首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigates the combined effect of silicic acid and bamboo vinegar compound liquid (SPV) on the growth and intestinal histological alterations in poultry. Forty-eight 7-day-old male Sanuki Cochin chickens were fed a commercial mash diet supplemented with SPV at 0, 0.1, 0.2, and 0.3% level ad libitum for 112 days. Body weight gain tended to improve with increased concentrations of dietary SPV, although these results were not statistically significant (P<0.1). Tissue observation by light microscopy revealed that the jejunal villus height (P<0.01) and duodenal and jejunal villus area (P<0.05) increased in the 0.2 and 0.3% SPV groups, respectively, compared with the control. Cell mitosis within the duodenum and jejunum also increased in the 0.2 and 0.3% SPV groups. Scanning electron microscopy revealed a prominent increase in the number of protuberant cells on the villus apical surface of the duodenum and jejunum for the 0.2 and 0.3% SPV groups compared with the control. Poultry in the 0.3% SPV group had the highest body weight gain and hypertrophied histological alterations of intestinal villi. Fluorescent microscopic images of cell mitosis and protuberant cells in the duodenal crypt clearly confirmed positive reactions for the activator protein 2α (AP-2α) and proliferating cell nuclear antigen (PCNA), compared with the control. The present results indicate that dietary SPV stimulates adsorption by the epithelial cells, which activate cell proliferation and self-renewal and regulate the expression of cell cycle regulators AP-2α and PCNA, resulting in higher body weight gain. Thus, we can conclude that a concentration of 0.3% dietary SPV is ideal for promoting growth in poultry.  相似文献   

2.
Summary Cell division in Navicula pelliculosa (Bréb.) Hilse, strain 668 was synchronized with an alternating regime of 5 h light and 7 h dark. Cell volume and dry weight increased only during the light period. DNA synthesis, which began during the third h of light, was followed sequentially by mitosis, cytokinesis, silicic acid uptake, cell wall formation, and cell separation. Silicification and a small amount of net synthesis of DNA, RNA and protein occurred during the dark at the expense of carbohydrate reserves accumulated during the light period. Cells kept in continuous light, after synchronization with the light-dark regime, remained synchronized through a second division cycle; the sequence of morphological events was the same as that in the light-dark division cycle, but the biosynthesis of macromolecular components changed from a stepwise to a linear pattern. The silicon-starvation synchrony was improved by depriving light-dark synchronized cells of silicic acid at the beginning of their division cycle, then resupplying silicic acid to cells blocked at wall formation.Abbreviation L light - D dark Portions based on a thesis submitted by W.M.D. to the University of California, San Diego in partial fulfillment of the requirements for the PH.D degree  相似文献   

3.
Light regulation of the cell cycle in Euglena gracilis bacillaris   总被引:1,自引:0,他引:1  
We have studied the light regulation of the cell division cycle in the photosynthetic alga Euglena gracilis bacillaris. Euglena grown under phototrophic conditions are easily synchronized to a 12 h light-12 h dark regime. By inoculating stationary phase, nondividing cells into fresh media and exposing the diluted cells to either light or darkness, we have determined that initiation of DNA synthesis for the cell division cycle is light dependent. By varying the length of time in light to which synchronized cells are exposed, we have shown that commitment to the cell cycle requires exposure to more than 6 h of light. We propose that this is to allow the accumulation, through photosynthetic electron transport, of an initiating factor that will enable DNA synthesis to begin. Flow cytometry analysis also shows that once cells are committed to the cell cycle, they complete the cycle in the dark, so mitosis is a light-independent step.  相似文献   

4.
Summary Monocerin is a benzopyran fungal toxin with broad activity on plants, fungi and insects. Its effect upon cell cycle progression has been analyzed in maize roots. Meristematic cells were synchronized by treatment with aphidicolin. Flow cytometric DNA analysis and mitotic indices indicated durations of 1.5 h, 5 h, 2 h and 1 h for respectively G1, S, G2 and M phases of the normal cell cycle at 25°C. Treatment of these synchronized meristems with 0.5 mM monocerin during release after an aphidicolin block produced a short delay in S phase and then a more important delay (about 2.5 h) in entry into mitosis. Treatments for similar durations (3 h) during progression through the cycle revealed two periods of action of monocerin. The first appears to be mid to late S and the second one G2, before the transition point between G2 and M. Action on either one of these target periods could lead to a delay in the G2/M transition, but these two responses did not appear to be additive.Abbreviations APH Aphidicolin - CV Coefficient of variation - DAPI Diamidinophenylindole - DMSO Dimethyl sulfoxide - EDTA Ethylenediaminetetraacetic acid - HPLC High pressure liquid chromatography - MI Mitotic index - SD Standard deviation - UV ultraviolet light  相似文献   

5.
Cell cycle progression was studied in serum-free batch cultures of Spodoptera frugiperda (Sf9) insect cells, and the implications for proliferation and productivity were investigated. Cell cycle dynamics in KBM10 serum-free medium was characterized by an accumulation of 50-70% of the cells in the G(2)/M phase of the cell cycle during the first 24 h after inoculation. Following the cell cycle arrest, the cell population was redistributed into G(1) and in particular into the S phase. Maximum rate of proliferation (micro(N, max)) was reached 24-48 h after the release from cell cycle arrest, coinciding with a minimum distribution of cells in the G(2)/M phase. The following declining micro(N) could be explained by a slow increase in the G(2)/M cell population. However, at approximately 100 h, an abrupt increase in the amount of G(2)/M cells occurred. This switch occurred at about the same time point and cell density, irrespective of medium composition and maximum cell density. An octaploid population evolved from G(2)/M arrested cells, showing the occurrence of endoreplication in this cell line. In addition, conditioned medium factor(s) were found to increase micro(N,max), decrease the time to reach micro(N,max), and decrease the synchronization of cells in G(2)/M during the lag and growth phase. A conditioned medium factor appears to be a small peptide. On basis of these results we suggest that the observed cell cycle dynamics is the result of autoregulatory events occurring at key points during the course of a culture, and that entry into mitosis is the target for regulation. Infecting the Sf9 cells with recombinant baculovirus resulted in a linear increase in volumetric productivity of beta-galactosidase up to 68-75 h of culture. Beyond this point almost no product was formed. Medium renewal at the time of infection could only partly restore the lost hypertrophy and product yield of cultures infected after the transition point. The critical time of infection correlated to the time when the mean population cell volume had attained a minimum, and this occurred 24 h before the switch into the G(2)/M phase. We suggest that the cell density dependent decrease in productivity ultimately depends on the autoregulatory events leading to G(2)/M cell cycle arrest.  相似文献   

6.
7.
Cell division patterns in Thalassiosira fluviatilis grown in a cyclostat were analyzed as a function of temperature, photoperiod, nutrient limitation and average cell size of the population. Typical cell division patterns in populations doubling more than once per day had multiple peaks in division rate each day, with the lowest rates always being greater than zero. Division bursts occurred in both light and dark periods with relative intensities depending on growth conditions. Multiple peaks in division rate were also found, when population growth rates were reduced to less than one doubling per day by lowering temperature, nutrients, or photoperiod and the degree of division phasing was not enhanced. Temperature and nutrient limitation shifted the timing of the major division burst relative to the light/dark cycle. Average cell volume of the inoculum was found to be a significant determinant of the average population growth rate and the timing and magnitude of the peaks in division rate. The results are interpreted in the context of a cell cycle model in which generation times are “quantized” into values separated by a constant time interval.  相似文献   

8.
Cell cycle checkpoints guard against the inappropriate commitment to critical cell events such as mitosis. The bisdioxopiperazine ICRF-193, a catalytic inhibitor of DNA topoisomerase II, causes a reversible stalling of the exit of cells from G2 at the decatenation checkpoint (DC) and can generate tetraploidy via the compromising of chromosome segregation and mitotic failure. We have addressed an alternative origin – endocycle entry - for the tetraploidisation step in ICRF-193 exposed cells. Here we show that DC-proficient p53-functional tumour cells can undergo a transition to tetraploidy and subsequent aneuploidy via an initial bypass of mitosis and the mitotic spindle checkpoint. DC-deficient SV40-tranformed cells move exclusively through mitosis to tetraploidy. In p53-functional tumour cells, escape through mitosis is enhanced by dominant negative p53 co-expression. The mitotic bypass transition phase (termed G2endo) disconnects cyclin B1 degradation from nuclear envelope breakdown and allows cells to evade the action of Taxol. G2endo constitutes a novel and alternative cell cycle phase - lasting some 8 h - with distinct molecular motifs at its boundaries for G2 exit and subsequent entry into a delayed G1 tetraploid state. The results challenge the paradigm that checkpoint breaching leads directly to abnormal ploidy states via mitosis alone. We further propose that the induction of bypass could: facilitate the covert development of tetraploidy in p53 functional cancers, lead to a misinterpretation of phase allocation during cell cycle arrest and contribute to tumour cell drug resistance.  相似文献   

9.
Cell cycle dependent photosynthesis in the marine dinoflagellate Amphidinium carteri was studied under constant illumination and light/dark (L/D) photocycles to distinguish intrinsic cell cycle control from environmental influences. Cells were grown in constant light and on a 14:10 L:D cycle at light intensities that would yield a population growth rate of 1 doubling per day. In the former case division was asynchronous, and cells were separated according to cell cycle stage using centrifugal elutriation. Cells grown on the L:D cycle were synchronized, with division restricted to the dark period. Cell cycle stage distributions were quantified by flow cytometry. Various cell age groups from the two populations were compared as to their photosynthetic response (photosynthetic rate versus irradiance) to determine whether or not the response was modulated primarily by cell cycle constraints or the periodic L/D cycle. Cell cycle variation in photosynthetic capacity was found to be determined solely by the L/D cycle; it was not present in cells grown in constant light.  相似文献   

10.
Summary The processes of horizontal cells invaginating teleost cone pedicles are studded with small finger-like projections which are present only in the light-adapted state. The aim of this study was to investigate whether the formation and degradation of these so-called spinules, which are thought to function as feed-back synapses onto the cones, is endogenously controlled.Three types of experiment were carried out involving fish entrained to a 12 h light/dark cycle: 1) The number of spinules was determined in goldfish at various times during exposure to either constant darkness (36 h) or constant light (57 h). 2) The time course of spinule formation and degradation in goldfish was investigated following exposure to light or darkness at various times during the light/dark cycle. 3) The time course of flash-induced spinule formation in tench following dark adaptation at noon was compared to that following dark adaptation at midnight.The results of these experiments show that spinule formation and degradation are partially under endogenous control but that they need light for full expression. This endogenous rhythm is reflected in the time courses of spinule formation and breakdown during different phases of the light/dark cycle.  相似文献   

11.
The growth characteristics of B lymphocytes infected with Epstein-Barr virus (lymphoblastoid cells) have been investigated by flow cytometric analysis of DNA content and by estimation of cell culture doubling times. It was found that the manipulative procedures involved in the cell cycle analysis resulted in a slowing of the growth rate. This slowing of growth was brought about by the prolongation of cell cycle transit times and by the entry of cells into a short-lived non-cycling pool. The entry of a proportion of the cells into the non-cycling pool may be the normal response of lymphoblastoid cells to non-optimal conditions. The non-cycling cells survived in culture with a T 1/2 of approximately 30-60 hr and continued to secrete immunoglobulin. Their surface transferrin receptors were considerably reduced, which suggests that the failure to divide may have resulted from a failure of growth factor receptors to reach a threshold value following mitosis.  相似文献   

12.
Functional and optimal activities of the (Na+-K+)ATPase, as determined by ouabain-sensitive K+ influx in intact cells and ATP hydrolysis in cell homogenates respectively, have been measured during the cell cycle of neuroblastoma (clone Neuro-2A) cells. The cells were synchronized by selective detachment of mitotic cells. The ouabain-sensitive K+ influx decreased more than fourfold from 1.62 +/- 0.11 nmoles/min/10(6) cells to 0.36 +/- 0.25 nmoles/min/10(6) cells on passing from mitosis to early G1 phase. On entry into S phase a transient sixfold increase to 2.07 +/- 0.30 nmoles/min/10(6) cells was observed, followed by a rapid decline, after which the active K+ influx rose again steadily from 1.03 +/- 0.25 nmoles/min/10(6) cells in early S phase to 2.10 +/- 0.92 nmoles/min/10(6) cells just prior to the next mitosis. The ouabain-insensitive component rose linearly through the cycle in the same manner as the protein content/cell. Combining total K+ influx values with efflux data obtained previously showed that net loss of K+ occurred with transition from mitosis to G1 phase while net accumulation occurred with entry into S. Throughout mid-S phase net K+ flux was virtually zero, but a large net influx occurred again just before the next mitosis. The (Na+-K+)ATPase activity measured in cell homogenates decreased rapidly from mitosis to G1 phase and increased steadily throughout S phase, but the transient activation on entry into S phase was not observed. Complete inhibition of the (Na+-K+)ATPase mediated K+ influx by ouabain (5 mM) prevents the cells from entering S phase, while partial inhibition by lower concentrations of ouabain (0.2 and 0.5 mM; km = 0.17 mM) causes partial blockage in G1 and, to a lesser extent, a reduced rate of progression through the rest of the cell cycle. We conclude that the transient increase in (Na+-K+)ATPase mediated K+ influx at the G1/S transition is a prerequisite for entry into S phase, while maintenance of adequate levels of K+ influx is necessary for normal rate of progression through the rest of the cell cycle.  相似文献   

13.
Y Asato 《Journal of bacteriology》1983,153(3):1315-1321
Synchronized cultures of Anacystis nidulans (Synechococcus PCC 6301), an obligate phototroph, are obtained by incubating exponential cultures in the dark for 12 to 16 h. A temporal and sequential order of macromolecular synthesis is observed within the cell division cycle of a synchronously dividing culture in the light. Apparently, dark incubation causes the cells to realign their cellular activities in such a way that all cells emerge from the dark and grow synchronously in the light. A study was conducted to explore the possible mechanisms responsible for the putative dark-induction process. Samples were taken at various times from a synchronized culture and were subjected to another round of dark incubation for 16 h. When these cultures were returned to the light, the cell number increased from 3 h and doubled at about 7 h. The protein, RNA, and DNA contents started to increase in order well before 3 h. This general pattern of cellular activities, observed for nearly all samples (i.e., for cells of different physiological ages), indicated that the dark incubation period caused the ongoing cell cycle to abort and a new cell cycle to be reinitiated under light growth conditions.  相似文献   

14.
Abstract. The growth characteristics of B lymphocytes infected with Epstein-Barr virus (lymphoblastoid cells) have been investigated by flow cytometric analysis of DNA content and by estimation of cell culture doubling times. It was found that the manipulative procedures involved in the cell cycle analysis resulted in a slowing of the growth rate. This slowing of growth was brought about by the prolongation of cell cycle transit times and by the entry of cells into a short-lived non-cycling pool. The entry of a proportion of the cells into the non-cycling pool may be the normal response of lymphoblastoid cells to non-optimal conditions. The non-cycling cells survived in culture with a T 1/2 of approximately 30–60 hr and continued to secrete immunoglobulin. Their surface transferrin receptors were considerably reduced, which suggests that the failure to divide may have resulted from a failure of growth factor receptors to reach a threshold value following mitosis.  相似文献   

15.
Sodium butyrate at 4 m M and above blocked cell proliferation in root meristems of Allium cepa L. bulbs. Cytophotometric determinations in asynchronously growing cells, as well as cycle kinetics in synchronous binucleate cells. indicated that blocking took place at mid-G1 and at, or close to, the S/G2 border. Cell progression through S phase and mitosis was little affected. The cell cycle blockage induced by 6 m M butyrate was reversible when the drug was applied for periods of time not exceeding 12 h. Butyrate did not affect nucleic acid and protein synthesis activities, though its action on the cell cycle ressembled that produced by translation inhibitors.  相似文献   

16.
Cell division and chloroplast replication in Heterosigma akashiwo(Hada) Hada occurred as separate synchronous events during thecell cycle when cells were subjected to light-dark regimes.Under three different photoperiodic cycles of 10L/14D (10 hlight/14 h dark), 12L/12D or 16L/8D, cell division began athour 19–20 and finished at hour 23–26 after theonset of the light period, while chloroplast replication beganat hour 20–22 after the onset of the dark period. Almostall the cells divided only once in the 12L/12D cycle. The rateof increase in chloroplast number during one light-anddark cyclewas always equal to that in cell number in every photoperiodexamined. Light was essential for both cell division and chloroplast replication,but the minimum light period necessary for each event differed.When the light period was shorter than 6 h, no cell divisionoccurred; when it was shorter than 3 h, no chloroplast replicationoccurred. (Received February 26, 1987; Accepted June 17, 1987)  相似文献   

17.
Cell cycle progression is coupled to cell growth, but the mechanisms that generate growth-dependent cell cycle progression remain unclear. Fission yeast cells enter into mitosis at a defined size due to the conserved cell cycle kinases Cdr1 and Cdr2, which localize to a set of cortical nodes in the cell middle. Cdr2 is regulated by the cell polarity kinase Pom1, suggesting that interactions between cell polarity proteins and the Cdr1-Cdr2 module might underlie the coordination of cell growth and division. To identify the molecular connections between Cdr1/2 and cell polarity, we performed a comprehensive pairwise yeast two-hybrid screen. From the resulting interaction network, we found that the protein Skb1 interacted with both Cdr1 and the Cdr1 inhibitory target Wee1. Skb1 inhibited mitotic entry through negative regulation of Cdr1 and localized to both the cytoplasm and a novel set of cortical nodes. Skb1 nodes were distinct structures from Cdr1/2 nodes, and artificial targeting of Skb1 to Cdr1/2 nodes delayed entry into mitosis. We propose that the formation of distinct node structures in the cell cortex controls signaling pathways to link cell growth and division.  相似文献   

18.
In this study we investigated virus production in two marine phytoplankton species and how it relates to the host's cell cycle. Phaeocystis pouchetii (Hariot) Lagerheim and Pyramimonas orientalis McFadden, Hill & Wetherby, growing synchronously in batch cultures, were infected with their respective viruses (PpV and PoV) at four different stages in the cell cycle and the production of free virus was then measured for 30 h. The virus production in P. orientalis infected with PoV depended on the time of infection, whereas no such relation was found for P. pouchetii infected with PpV. The P. orientalis cultures infected at the end of the dark period and at the beginning of the light period produced three times more virus than those infected in the middle of the light period and eight times more virus than those infected at the beginning of the dark period. The latent periods for PpV and PoV were 12–14 h and 18–20 h, respectively, and in both cases were independent of the host cell cycle. The differences in virus production may be attributed to light or cell cycle dependent regulation of host infection, metabolism, or burst size. Regardless of the mechanism, these differences may be related to differences in the ecological strategies of the hosts and their ability to form blooms.  相似文献   

19.
Novel techniques were used to determine when in the cell cycle of proliferating NIH 3T3 cells cellular Ras and cyclin D1 are required. For comparison, in quiescent cells, all four of the inhibitors of cell cycle progression tested (anti-Ras, anti-cyclin D1, serum removal, and cycloheximide) became ineffective at essentially the same point in G1 phase, approximately 4 h prior to the beginning of DNA synthesis. To extend these studies to cycling cells, a time-lapse approach was used to determine the approximate cell cycle position of individual cells in an asynchronous culture at the time of inhibitor treatment and then to determine the effects of the inhibitor upon recipient cells. With this approach, anti-Ras antibody efficiently inhibited entry into S phase only when introduced into cells prior to the preceding mitosis, several hours before the beginning of S phase. Anti-cyclin D1, on the other hand, was an efficient inhibitor when introduced up until just before the initiation of DNA synthesis. Cycloheximide treatment, like anti-cyclin D1 microinjection, was inhibitory throughout G1 phase (which lasts a total of 4 to 5 h in these cells). Finally, serum removal blocked entry into S phase only during the first hour following mitosis. Kinetic analysis and a novel dual-labeling technique were used to confirm the differences in cell cycle requirements for Ras, cyclin D1, and cycloheximide. These studies demonstrate a fundamental difference in mitogenic signal transduction between quiescent and cycling NIH 3T3 cells and reveal a sequence of signaling events required for cell cycle progression in proliferating NIH 3T3 cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号