首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
We have generated deletion mutants of the H-ras p21 protein which lack residues 58 to 63 or 64 to 68 and contain either the normal glycine or an activating mutation, arginine, at position 12. None of the deleted proteins were recognized by monoclonal antibody Y13-259, and those mutants with activating mutations showed at least a 100-fold reduction in their transforming activities compared with the activities of their nondeleted counterparts. Alterations observed in the in vitro GTPase or GTP interchange properties of the deletion mutants were not consistent with the decrease in their transforming activities. Moreover, each mutant showed normal membrane localization, which is essential for its biological activity. Recently, a newly identified protein, designated GTPase-activating protein (GAP), was found to markedly increase GTPase activity of the normal ras p21 but not of p21 mutants bearing activating lesions (H. Adari, D. R. Lowy, B. M. Willumsen, C. J. Der, and F. McCormick, Science 240:518-521, 1988). We showed that GAP had no effect on the in vitro GTPase activity of the deletion mutants of the normal p21 protein. Since similar deletions in mutants with activating lesions at position 12 or 59 or both showed decreased transforming activity, our results suggest that the recognition site for Y13-259 within the ras p21 molecule influences directly or indirectly the interaction of ras p21 with GAP and that this interaction is critical for biological activity of ras proteins.  相似文献   

2.
Activation of the oncogenic potential of ras oncogenes occurs by point mutations at codons 12, 13, 59, 61, and 63 of the sequences that codify for its product, a 21-kDa protein designated as p21. This activation has been postulated by computer models as modifiers of the structure of the protein, which may alter its biochemical and biological activities. We have expressed in bacteria the normal ras p21 and five mutated p21 proteins with mutations at positions 12, 59, 61, 12 plus 59, and 12 plus 61. Purification was carried out by solubilization from bacterial pellets in 7 M urea and chromatography through a Sephadex G-100 column to obtain greater than 95% purified proteins. Circular dichroic (CD) spectra showed that the normal protein and that activated by substitution of Ala59 to Thr59 are very similar in their overall structure. By contrast, point mutations affecting either 12 or 61 residues substantially altered the structure of the proteins. When the parameters of Chen et al. [Biochemistry II, 4120-4131 (1972)] were applied to the CD spectra, both normal and thr59-mutated ras proteins showed a less organized structure than mutated proteins at position 12 or 61. Since the Thr59 mutant has more similar transforming activity than other activated proteins, but a GTPase activity similar to that of the normal protein, our results support the hypothesis that there is more than one mechanism of activation of the ras p21 protein. One of these mechanisms involves important structural alterations by point mutations at position 12 or 61 which reduce the GTPase activity of the protein. Another mechanism will be that induced by a substitution of Ala59 to Thr59 which does not substantially alter the protein conformation. A putative alternative mechanism for the activation of this mutant is discussed.  相似文献   

3.
Transforming Harvey (Ha) ras oncogene products accelerated the time course of Xenopus oocyte maturation induced by insulin, insulinlike growth factor 1, or progesterone. The transforming constructs, [Val-12]Ha p21 and [Val-12, Thr-59]Ha p21, displayed equal potency and efficacy in their abilities to accelerate the growth peptide-induced response. Normal Ha p21 was only 60% as powerful and one-fifth as potent as the mutants containing valine in the 12 position. In contrast, two nontransforming constructs, [Val-12, Ala-35, Leu-36, Thr-59]Ha p21 and [Val-12, Thr-59]Ha(term-174) p21, had no effect on the time course of hormone-induced maturation. Effects of the transforming ras proteins on hormone-induced maturation correlated with their abilities to stimulate in vivo phosphodiesterase activity measured after microinjection of 200 microM cyclic [3H] AMP. When p21 injection followed 90 min of insulin treatment, there was no increase in phosphodiesterase activity over that measured after hormone treatment or p21 injection alone, but additive effects of p21 and insulin on enzyme activity were observed during the first 90 min of insulin treatment. Even though normal Ha p21 and transforming [Val-12, Thr-59]Ha p21 stimulated oocyte phosphodiesterase to equal levels when coinjected with substrate at the initiation of the in vivo assay, the transforming protein elicited a more sustained stimulation of enzyme activity. These results suggest that stimulation of a cyclic AMP phosphodiesterase activity associated with insulin-induced maturation is involved in the growth-promoting actions of ras oncogene products in Xenopus oocytes.  相似文献   

4.
In contrast to all cellular ras oncogenes which carry a single activating mutation at codon 12, 13 or 61, all known retroviral ras oncogenes have two mutations at codons 12 and 59. To understand the role of the mutation at codon 59, we have constructed plasmids containing genes for Harvey ras: p21(Gly-12,Thr-59) and p21(Val-12,Thr-59). Escherichia coli expressed proteins and their respective phosphorylated (Pi) and non-phosphorylated (non-Pi) proteins were purified to 95% homogeneity by ion-exchange chromatography and gel filtration. GTPase, autophosphorylation and nucleotide exchange activities of the mutants were studied. When the mutants were microinjected into Xenopus oocytes, the non-phosphorylated forms of p21(Gly-12,Thr-59) and p21(Val-12,Thr-59) showed high activity. Surprisingly, their phosphorylated forms were inactive. These results suggest that threonine at position 59 endows the protein with transforming activity but that phosphorylation of the residue inhibits biological activity. A structural interpretation of the observation is presented.  相似文献   

5.
Amino acid sequence homology between the GTPase Activating Protein (GAP) and the GTP-binding regulatory protein, Gs alpha, suggests that a specific region of GAP primary structure (residues 891-898) may be involved in its stimulation of p21ras GTP hydrolytic activity (McCormick, F. [1989] Nature 340, 678-679). A peptide, designated p891, corresponding to GAP residues 891-906 (M891RTRVVSGFVFLRLIC906) was synthesized and tested for its ability to inhibit GAP-stimulated p21ras GTPase activity. At a concentration of 25 microM, p891 inhibited GAP activity approximately 50%. Unexpectedly, p891 also stimulated GTP binding to p21N-ras independent of GAP. This stimulation correlated with an enhancement of p21N-ras.GDP dissociation; an approximate 15-fold increase in the presence of 10 microM p891. In contrast, dissociation of the p21N-ras.GTP gamma S complex was unaffected by 10 microM p891. The p21N-ras.GDP complex was unresponsive to 100 microM mastoparan, a peptide toxin shown previously to accelerate GDP dissociation from the guanine nucleotide regulatory proteins, Gi and Go. p21H-ras, as well as the two p21H-ras effector mutants, Ala-38, and Ala-35, Leu-36, also exhibited increased rates of GDP dissociation in the presence of p891. Also tested were three ras-related GTP-binding proteins; rap, G25K and rac. The rap.-GDP complex was unaffected by 10 microM p891. Dissociation of the G25K- and rac.GDP complexes were enhanced slightly; approximately 1.3- and 1.8-fold over control, respectively. Thus, the inhibitory effect of p891 on GAP stimulation of p21ras suggests that amino acids within the region 891-906 of GAP may be essential for interaction with p21ras. In addition, p891 independently affects the nucleotide exchange properties of p21ras.  相似文献   

6.
The simian ralA cDNA was inserted in a ptac expression vector, and high amounts of soluble ral protein were expressed in Escherichia coli. The purified p24ral contains 1 mol of bound nucleotide/mol of protein that can be exchanged against external nucleotide. The ral protein exchanges GDP with a t 1/2 of 90 min at 37 degrees C in the presence of Mg2+, and has a low GTPase activity (0.07 min-1 at 37 degrees C). We have also studied its affinity for various guanine nucleotides and analogs. NMR measurements show that the three-dimensional environment around the nucleotide is similar in p21ras and p24ral. In addition to these studies on the wild-type ral protein, we used in vitro mutagenesis to introduce substitutions corresponding to the Val12, Val12 + Thr59, and Leu61 substitutions of p21ras. These mutant ral proteins display altered nucleotide exchange kinetics and GTPase activities, however, the effects of the substitutions are less pronounced than in the ras proteins. p24ralVal12 + Thr59 autophosphorylates on the substituted Thr, as a side reaction of the GTP hydrolysis, but the rate is much lower than those of the Thr59 mutants of p21ras. These results show that ras and ral proteins have similar structures and biochemical properties. Significant differences are found, however, in the contribution of the Mg2+ ion to GDP binding, in the rate of the GTPase reaction and in the sensitivity of these two proteins to substitutions around the phosphate-binding site, suggesting that the various "small G-proteins" of the ras family perform different functions.  相似文献   

7.
Friedman ZY  Devary Y 《Proteins》2005,59(3):528-533
Controlling the hydrolysis rate of GTP bound to the p21ras protein is crucial for the delicate timing of many biological processes. A few mechanisms were suggested for the hydrolysis of GTP. To gain more insight into the individual elementary events of GTP hydrolysis, we carried out molecular dynamic analysis of wild-type p21ras and some of its mutants. It was recently shown that Ras-related proteins and mutants generally follow a linear free energy relationship (LFER) relating the rate of reaction to the pK(a) of the gamma-phosphate group of the bound GTP, indicating that proton transfer from the attacking water to the GTP is the first elementary event in the GTPase mechanism. However, some exceptions were observed. Thus, the Gly12 --> Aspartic p21ras (G12D) mutant had a very low GTPase activity although its pK(a) was very close to that of the wild-type ras. Here we compared the molecular dynamics (MD) of wild-type Ras and G12D, showing that in the mutant the catalytic water molecule is displaced to a position where proton transfer to GTP is unfavorable. These results suggest that the mechanism of GTPase is indeed composed of an initial proton abstraction from water by the GTP, followed by a nucleophilic attack of the hydroxide ion on the gamma-phosphorus of GTP.  相似文献   

8.
An Ala-to-Thr substitution at position 59 activates the transforming properties of the p21ras protein without impairment of GTPase activity, a biochemical alteration associated with other activating mutations. To investigate the basis for the transforming properties of the Thr-59 mutant, we characterized guanine nucleotide release. This reaction exhibited a slow rate and stringent temperature requirements. To further dissect the release reaction, we used monoclonal antibodies directed against different epitopes of the p21 molecule. One monoclonal specifically interfered with nucleotide release, while others which recognized different regions of the molecule blocked nucleotide binding. Mutants with the Thr-59 substitution exhibited a three- to ninefold-higher rate of GDP and GTP release than normal p21 or mutants with other activating lesions. This alteration in the Thr-59 mutant would have the effect of increasing its rate of nucleotide exchange. In an intracellular environment with a high GTP/GDP ratio, this would favor the association of GTP with the Thr-59 mutant. Consistent with knowledge of known G-regulatory proteins, these findings support a model in which the p21-GTP complex is the biologically active form of the p21 protein.  相似文献   

9.
A number of growth factors, including insulin and epidermal growth factor (EGF), induce accumulation of the GTP-bound form of p21ras. This accumulation could be caused either by an increase in guanine nucleotide exchange on p21ras or by a decrease in the GTPase activity of p21ras. To investigate whether insulin and EGF affect nucleotide exchange on p21ras, we measured binding of [alpha-32P]GTP to p21ras in cells permeabilized with streptolysin O. For this purpose, we used a cell line which expressed elevated levels of p21 H-ras and which was highly responsive to insulin and EGF. Stimulation with insulin or EGF resulted in an increase in the rate of nucleotide binding to p21ras. To determine whether this increased binding rate is due to the activation of a guanine nucleotide exchange factor, we made use of the inhibitory properties of a dominant negative mutant of p21ras, p21ras (Asn-17). Activation of p21ras by insulin and EGF in intact cells was abolished in cells infected with a recombinant vaccinia virus expressing p21ras (Asn-17). In addition, the enhanced nucleotide binding to p21ras in response to insulin and EGF in permeabilized cells was blocked upon expression of p21ras (Asn-17). From these data, we conclude that the activation of a guanine nucleotide exchange factor is involved in insulin- and EGF-induced activation of p21ras.  相似文献   

10.
The neurofibromatosis type 1 (NF1) protein contains a region of significant sequence similarity to ras p21 GTPase-activating protein (GAP) and the yeast IRA1 gene product. A fragment of NF1 cDNA encoding the GAP-related domain (NF1 GRD) was expressed, immunoaffinity purified, and assayed for effects on N-ras p21 GTPase activity. The GTPase of wild-type ras p21 was stimulated by NF1 GRD, but oncogenic mutants of ras p21 (Asp-12 and Val-12) were unaffected, and the GTPase of an effector mutant (Ala-38) was only weakly stimulated. NF1 GRD also down-regulated RAS function in S. cerevisiae. The affinity of NF1 GRD for ras p21 was estimated to be 250 nM: this is more than 20-fold higher than the affinity of GAP for ras p21. However, its specific activity was about 30 times lower. These kinetic measurements suggest that NF1 may be a significant regulator of ras p21 activity, particularly at low ras p21 concentrations.  相似文献   

11.
Biological and biochemical properties of human rasH genes mutated at codon 61   总被引:67,自引:0,他引:67  
C J Der  T Finkel  G M Cooper 《Cell》1986,44(1):167-176
Using site-directed mutagenesis, we have introduced mutations encoding 17 different amino acids at codon 61 of the human rasH gene. Fifteen of these substitutions increased rasH transforming activity. The remaining two mutants, encoding proline and glutamic acid, displayed transforming activities similar to the normal gene. Overall, these mutants vary over 1000-fold in transforming potency. Increased levels of p21 expression were required for transformation by weakly transforming mutants. The mutant proteins were unaltered in guanine nucleotide binding properties. However, all 17 different mutant proteins displayed equivalently reduced rates of GTP hydrolysis, 8- to 10-fold lower than the normal protein. There was no quantitative correlation between reduction in GTPase activity and transformation, indicating that reduced GTP hydrolysis is not sufficient to activate ras transforming potential.  相似文献   

12.
A series of v-rasH effector domain mutants were analyzed for their ability to transform rat 2 cells at either low or high temperatures. Three mutants were found to be significantly temperature sensitive: Ile-36 changed to Leu, Ser-39 changed to Cys (S39C), and Arg-41 changed to Leu. Of these, the codon 39 mutant (S39C) showed the greatest degree of temperature sensitivity. When the same mutation was analyzed in the proto-oncogene form of ras(c-rasH), this gene was also found to be temperature sensitive for transformation. Biochemical analysis of the proteins encoded by v-rasH(S39C) and c-rasH(S39C) demonstrated that the encoded p21ras proteins were stable and bound guanine nucleotides in vivo at permissive and nonpermissive temperatures. On the basis of these findings, it is likely that the temperature-sensitive phenotype results from an inability of the mutant (S39C) p21ras to interact properly with the ras target effector molecule(s) at the nonpermissive temperature. We therefore analyzed the interaction between the c-rasH(S39C) protein and the potential target molecules GTPase-activating protein (GAP) and the GAP-related domain of NF-1, on the basis of stimulation of the mutant p21ras GTPase activity by these molecules in vitro. Assays conducted across a range of temperatures revealed no temperature sensitivity for stimulation of the mutant protein, compared with that of authentic c-rasH protein. We conclude that for this mutant, there is a dissociation between the stimulation of p21ras GTPase activity by GAP and the GAP-related domain NF-1 and their potential target function. Our results are also consistent with the existence of a distinct, as-yet-unidentified effector for mammalian ras proteins.  相似文献   

13.
The mutant p21(ras) protein is a G protein produced by the point-mutated H-ras gene, and this mutant protein has been shown to cause carcinogenesis due to a reduction in its GTPase activity. However, the mechanism underlying this strange phenomenon has still not been elucidated. In our previous study, we have clarified the mechanism of the GTP-->GDP hydrolysis reaction in the wild-type p21(ras) at the atomic level and concluded that GTPase-activating protein plays a significant role in the supply of H2O molecules for the hydrolysis. The structure of the active site in the mutant is the same as that in the wild type. However, by performing molecular dynamic calculations, we found that the structure of the active site of the enzyme substrate complex in the oncogenic mutant p21(ras) continuously changes, and these continuous changes in the active site would make it difficult for the GTP-->GDP hydrolysis reaction to occur in the mutant. These findings can explain the fact that the GTPase activity in the mutant was only 15% of that in the wild type and the fact that GTPase-activating protein has no reaction-activating effect in the mutant. This is a dynamic inhibition mechanism of a vital reaction that can be explained by considering the molecular dynamics.  相似文献   

14.
The p21 products of ras proto-oncogenes are GTP-binding proteins with associated GTPase activity. Recent studies have indicated that ras p21 may be required for the initiation of normal cell DNA synthesis, since microinjection of a monoclonal antibody, Y13-259, blocks serum stimulation of DNA synthesis in quiescent cell cultures (L. S. Mulcahy, M.R. Smith, and D. W. Stacey, Nature [London] 313:241-243, 1985). We localized the structural domain within the p21 molecule recognized by the Y13-259 monoclonal antibody. By analysis of a series of bacterially expressed p21 deletion mutants, the monoclonal antibody was found to interact with a region between positions 70 and 89 in the p21 amino acid sequence. By comparison of the coding sequences of different p21 proteins recognized by this monoclonal antibody, a highly conserved amino acid region between positions 70 and 81 was found to be the most likely site for the epitope detected by the Y13-259 antibody. This monoclonal antibody was further shown not to interfere directly with in vitro biochemical functions of the molecule, including GTP binding, GTPase, and autokinase activities.  相似文献   

15.
G F Xu  B Lin  K Tanaka  D Dunn  D Wood  R Gesteland  R White  R Weiss  F Tamanoi 《Cell》1990,63(4):835-841
Sequencing of the neurofibromatosis gene (NF1) revealed a striking similarity among NF1, yeast IRA proteins, and mammalian GAP (GTPase-activating protein). Using both genetic and biochemical assays, we demonstrate that this homology domain of the NF1 protein interacts with ras proteins. First, expression of this NF1 domain suppressed the heat shock-sensitive phenotype of yeast ira1 and ira2 mutants. Second, this NF1 domain, after purification as a glutathione S-transferase (GST) fusion protein, strongly stimulated the GTPase activity of yeast RAS2 and human H-ras proteins. The GST-NF1 protein, however, did not stimulate the GTPase activity of oncogenic mutant ras proteins, H-rasVal-12 and yeast RAS2Val-19 mutants, or a yeast RAS2 effector mutant. These results establish that this NF1 domain has ras GAP activity similar to that found with IRA2 protein and mammalian GAP, and therefore may also regulate ras function in vivo.  相似文献   

16.
The product of the protooncogenic ras gene (p21N ras) exhibits a weak GTPase activity. A significant increase in the GTPase activity associated with p21N ras protein was obtained by using glycerol in the assay mixture. Of the several metal ions tested, only Mg++ and Mn++ are effective divalent cations that support the GTPase activity of p21N ras protein. p21N ras protein exhibits higher GTPase activity and yields higher [3H] GDP binding in the presence of MnCl2 than with MgCl2. Optimal GTPase and [3H] GDP binding are obtained at micromolar concentrations of MgCl2 or MnCl2. Concentrations in the millimolar range of either MgCl2 or MnCl2 are inhibitory to the GTPase activity, whereas [3H] GDP binding was not affected.  相似文献   

17.
Deletions of small sequences from the viral Harvey ras gene have been generated, and resulting ras p21 mutants have been expressed in Escherichia coli. Purification of each deleted protein allowed the in vitro characterization of GTP-binding, GTPase and autokinase activity of the proteins. Microinjection of the highly purified proteins into quiescent NIH/3T3 cells, as well as transfection experiments utilizing a long terminal repeat (LTR)-containing vector, were utilized to analyze the biological activity of the deleted proteins. Two small regions located at 6-23 and 152-165 residues are shown to be absolutely required for in vitro and in vivo activities of the ras product. By contrast, the variable region comprising amino acids 165-184 was shown not to be necessary for either in vitro or in vivo activities. Thus, we demonstrate that: (i) amino acid sequences at positions 5-23 and 152-165 of ras p21 protein are probably directly involved in the GTP-binding activity; (ii) GTP-binding is required for the transforming activity of ras p21 and by extension for the normal function of the proto-oncogene product; and (iii) the variable region at the C-terminal end of the ras p21 molecule from amino acids 165 to 184 is not required for transformation.  相似文献   

18.
The effect of a series of mutations on the transforming potential of normal human rasH has been compared with their effects on GTPase and guanine nucleotide exchange rates of p21. The mutation Val-146 resulted in partial activation of transforming potential which could be attributed to a greater than 1,000-fold-increased rate of nucleotide exchange in the absence of an effect on GTPase. In contrast, the more modest enhancement of exchange rate (approximately 100-fold) which resulted from the mutation Met-14 did not affect biological activity. The partially activating mutation Thr-59 was found to result in both a 5-fold reduction in GTPase and a 10-fold increase in nucleotide exchange. However, the nontransforming mutant Ile-59 displayed a comparable decrease in GTPase without an effect on nucleotide exchange. The activating effect of the Thr-59 mutation may thus represent a combined effect of reduced GTPase and increased exchange. Similarly, the strongly activating mutation Leu-61 resulted in a fivefold increase in nucleotide exchange in addition to decreased GTPase, whereas weakly activating mutations at position 61 (Trp and Pro) resulted only in decreased GTPase without affecting nucleotide exchange rates. Finally, combining the two mutations Met-14 and Ile-59, which alone had no effect on biological activity, yielded a double mutant with a 20-fold increased transforming potential, demonstrating a synergistic effect of these two mutations. Overall, these results indicate that large increases in nucleotide exchange can activate ras transforming potential in the absence of decreased GTPase and that relatively modest increases in nucleotide exchange can act synergistically with decreased GTPase to contribute to ras activation.  相似文献   

19.
A novel method for the analysis of putative G-proteins has been developed that reveals the existence of a large family of GTP/GDP-binding proteins with similar characteristics to those of p21ras in 3T3 cell plasma membranes. In the presence of Mg2+, exchange of [alpha-32P]GDP with prebound ligand was very slow, but, as with p21ras, exchange was dramatically accelerated by excess EDTA. In the presence of Mg2+, three classes of binding sites were distinguishable. However, no p21ras was detected in the membranes with the pan-reactive anti-ras antibody, Y13-259. Gel filtration analysis resolved two peaks of binding activity centering at 60 and 21 kilodaltons. High resolution anion exchange chromatography separated at least 11 unique GDP-binding proteins from 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate-solubilized membranes, none of which cross-reacted with a pan-G alpha antiserum. Analogous to p21ras, the binding activities of 9 of the 11 species were sensitive to the thiol reagent N-ethylmaleimide, and six peaks possessed detectable GTPase activity in the absence of extrinsic factors. Addition of cytosol activated the GTPase activity of four of the peaks. We infer that the 11 peaks represent novel, small molecular weight guanine nucleotide-binding proteins, similar to those recently described in brain membranes.  相似文献   

20.
We directly expressed human R-ras 23,000-dalton protein (p23) cDNA in Escherichia coli under the control of the trp promoter. GTP-dependent phosphorylation of a p23 threonine 85 substitution mutant was observed. This result is in direct analogy to the autokinase activity of H-ras and K-ras threonine 59 substitution mutants. Normal p23 protein was detected in the human fibrosarcoma cell line HT1080 by immunoprecipitation with rabbit antibodies raised against an E. coli-expressed R-ras fusion protein. The R-ras p23 protein was found to be 3H labeled in the presence of [9,10(n)-3H]palmitic acid and is associated with the P100 membrane fraction of HT1080 cells. These data suggest that human R-ras p23 has biochemical properties very similar to those of the p21 products of the H-, K-, and N-ras proto-oncogenes. We constructed an R-ras minigene and engineered the expression of normal and mutant alleles from the simian virus 40 early region promoter. Normal and mutant R-ras gene products were authenticated by transient expression in COS-7 cells and immunoprecipitation. The valine 38-substituted R-ras p23 displayed reduced electrophoretic mobility. R-ras p21-like proteins, made by eliminating the first 26 R-ras codons, displayed evident mobility differences between the pro form and mature form, along with a valine 12 substitution-dependent change in electrophoretic mobility. Rat-1 fibroblasts were transfected with normal and mutant R-ras alleles and normal and activated H-ras alleles. Unlike the human T24 bladder oncogene-encoded p21, mutant R-ras alleles do not cause monolayer focus formation or growth in soft agar of rat fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号