGy, but after irradiation of the intact virus some plaque-forming ability was retained after doses of 10 or even 40 kGy. Thus the organization within the viral capsid may play a protective role by modifying the severity of the radiation damage, and preserving at least some degree of infectivity.  相似文献   

12.
Alpha crystallin is an eye lens protein with a molecular weight of approximately 800 kDa. It belongs to the class of small heat shock proteins. Besides its structural role, it is known to prevent the aggregation of β- and γ-crystallins and several other proteins under denaturing conditions and is thus believed to play an important role in maintaining lens transparency. In this communication, we have investigated the effect of 2,2,2-trifluoroethanol (TFE) on the structural and functional features of the native α-crystallin and its two constituent subunits. A conformational change occurs from the characteristic β-sheet to the α-helix structure in both native α-crystallin and its subunits with the increase in TFE levels. Among the two subunits, αA-crystallin is relatively stable and upon preincubation prevents the characteristic aggregation of αB-crystallin at 20% and 30% (v/v) TFE. The hydrophobicity and chaperone-like activity of the crystallin subunits decrease on TFE treatment. The ability of αA-crystallin to bind and prevent the aggregation of αB-crystallin, despite a conformational change, could be important in protecting the lens from external stress. The loss in chaperone activity of αA-crystallin exposed to TFE and the inability of peptide chaperone—the functional site of αA-crystallin—to stabilize αB-crystallin at 20–30% TFE suggest that the site(s) involved in subunit interaction and chaperone-like function are quite distinct.  相似文献   

13.
14.
The conformational changes and aggregation process of beta-lactoglobulin (beta-LG) subjected to gamma irradiation are presented. Beta-LG in solutions of different protein concentrations (3 and 10 mg/ml) and in solid state with different water activities (a(w)) (0.22; 0.53; 0.74) was irradiated using a Cobalt-60 radiation source at dose level of 1-50 kGy. Small-angle X-ray scattering (SAXS) was used to study the conformational changes of beta-LG due to the irradiation treatment. The irradiated protein was also examined by high performance size exclusion chromatography (HPSEC) and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) under nonreducing and reducing conditions and fluorescence. SAXS analysis showed that the structural conformation of irradiated beta-LG in solid state at different a(w) and dose level was essentially the same as the nonirradiated beta-LG. The scattering data also showed that the irradiation of beta-LG in solution promoted the formation of oligomers. Interestingly, from the data analysis and model building, it could be shown that the formed oligomers are linear molecules, built by linear combinations of beta-LG dimers (tetramers, hexamers, etc). The formation of oligomers was also evidenced by SDS-PAGE analysis and HPSEC chromatograms, in which products with higher molecular mass than that of the dimeric beta-LG were detected. Formation of intermolecular cross-linking between tyrosyl radicals are proposed to be at least partially responsible for this occurrence. From the results it could be shown that the samples irradiated in solution presented some conformational changes under gamma irradiation, resulting in well ordered oligomers and aggregates formed by cross-linking of beta-LG dimers subunits, while the samples irradiated in the solid state were not modified.  相似文献   

15.
M A Thompson  J W Hawkins  J Piatigorsky 《Gene》1987,56(2-3):173-184
The chicken alpha A-crystallin gene and 2.6 kb of its 5' flanking sequence have been isolated and characterized by electron microscopy and sequencing. The structural gene is 4.5 kb long and contains two introns, each approx. 1 kb in length. The first intron divides codons 63 and 64, and the second intron divides codons 104 and 105, as in rodents. There is little indication that the insert exon of rodents (an alternatively spliced sequence) is present in complete form in the chicken alpha A-crystallin gene; small stretches of similarity to this sequence were found throughout the gene. The 5' flanking sequence of the chicken alpha A-crystallin gene shows considerable sequence similarity with other mammalian alpha B-crystallin genes. In addition, one consensus sequence (GCAGCATGCCCTCCTAG) present in the 5' flanking region of the chicken alpha A-crystallin gene was found in the 5' flanking region of most reported crystallin genes.  相似文献   

16.
Bovine lens alpha A- and alpha B-crystallin polypeptides show extensive sequence homology with each other, but apparently none with beta Bp- and gamma 2-crystallin. Despite only 30% sequence homology, the latter two proteins are assumed to have a strong correspondence in tertiary structure, consisting of four structurally similar folding units of antiparallel beta-sheet. We have tested for internal structural repeats in all crystallins, and structural homology between crystallins, by comparing various physical properties of the amino acid residues, such as bulkiness and propensity to form beta-sheet and beta-turn structure. Two procedures used a combination of five physical parameters to calculate correlation coefficients. The 4-fold structural repeat in gamma 2-crystallin and the internal duplication in beta Bp-crystallin were readily detectable, as was also the strong structural homology between corresponding folding units in beta Bp- and gamma 2-crystallin. However, for alpha-crystallin polypeptides, no conclusive support was obtained for either a four-unit or a six-unit folding, the two models previously considered by us. The third procedure compared smoothened hydropathy plots, representing hydrophilic and hydrophobic regions along the polypeptide sequences. Hydropathy profiles were found to show strong correspondence, particularly between alpha B-crystallin and beta Bp-crystallin. These observations support a similar 4-fold folding pattern for all bovine crystallins. A possible role in subunit interactions of the N-terminal folding unit, which has hydrophobic surface characteristics in both alpha- and beta-crystallin polypeptides, is proposed.  相似文献   

17.
alpha-Crystallin, a major protein of all vertebrate lenses, consists of two subunits, alphaA and alphaB, which form polymeric aggregates with an average molecular mass of about 800kDa. In this study, we have employed various biophysical methods to study aggregate sizes and conformational properties of purified alphaA, alphaB subunits, and cloned recombinant alphaB subunit. From far- and near-UV CD spectra, native alpha-, alphaA-, alphaB-, and recombinant alphaB-crystallins from porcine lenses all show similar beta-sheet conformation to that from bovine and human lenses as reported previously. By means of gel-filtration chromatography and dynamic light scattering, we have found that the molecular sizes of all four crystallin aggregates are polydispersedly distributed in the following order of aggregate sizes, i.e., native alpha>alphaA>alphaB approximately recombinant alphaB. To investigate the structural and functional relationships, we have also compared the chaperone activities of all four alpha-crystallin aggregates at different temperatures. From the results of chaperone-activity assays, ANS (8-anilinonaphthalene-1-sulfonic acid) binding and thermal stability studies, there appeared to be at least two factors playing major roles in the chaperone-like activity of these lens proteins: one is the hydrophobicity of the exposed protein surface and the other is the structural stability associated with each protein. We showed that alphaA-crystallin is a better chaperone to protect gamma-crystallin against UV irradiation than alphaB-crystallin, in contrast to the observation that alphaB is generally a better chaperoning protein than alphaA for enzyme protective assays at physiological temperatures.  相似文献   

18.
alpha B-crystallin (alpha B) is known to be a cytosolic, small heat shock-like multimeric protein that has anti-aggregation, chaperone-like properties. The expression of the alpha B-crystallin gene is developmentally regulated and is induced by a variety of stress stimuli. Importantly, alpha B-crystallin expression is enhanced during oncogenic transformation of cells, in a number of tumors, and most notably, in many neurodegenerative disorders, including Alzheimer's disease and multiple sclerosis. Other than its perceived role as a structural protein in the ocular lens, the actual function of alpha B-crystallin in cellular physiology remains unknown. We have stably transfected CHO cells with an inducible alpha B-cDNA-MMTV-promoter construct that allows the synthesis of recombinant alpha B-crystallin only upon exposure of these cells to dexamethasone. Using immunostaining and conventional and confocal microscopy, we have examined the subcellular distribution of the ectopically expressed alpha B-crystallin. We find that in addition to being in the cytoplasm, the protein resides in the nuclear interior in the interphase nucleus. Double labeling with anti alpha B-crystallin and anti-tubulin, concanavallin, and wheat germ agglutinin, respectively, revealed that during cell division alpha B-crystallin is excluded from condensed chromatin and the nascent nuclei. However, the protein again appears in the newly formed nuclei after the completion of cytokinesis suggesting a conditional, regulatory role for alpha B-crystallin in the nucleus.  相似文献   

19.
Calf lens A-crystallin isolated by reversed-phase HPLC demonstrates a slightly more hydrophobic profile than B-crystallin. Fluorescent probes in addition to bis-ANS, like cis-parinaric acid (PA) and pyrene, show higher quantum yields or Ham ratios when bound to A-crystallin than to B-crystallin at room temperature. Bis-ANS binding to both A- and B-crystallin decreases with increase in temperature. At room temperature, the chaperone-like activity of A-crystallin is lower than that of B-crystallin whereas at higher temperatures, A-crystallin shows significantly higher protection against aggregation of substrate proteins compared to B-crystallin. Therefore, calf lens A-crystallin is more hydrophobic than B-crystallin and chaperone-like activity of -crystallin subunits is not quantitatively related to their hydrophobicity.  相似文献   

20.
An autosomal dominant congenital cataract in human is associated with mutation of Arg-116 to Cys (R116C) in alpha A-crystallin. To investigate the molecular basis of cataract formation, rat alpha A-crystallin cDNA was cloned into pET-23d(+), and the site-directed mutants S142C (similar to wild-type human alpha A) and R116C/S142C or R116C (similar to human R116C variant) were generated. These were expressed in E. coli and the recombinant alpha A-crystallins purified by Sephacryl size-exclusion chromatography. The chaperone-like function of mutant R116C determined at 37 degrees C with insulin and alcohol dehydrogenase as target proteins was about 40% lower than those of wild-type and mutant S142C. Based on size-exclusion chromatography data, the oligomeric size of the R116C mutant was about 2000 kDa at 25 degrees C, 1400 kDa at 37 degrees C, and 900 kDa at 45 degrees C. In comparison, alpha A-wild-type and alpha A-S142C ranged from 477 to 581 kDa. Heat stability studies corroborated the effect of temperature on the dynamic quaternary structure of the R116C mutant. Circular dichroism spectra showed secondary and tertiary structural changes, and ANS fluorescence spectra showed loss of surface hydrophobicity in the R116C mutant. These findings suggest that the molecular basis for the congenital cataract with the alpha A-R116C mutation is due to the generation of a highly oligomerized alpha A-crystallin having a modified structure and decreased chaperone-like function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号