首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We report here the effects of chronic ethanol consumption on the antioxidant defense system in rat kidney. Thirty-two male Wistar rats were randomly divided in two identical groups and were treated as follows: control group (water for fluid) and the ethanol-fed group (2 g/kg body weight/24 h). The animals were sacrificed after 10 weeks, and respectively 30 weeks of ethanol consumption, and the renal tissue was isolated and analyzed. Results revealed that kidney alcohol dehydrogenase activities increased significantly after ethanol administration, but the electrophoretic pattern of alcohol dehydrogenase isoforms was unmodified. The SDS polyacrylamidegel electrophoretic study of kidney proteins has revealed the appearance of two new protein bands after long-term ethanol consumption. The kidney reduced glutathione/oxidized glutathione ratio decreased, indicating an oxidative stress response due to ethanol ingestion. The malondialdehyde contents and xanthine oxidase activities were unchanged. The antioxidant enzymatic defense system showed a different response during the two periods of ethanol administration. After 10 weeks, catalase, glutathione peroxidase, glutathione reductase, and glucose-6-phosphate dehydrogenase were activated, while superoxide dismutase, glutathione transferase, and gamma-glutamyltranspeptidase levels were stationary. After 30 weeks, superoxide dismutase and glutathione peroxidase activities were unmodified, but catalase, glutathione transferase, gamma-glutamyltranspeptidase, glutathione reductase, and glucose-6-phosphate dehydrogenase activities were significantly increased. Remarkable changes have been registered after 30 weeks of ethanol administration for glutathione reductase and glucose-6-phosphate dehydrogenase activities, including an increase by 106 and 216' of control values, respectively. These results showed specific changes in rat kidney antioxidant system and glutathione status as a consequence of long-term ethanol administration.  相似文献   

2.
It was established that water deprivation during 3, 6, 9 days caused a distinct decrease in phospholipid level and disturbances of phospholipid composition in the rat lung tissue. It was accompanied by alterations in the activity of antioxidant defense system enzymes (superoxide dismutase, glutathione peroxidase, glutathione reductase, catalase, glucose-6-phosphate dehydrogenase). These data are indicative of lipid peroxidation intensification in the rat lungs during water deprivation.  相似文献   

3.
The influence of chronic alcoholic intoxication on the activity of peroxisomal acyl-CoA oxidase and antioxidative defensive enzymes (catalase, glutathione reductase, glutathione-S-transferase, superoxide dismutase, glucose-6-phosphate dehydrogenase) was studied in the rat myocardium. The parameters of lipid peroxidation in cardiomyocytes (the level of spontaneous chemiluminescence, accumulation of thiobarbituric acid-reactive material), as well as reduced glutathione content were also examined. The data obtained suggest that ethanol-induced activation of lipid peroxidation in the myocardium may be due to the elevation of hydrogen peroxide-generating activity of peroxisomes.  相似文献   

4.
This study was undertaken to clarify the physiological role of catalase in the maintenance of pro/antioxidant balance in goldfish tissues by inhibiting the enzyme in vivo with 3-amino 1,2,4-triazole. Intraperitoneal injection of aminotriazole (0.5 mg/g wet mass) caused a decrease in liver catalase activity by 83% after 24 h that was sustained after 168 h post-injection. In kidney catalase activity was reduced by approximately 50% and 70% at the two time points, respectively. Levels of protein carbonyls were unchanged in liver but rose by 2-fold in kidney after 168 h. Levels of thiobarbituric acid-reactive substances were elevated in both tissues after 24 h but were reversed by 168 h. Glutathione peroxidase and glutathione-S-transferase activities increased in kidney after aminotriazole treatment whereas activities of glutathione peroxidase and glutathione reductase in liver decreased after 24 h but rebounded by 168 h. Liver glucose-6-phosphate dehydrogenase activity was reduced at both time points. Activities of these three enzymes in liver correlated inversely with the levels of lipid damage products (R2=0.65-0.81) suggesting that they may have been oxidatively inactivated. Glutathione-S-transferase activity also correlated inversely with catalase (R2=0.86). Hence, the response to catalase depletion involves compensatory changes in the activities of enzymes of glutathione metabolism.  相似文献   

5.
Oral administration of K2Cr2O7 to male albino rats at an acute dose of 1500 mg/kg body wt/day for 3 days brought about sharp decrease in the activities of glucose-6-phosphate dehydrogenase and glutathione reductase of kidney epithelial cells. The scavenging system of kidney epithelium is also affected as evident by the highly significant fall in the activities of glutathione peroxidase, superoxide dismutase and catalase which ultimately leads to the increase in lipid peroxidation value in kidney cortical homogenate. However, glutathione-s-transferase activity in cytosol and glutathione and total thiol content in cortical homogenate were not altered. Chronic oral administration of K2Cr2O7 (300 mg/kg body wt/day) for 30 days to rats lead to elevation in the activities of glutathione peroxidase, glutathione reductase, glutathione-s-transferase, superoxide dismutase and catalase with no change in glucose-6-phosphate dehydrogenase activity in epithelial cells. This might lead to the increase in glutathione and total thiol status and decrease in lipid peroxidation value in whole homogenate system.  相似文献   

6.
The aim of this study was to investigate how dietary lactose, compared with sucrose, in association with copper deficiency influences the antioxidant and copper status in the diabetic rat. Two groups of male rats (n = 12) were fed copper-deficient diets containing either 300 g/kg of sucrose or 300 g/kg of lactose in a pair-feeding regime for 35 days. Six rats from each group were injected with streptozotocin to induce diabetes. After a further 16 days the animals were killed and the liver, heart, and kidney removed for the measurement of copper levels and the activities of antioxidant and related enzymes. Diabetes resulted in higher hepatic and renal copper levels compared with controls. The copper content of the heart and kidney in diabetic rats consuming sucrose was also significantly higher than in those consuming lactose. Catalase activity in the liver, heart, and kidney was significantly increased in diabetic rats compared with controls. Hepatic glutathione S-transferase and glucose-6-phosphate dehydrogenase and cardiac copper zinc superoxide dismutase activities were also higher in diabetes. Sucrose, compared with lactose feeding, resulted in higher cytochrome c oxidase and glutathione peroxidase activities in the kidney while glucose-6-phosphate dehydrogenase activity was lower. The combination of lactose feeding and diabetes resulted in significantly higher activities of cardiac managanese superoxide dismutase and catalase and renal manganese superoxide dismutase and glucose-6-phosphate dehydrogenase. These results suggest that sucrose consumption compared with lactose appears to be associated with increased organ copper content and in general decreased antioxidant enzyme activities in copper-deficient diabetic rats.  相似文献   

7.
Clofibrate treatment was shown to increase the content of reduced glutathione in rat liver and kidney, but did not alter the glutathione level in heart, brain, spleen and small intestine. Clofibrate did not affect the activity of superoxide dismutase, glutathione peroxidase, glutathione reductase and glucose-6-phosphate dehydrogenase in rat liver and heart. The drug decreased the activity of glutathione-S-transferase in the cytosolic fraction of liver homogenate. Glutathione-S-transferase activity in small intestine was also reduced. The administration of clofibrate decreased the content of polypeptides with mol. wt of 22,000 and 24,000 (possible monomers of glutathione-S-transferase) in the cytosolic fraction of liver cells.  相似文献   

8.
One of the major hypotheses in the pathogenesis of vitiligo is the oxidative stress hypothesis. Pollution plays a major role in the production of free radicals. Gujarat, a highly industrialized state in India has a high prevalence of vitiligo patients. No previous studies were done on the age-dependent antioxidant status of vitiligo patients in Baroda city, Gujarat. Blood samples were collected from vitiligo patients of different age groups (5-15, 16-25, 26-35, 36-45 yr) and from age matched healthy volunteers. Antioxidant enzymes in blood such as catalase, superoxide dismutase, glutathione peroxidase and non-enzymatic antioxidants such as reduced glutathione and plasma vitamin E were estimated. Lipid peroxidation levels in erythrocytes and the reducing equivalent system, i.e. glucose-6-phosphate dehydrogenase were also measured. Significant increase in superoxide dismutase activity and lipid peroxidation levels in erythrocytes was observed in all age groups of vitiligo patients as compared with age-matched healthy controls, wherein an increase of 55% (P < 0.02) was observed in superoxide dismutase activity and lipid peroxidation levels in 36-45 yr age group. Whole blood glutathione levels, erythrocyte glutathione peroxidase and glucose-6-phosphate dehydrogenase activity were decreased significantly, whereas erythrocyte catalase activity and plasma vitamin E levels were not different in vitiligo patients as compared with age-matched healthy controls. No specific age group showed a significant difference. This is the first report on the age-dependent antioxidant status of vitiligo patients in Baroda. The disease affects individuals of any age group as shown in this study and systemic oxidative stress might precipitate the pathogenesis of vitiligo in susceptible patients.  相似文献   

9.
Differentiated neurons were investigated for their susceptibility to oxidative damage based on variations in the oxidant defense system occurring during differentiation. The main antioxidant enzymes and substances in human neuroblastoma (IMR-32) cells were evaluated pre- and post-differentiation to a neuronal phenotype. The activity of CuZn superoxide dismutase (CuZnSOD) and Mn superoxide dismutase (MnSOD) and the concentration of CuZnSOD were higher, but the activity and concentration of catalase were lower after differentiation. Differentiated cells had higher activity of glutathione peroxidase (GPx), lower concentration of total glutathione, a higher ratio of oxidised/reduced glutathione and lower activity of glucose-6-phosphate dehydrogenase than undifferentiated cells. We conclude that differentiated neuronal cells may be highly susceptible to oxidant-mediated damage based on the relative activities of the main antioxidant enzymes and on a limited capacity to synthesise and/or recycle glutathione.  相似文献   

10.
Effect of organophosphorus insecticide, phosphomidon (250 and 500 ppm) on human erythrocyte and plasma were studied in vitro to get insight into the cellular antioxidant defence mechanism and malondialdehyde formation. The antioxidant defence system of erythrocyte was altered as evident by depression of glutathione reductase, glucose 6 phosphate dehydrogenase, whereas the level of reduced glutathione, glutathione peroxidase, glutathione-S-transferase, superoxidedismutase and catalase were stimulated. In the case of plasma fraction, glutathione reductase, glutathione peroxidase, glutathione-s-transferase, glucose-6-phosphate dehydrogenase, superoxide dismutase and levels of reduced glutathione were significantly depressed and the malondialdehyde formation and catalase activity were elevated indicating the less adaptive response of plasma to protect it from oxidative damage.  相似文献   

11.
Free radicals are implicated in numerous disease processes including motor neuron degeneration (MND). Antioxidant defense enzymes: superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSHPx), glutathione reductase (GR) and glucose-6-phosphate dehydrogenase (G-6-PDH) in the erythrocytes are capable of detoxifying reactive oxygen species produced endogenously or exogenously. In the present study, the extent of lipid peroxidation (LPO) and antioxidant defenses were evaluated in the erythrocytes of 20 sporadic amyotrophic lateral sclerosis (ALS) patients and 20 controls. We observed that lipid peroxidation in the erythrocytes of amyotrophic lateral sclerosis patients significantly increased with respect to controls (P<0.001). On the other hand, catalase activity was found to be significantly lower (P<0.001). The activities of glucose-6-phosphate dehydrogenase, glutathione reductase and glutathione levels were also found to be significantly reduced in ALS patients compared to healthy subjects (P<0.001, P<0.01 and P<0.01, respectively). It was further observed that lipid peroxidation started to increase and catalase, glutathione reductase, glucose-6-phosphate dehydrogenase enzyme activities and glutathione levels started to decrease as amyotrophic lateral sclerosis progressed from 6 to 24 months, suggesting a correlation between these parameters and duration of amyotrophic lateral sclerosis. This study confirms the involvement of oxidative stress during the progression of amyotrophic lateral sclerosis and the need to develop specific peripheral biomarkers.  相似文献   

12.
The aim of this study was to investigate the alterations in lipid peroxidation and antioxidant enzyme defences in the blood of patients with malignant breast tumour and benign breast disease. Forty patients with malignant breast tumour, 20 patients with benign breast disease and also 20 healthy control subjects were recruited for the study. Malondialdehyde levels in plasma and erythrocytes, and the activities of erythrocyte CuZn-superoxide dismutase, catalase, glutathione peroxidase and glucose-6-phosphate dehydrogenase were measured. Malondialdehyde levels were higher in patients with both benign breast disease and malignant breast tumour compared with control subjects. The activities of all antioxidant enzymes were higher in patients with malignant breast tumour, while only glutathione peroxidase and CuZn-superoxide dismutase activities were higher in patients with benign breast disease. Except for glucose-6-phosphate dehydrogenase, the antioxidant enzymes studied correlated positively with the malondialdehyde levels in patients with malignant breast tumour. On the other hand, only glucose-6-phosphate dehydrogenase activity was increased by the level of malignancy. The activity increases in erythrocyte antioxidant enzymes may be a compensatory upregulation in response to increased oxidative stress especially in patients with malignant breast tumour.  相似文献   

13.
Ethanol is known to have profound actions on the gastrointestinal tract. The present study was undertaken to examine the effects of ethanol on some of the natural antioxidant defensive enzymes in the gastrointestinal tract; the activities of these enzymes in the liver and the brain were also measured for comparison with those in the gastrointestinal tract. Oral administration of absolute ethanol induced severe gastric mucosal lesions and also damage in the small intestine, however the total superoxide dismutase was unaffected in the tissues measured. The glucose-6-phosphate dehydrogenase activity was reduced only in the stomach while the total glutathione was elevated in the small intestinal mucosa. The catalase activities were activated in the stomach, small and large intestines, and brain, but not in the liver which contained the highest concentration of the enzyme. The present findings indicate that endogenous hydrogen peroxide may be an important damaging agent towards biomolecules in different organs and the removal of this by catalase represents an important defensive mechanism against ethanol toxicity.  相似文献   

14.
Changes in the activity of so-called oxidative stress defensive enzymes, superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and heme oxygenase, as well as changes in lipid peroxidation and reduced glutathione levels, were measured in guinea pig and rat liver after acute cobalt loading. Cobalt chloride administration produced a much higher degree of lipid peroxidation in guinea pig than in rat liver compared with the control animals. The intrahepatic reduced glutathione content in control guinea pig was higher than that in rat, but was equally decreased in both species after cobalt administration. The enzymatic scavengers of free radicals, superoxide dismutase, catalase and glutathione peroxidase, were significantly decreased in rat liver after acute cobalt loading, and as a compensatory reaction, the heme oxygenase activity was increased (seven-fold). In guinea pig liver, only superoxide dismutase activity was depleted in response to cobalt-induced oxidative stress, while catalase and glutathione peroxidase were highly activated and the heme oxygenase activity was dramatically increased (13-fold). It is assumed that enhanced heme oxygenase activity may have important antioxidant significance by increasing the liver oxidative-stress defense capacity.  相似文献   

15.
Mercury is a highly toxic metal which induces oxidative stress. Superoxide dismutases, catalase, and glutathion peroxidase are proteins involved in the endogenous antioxidant defence system. In the present study rats were administered orally, by gavage, a single daily dose of HgCl2 for three consecutive days. In order to find a relation between the proteins involved in the antioxidant defence and mercury intoxication, parameters of liver injury, redox state of the cells, as well as intracellular protein levels and enzyme activities of Mn-dependent superoxide dismutase (MnSOD), Cu-Zn-dependent superoxide dismutase (CuZnSOD), catalase, and glutathione peroxidase (GPx) were assayed both in blood and in liver homogenates. HgCl2 at the doses of 0.1 mg/kg produced liver damage which that was detected by a slight increase in serum alanine aminotransferase and gamma glutamyl transferase. Hepatic GSH/GSSG ratio was assayed as a parameter of oxidative stress and a significant decrease was detected, as well as significant increases in enzyme activities and protein levels of hepatic antioxidant defence systems. Changes in both MnSOD and CuZnSOD were parallel to those of liver injury and oxidative stress, while the changes detected in catalase and GPx activities were progressively increased along with the mercury intoxication. Other enzyme activities related to the glutathione redox cycle, such as glutathione reductase (GR) and glucose-6-phosphate dehydrogenase (G6PDH), also increased progressively. We conclude that against low doses of mercury that produce a slight oxidative stress and liver injury, the response of the liver was to induce the synthesis and activity of the enzymes involved in the endogenous antioxidant system. The activities of all the enzymes assayed showed a rapidly induced coordinated response.  相似文献   

16.
Adult worms of Ancylostoma ceylanicum and Nippostronglyus brasiliensis were found to possess an active system for the detoxification of reactive oxygen intermediates. Xanthine oxidase, which is known to produce superoxide anion, was detected in both the nematode parasites in significant activities. Superoxide anion, thus produced, may quickly be eliminated by superoxide dismutase. Both parasites also exhibited the presence of catalase, peroxidase, and glutathione peroxidase for efficient removal of hydrogen peroxide. Glutathione reductase and glucose-6-phosphate dehydrogenase were, however, detected in low levels of activities. Endowment of A. ceylanicum and N. brasiliensis with these antioxidant enzymes, therefore, enables them to evade the host's effector mechanism for their survival. Superoxide dismutase of both these nematodes showed marked inhibition by KCN and, hence, the enzyme appears to be of copper-zinc type.  相似文献   

17.
The effects of hyperoxia on the status of antioxidant defenses and markers of oxidative damage were evaluated in goldfish tissues. The levels of lipid peroxides, thiobarbituric acid reactive substances, carbonyl proteins and the activities of some antioxidant enzymes were measured in brain, liver, kidney and skeletal muscle of goldfish, Carassius auratus L., over a time course of 3-12 h of hyperoxia exposure followed by 12 or 36 h of normoxic recovery. Exposure to high oxygen resulted in an accumulation of protein carbonyls in tissues throughout hyperoxia and recovery whereas lipid peroxides and thiobarbituric acid reactive substances accumulated transiently under short-term hyperoxia stress (3-6 h) but were then strongly reduced. This suggests that hyperoxia stimulated an enhancement of defenses against lipid peroxidation or mechanisms for enhancing the catabolism of peroxidation products. The activities of principal antioxidant enzymes, superoxide dismutase and catalase, were not altered under hyperoxia but catalase increased during normoxic recovery; activities may rise in anticipation of further hyperoxic excursions. In most tissues, the activities of glutathione-utilizing enzymes (glutathione peroxidase, glutathione-S-transferase, glutathione reductase) as well as glucose-6-phosphate dehydrogenase, were not affected under hyperoxia but increased sharply during normoxic recovery. Correlations between some enzyme activities and oxidative stress markers were found, for example, an inverse correlation was seen between levels of thiobarbituric acid reactive substances and glutathione-S-transferase activity in liver and catalase and glucose-6-phosphate dehydrogenase in kidney. The results suggest that liver glutathione-S-transferase plays an important role in detoxifying end products of lipid peroxidation accumulated under hyperoxia stress.  相似文献   

18.
The intoxication of white mice with sodium nitrite results in the decrease of red cell superoxide dismutase (SOD) and catalase activity. The glutathione peroxidase activity is the same as in the control group. The level of red cell lipid peroxidation in the group of mice that receive sodium nitrite is higher as compared to the control group. After the intoxication the total activity of glucose-6-phosphate dehydrogenase and dehydrogenase of 6-phosphogluconate as well as the activity of glutathione reductase are higher than in the control group. The level of SH-groups and reduced glutathione is higher in the group of mice that receive sodium nitrite in comparison with the control group.  相似文献   

19.
Changes of the activity of catalase and glucose-6-phosphate dehydrogenase (G6PDH) during 48 hrs after intraperitoneal injection of 1.0, 0.5 and 0.1 mg aminotriazole per gram of body weight of two frog species as well as catalase inhibition by aminotriazole in vitro were investigated. Both aminotriazole concentration and species affiliation affected the catalase inhibition. The sensitivity of catalase from different tissues was decreased in the order: liver--kidney--lung--muscle--brain. The constant of half inhibition of lung catalase was significantly lower than that of liver and kidney catalase. The activity of G6PDH of AMT-treated frogs R. esculenta was higher comparing to control group. Possible ways of compensation of antioxidant defense under catalase inhibition are discussed.  相似文献   

20.
To investigate the possible role of oxygen free radicals and oxidant stress in the toxic effects of phenoxyherbicides, we studied the in vitro effect of 4-chlorophenoxyacetic acid (4-CPA) on various human erythrocyte antioxidant enzymes, namely glucose-6-phosphate dehydrogenase, catalase, selenium-dependent glutathione peroxidase, glutathione reductase and Cu/Zn-superoxide dismutase. 4-CPA added in a dose of 1 ppm to human erythrocytes for 1 h caused a significant reduction in glucose-6-phosphate dehydrogenase (P <0.001) and catalase (P <0.001) activities, but did not significantly affect the activities of other enzymes. Such selective inactivation of specific erythrocyte antioxidant enzymes may play a role in the toxic effects of phenoxyherbicides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号