首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 625 毫秒
1.
本文研究了毛茛科鸡爪草Calathodes oxycarpa的核形态。其静止核和有丝分裂前期染色体分别属于复杂中央染色微粒型和中间型,中期染色体属于R型,核型公式为2n=16=8sm+8st(2sat)。据此并结合有关资料,讨论了鸡爪草属与毛茛科其它类群的亲缘关系,认为鸡爪草属与金莲花属和特产于南朝鲜的Megaleranthis属是极为近缘的类群,不宜将它们分开置于不同的族或亚科中。  相似文献   

2.
毛茛科金莲花族和升麻族细胞学的比较研究   总被引:2,自引:0,他引:2  
对毛茛科金莲花族Trolliese和升麻族Cimicifugeae的细胞学进行了比较研究。发现驴蹄草Caltha palustris L.在云南西北部形成一个多倍体系列(2n=32,48,64),四倍体细胞型(2n=4x=32)较为常见,其核型有明显的居群间变异。驴蹄草属Caltha、鸡爪草属Calathodes、Megaleranthis以及金莲花属Trollius的染色体在大小上基本相似,都属于中等大小的R-型染色体。细胞学和花粉学证据都支持鸡爪草属与Megaleranthis和金莲花属有较近的亲缘关系。铁破锣属Beesia、Anemonopsis、黄三七属Souliea、升麻属Cimicifuga以及类叶升麻属Actaea的核型彼此基本相似,在染色体大小和形态上都与驴蹄草属、鸡瓜草属、Megaleranthis以及金莲花属的核型明显有别。细胞学证据表明铁破锣属应是升麻族中的成员。  相似文献   

3.
毛莨科金莲花族和升麻族细胞学的比较研究   总被引:4,自引:1,他引:3  
对毛茛科金莲花族Trollieae和升麻族Cimicifugeae的细胞学进行了比较研究.发现驴蹄草Caltha palustris L. 在云南西北部形成一个多倍体系列(2n=32, 48, 64),四倍体细胞型 (2n=4x=32) 较为常见,其核型有明显的居群间变异.驴蹄草属Caltha、鸡爪草属Calathodes、Megaleranthis以及金莲花属Trollius的染色体在大小上基本相似,都属于中等大小的R-型染色体.细胞学和花粉学证据都支持鸡爪草属与Megaleranthis和金莲花属有较近的亲缘关系.铁破锣属Beesia、Anemonopsis、黄三七属Souliea、升麻属Cimicifuga以及类叶升麻属Actaea的核型彼此基本相似,在染色体大小和形态上都与驴蹄草属、鸡爪草属、Megaleranthis以及金莲花属的核型明显有别.细胞学证据表明铁破锣属应是升麻族中的成员.  相似文献   

4.
报道了分布于我国香港特别行政区的喜盐草属(Halophila Thou.) 2种植物的染色体数目和核型,其体细胞中期染色体数目均为2n=18。它们的核型公式分别为:喜盐草(H. ovalis (R. Br.) Hook. f.) 2n=2x=18=4m+14sm;贝克喜盐草(H. beccarii Asch) 2n=2x=18=8m+10sm(首次报道)。核型均属于2B型。  相似文献   

5.
蔡联炳 《植物研究》2004,24(4):394-395
首次报道了青海固沙草属2 新记录种--固沙草和鸡爪草, 并对两种植物地理分布上过去的不完善认识进行了分析, 编制了区分该属4 种植物的分类检索表, 同时引证了存于中国科学院西北高原生物研究所两记录种的全部考证标本。  相似文献   

6.
王广艳  周宁  钱敏  张婵  杨永平 《广西植物》2019,(9):1192-1200
为探讨国产毛茛科(Ranunculaceae)驴蹄草属(Caltha)两种植物的演化,该文利用传统染色体压片技术和流式细胞术,并结合前人染色体研究结果,对我国驴蹄草23个居群和花葶驴蹄草10个居群进行了细胞学研究。结果表明:驴蹄草是由四倍体(2n=4x=32)、六倍体(2n=6x=48)和八倍体(2n=8x=64)构成的多倍体复合群,花葶驴蹄草具有四倍体(2n=4x=32)和八倍体(2n=8x=64)两种倍性水平。驴蹄草和花葶驴蹄草均是四倍体较为常见,目前尚未见有二倍体报道。由于驴蹄草和花葶驴蹄草大部分居群采自中国青藏高原地区,可能在冰期时存在古二倍体,其适应性较弱,逐渐被其他的倍性取代,这是由于不同细胞型对环境适应性的结果。驴蹄草可能存在两条进化路线:一条是从甘肃到达云南;另一条是从西藏到达云南。前期分子系统学研究显示花葶驴蹄草与驴蹄草的亲缘关系较近,该研究结果中花葶驴蹄草染色体比驴蹄草要小,花葶驴蹄草可能比驴蹄草相对进化。目前花葶驴蹄草只有10个居群,还需进一步增加居群量来解析其演化路线。  相似文献   

7.
王广艳  周宁  钱敏  张婵  杨永平 《广西植物》2019,39(9):1191-1200
为探讨国产毛茛科(Ranunculaceae)驴蹄草属(Caltha)两种植物的演化,该文利用传统染色体压片技术和流式细胞术,并结合前人染色体研究结果,对我国驴蹄草23个居群和花葶驴蹄草10个居群进行了细胞学研究。结果表明:驴蹄草是由四倍体(2n=4x=32)、六倍体(2n=6x=48)和八倍体(2n=8x=64)构成的多倍体复合群,花葶驴蹄草具有四倍体(2n=4x=32)和八倍体(2n=8x=64)两种倍性水平。驴蹄草和花葶驴蹄草均是四倍体较为常见,目前尚未见有二倍体报道。由于驴蹄草和花葶驴蹄草大部分居群采自中国青藏高原地区,可能在冰期时存在古二倍体,其适应性较弱,逐渐被其他的倍性取代,这是由于不同细胞型对环境适应性的结果。驴蹄草可能存在两条进化路线:一条是从甘肃到达云南;另一条是从西藏到达云南。前期分子系统学研究显示花葶驴蹄草与驴蹄草的亲缘关系较近,该研究结果中花葶驴蹄草染色体比驴蹄草要小,花葶驴蹄草可能比驴蹄草相对进化。目前花葶驴蹄草只有10个居群,还需进一步增加居群量来解析其演化路线。  相似文献   

8.
为探讨国产毛茛科(Ranunculaceae)驴蹄草属(Caltha L.)植物的细胞学特征,对驴蹄草(C.palustris L.)3个居群和花葶驴蹄草(C.scaposa Hook.f.&Thoms.)5个居群进行了细胞学研究。驴蹄草贵州纳雍居群的染色体数目为2n=32(四倍体),两个云南中甸居群的染色体数目均为2n=64(八倍体)。花葶驴蹄草四川红原、康定、石渠居群的染色体数目均为2n=32(四倍体),该数目为首次报道;西藏林芝和云南德钦居群的染色体数目均为2n=64(八倍体)。驴蹄草的染色体比花葶驴蹄草大。这两种植物的32或64条染色体分别以4条或8条为单位大致能够排列为8组同源染色体,但同一组内的染色体经常具有明显的异形性(heteromorphy),不同居群的核型组成多少具有差异。同时,还分析了驴蹄草和花葶驴蹄草的不同倍性细胞型在我国的地理分布式样。  相似文献   

9.
角叶铁破锣的核型及其系统学意义   总被引:6,自引:4,他引:2  
本文首次报道了角叶铁破锣的核形态。其静止核和有丝分裂前期染色体分别属于复杂中央染色微粒型和中间型;中期染色体数目为2n=16;核型公式为2n=10m+4st十2t(2sat)。根据上述结果并结合有关资料,本文讨论了铁破锣和角叶铁破锣之间的核型差异以及铁破锣属的系统位置,指出铁破锣属可能与升麻属等类群关系较近而与金莲花属等类群关系较远,因此将该属置于升麻族中比置于金莲花族中合理。  相似文献   

10.
毛茛科金莲花亚科植物的地理分布   总被引:11,自引:1,他引:10  
本文对毛茛科金莲花亚科各属的地理分布作了分析,该亚科植物除了少数属的一些种分布到南半球的温带地区,一些种分布或延伸到亚热带山地、非洲东部和北部的干旱、半干旱的地区外,绝大部分的属、种均分布于泛北极区域。根据其17个属的地理分布式样,把它们划分为8个分布区类型:(1)北温带分布类型4属;(2)北温带和非洲分布类型1属;(3)北半球温带和南半球间断分布类型1属;(4)欧洲和东亚间断分布类型1属;(5)西亚分布类型1属;(6)地中海分布类型3属;(7)欧亚和温带亚洲分布类型1属;(8)东亚分布类型5属。本文以形态特征为主,结合花粉和染色体的性状分析,认为东亚特有的鸡爪草属、Megaleranthis和铁破锣属可能分别是联系驴蹄草属和金莲花属,鸡爪草属和金莲花属以及金莲花族和升麻族的中间类型。另外,文中详细地统计了该亚科的不同等级分类群及特有种在各个植物区的分布,并从系统发育的观点讨论了各个植物区所具有的原始类群和进化类群,提出了如下论点,即东亚植物区(特别是中国西南部)不但是金莲花亚科植物分布的多度和多样性中心以及特有类群的分布中心,而且还是原始类群的保存中心,伊朗-土兰区及地中海周围是第二分布中心。  相似文献   

11.
1. The present paper describes the observations of chromosome numbers and karyomorphology of 2 species of 2 endemic genera and I endemic species of Chinese Ranunculaceae: Asteropyrum peltatum (Franch.) Drumm et Hutch. 2n=16, x=8; Kingdonia unifolia Balf. f. et W. W. Sm. 2n=18, x=9 and Calathodes oxycarpa Sprague 2n=16, x=8. The chromosome counts of three ranunculaceous genera are reported for the first time. 2. The morphylogical, palynological and cytological date in relation to the systematic postition of Asteropyrum, Kingdonia and Calathodes within the family Ranunculaceae are diseussed and resulted in following conclusions: (1). On the basis of the basic number x=8 in Asteropyrum, it is further confirmed that this genus is distinct from the r elated genera such as Isopyrum, Dichocarpum and other allied taxa. The comparison of Asteropyrum with Coptis shows that they are identical in short chromosomes, with magnoflorina and benzylisaquinodine type of alkaloides, but different from coptis in the chromosome numbers (T-type), pantocolpate pollens, united carpels and the dorsi-ventral type of petioles. In view of these fundamental morphological and cytological differences, Asterop yrum is better raised to the level of Tribe. However Asteropyrum and Coptis may represent two divaricate evolutional lines of Thalictroideae. (2). The systematic position of the genus Kingdonia has been much disputed in the past. We support the view of Sinnote (1914), namely, the trilacunar in leaf traces “the ancient type”, appeared in the angiosperm line very early, while the unilacunar of Kingdonia may be derived from the trilacunar. On the basis of the chromosome numbers and morphylogical observation, the present writer accept Tamura’s and Wang’s treatment by keeping Kingdonia in Ranunculaceae instead of raising it to a family rank as has been been done by Forster (1961). Kingdonia and Coptis are similar in having short chromosome with x=9, but with one-seeded fruits; therefore it is suggested that placed into Thalictroideae as an independent tribe, indicating its close relationship with Coptideae. (3). Comparing with its allies, Calathodes being with out petals, seems to be more primitive than Trollius. But Calathodes differs from Trollius with R-type chromosomes in having T-type chromosome with x=8 and subterminal centromere. Those characteristics show that it is very similar to the related genera of Thalictroideae. But as Kurita already pointed out that most speci es of Ranunculus have usually large long chromosomes but some species have compar ativelly short chromosomes, therefore we regard T-type and R-type chromosomes appear independently in different subfamilies of Ranunculaceae. According to Tamura, G alathodes seems to be closely related to Megaleranthis, because of the resemblance in follicles. But due to lack of cytological data of the latter genus, the relationship between the two genera still is not clear pending further studies. From the fact that the morphology and chromosomes of the Calathodes differs from that of all other genera of the Helleboroideae, we consider Calathodes may form an independent tribe of its own with a closer relationship withTrollieae.9841  相似文献   

12.
The karyotype of Oryzias minutillus was examined with specimens collected from 18 localities in Thailand. Specimens from the south and the northeast had 2n = 42 acrocentric chromosomes; the arm number (NF) was 42 and NORs-chromosomes were acrocentric type (2n = 42, NF = 42, NORs-A). Specimens from the central and the north were characteristic by having 8-12 large metacentric chromosomes (LM-chromosomes). They had 2n = 28–34 chromosomes, and shared the same NF and NORs-chromosomes of submetacentric type (2n = 34-28, NF = 44, NORs-SM). Specimens from the southeast had 2n = 42 or 40 chromosomes. Their karyotypes had the same NF and NORs-chromosomes as those from the central and the north (2n = 40–42, NF = 44, NORs-SM), though they had no, or only one pair of, LM-chromosomes. The karyotype with 42 acrocentric chromosomes seems to be basic for O. minutillus , and consequently those with NORs-SM and LM-chromosomes seem to be caused through pericentric inversion and centric fusion, respectively. We confirmed that the karyotype evolution had occurred in drainage areas of the Mae Nam Chao Phraya and collaterals (the central, north and southeast). On the other hand, the basic karyotype was preserved allopatrically in the peninsula (the south) and the basin of the Mae Nam Mun, a tributary of the Mekong (the northeast).  相似文献   

13.
睡莲科的核型分析及其分类学位置的探讨   总被引:5,自引:0,他引:5  
本文对睡莲科6属6种代表植物的核型进行了研究,并探讨了它的分类学位置。结果如下:莲2n=16=9sm+4m+3st;王莲2n=24=8sm+8m+8T,蓝睡莲2n=28,可配成14对,染色体小,第l号染色体上有2条随体;萍蓬草2n=34=18m+16sm;芡实2n=58,可配成29对,染色体小,第l号染色体有2条随体,莼菜2n=72,可配成36对,染色体按大小可分成大,中、小三个类别。除莲外,其它5种植物的核型为首次报道。莼菜的体细胞染色体数目2n=72和国外报道的2n=80不相一致。莲的染色体以及形态学特征和其它睡莲科分类群显著不同,可将其从睡莲科中独立出来,并成立莲科和莲目。原归属于睡莲科的分类群仍组成睡莲目,并分别置于莼菜科和睡莲科。  相似文献   

14.
双花木属和壳菜果属(金缕梅科)的核型研究   总被引:2,自引:1,他引:1  
本文对金缕梅科Hamamelidaceae双花木属Disanthus Maxim.的长柄双花木D.cercidifolius subsp.longipes和单种属壳菜果属Mytilaria Lec.首次进行了染色体计数和核型分析。结果表明:长柄双花木与产自日本的双花木D. cercidifolius subsp.cercidifolius的体细胞染色体数目一致,均为2n=16,前者无“st”或“t”染色体,表明该亚种可能比较原始;壳菜果Mytilaria laosensis Lec.的染色体数目为2n=26,x=13。前人报道的金缕梅科染色体基数为x=8和x=12,因此x=13可能是金缕梅科的一个新染色体基数。联系该属的形态特征及其与马蹄荷属Exbucklandia R.W.Brown的关系,作者支持将壳菜果属处理为独立的亚科,即壳菜果亚科Mytilarioideae。  相似文献   

15.
山东米口袋属植物的核型分析   总被引:3,自引:0,他引:3  
杨德奎 《广西植物》2002,22(4):349-351,T003
对山东米口袋属 ( Gueldenstaedtia Fisch.)植物进行了核型分析。米口袋 ( G.multiflora Bge.)核型公式 K( 2 n) =2 x=14 =14 m ,相对长度组成 2 n=14 =6 M2 +8M1,“1A”类型 ;狭叶米口袋 ( G.stenophylla Bge.)核型公式 K( 2 n) =2 x=14 =14 m,相对长度组成 2 n=14 =8M2 +6 M1,“1A”类型 ;光滑米口袋 ( G.maritimaMaxim.)核型公式 K( 2 n) =2 x=14 =12 m+2 sm,相对长度组成 2 n=14 =4 M2 +10 M1,“1A”类型。  相似文献   

16.
The chromosome numbers and karyotypes of 7 species of Smilax L. in Liliaceae (s. 1.) are cytotaxonomically studied in this work. Their karyotypic characters, distinction between the species and the chromosomal basis of sexual differentiation are discussed. The karyotypes of most species are first reported. The results are shown as follows (see Tables 1-4 for the chromosome parameters and the karyotype constitution; Fig. 1 for their idiograms): 1. Smilax nipponica Miq. The species is one of the herbaceous species distributed in East Asia. Two karyotypes, 2n = 26(type A) and 2n = 32 (type B), are found in the species (Plate 1: 1-7). The karyotype of No. 88032 (uncertain of -L--M--S- sexuality) is 2n = 26 = 2m + 6st + 6m + 4sm + 6sm + 2st. The karyotype has 4 pairs of L chromosomes, of which the first three pairs are subterminal, and the 4th is median. The karyotype belongs to 3B. No. 88045 (the male) and No. 88046 (the female) have 2n = 32. Their karyotypes are basically uniform, and both are -L--M-- S 2n=32= 2m+4sm+ 2st+ 2m+4sm+ 6m+ 10sm + 2st, also with 4 pairs of L chromosomes, but the 2nd pair is median, and thus different from the type A. The karyotype belongs to 3B. The first pair of chromosomes of the male are distinctly unequal in length, with the D. V. (0.93) of relative length between them obviously greater than that of the female (0.1). The pair seems to be of sex-chromosomes. Sixteen bivalents (n= 16) were observed at PMCs MI of No. 88045 (Plate 1: 4). The major difference between the karyotypes A and B are greater relative length of L chromosomes in the type A than in the type B, and the increase of chromosome number in the karyotype B mainly due to the increase of st chromosomes. Nakajima (1937)reports 2n= 30 for S. hederacea var. nipponica (=S. nipponica, Wang and Tang, 1980). 2. S. riparia A. DC. This species is also herbaceous, distributed in East Asia. Thirty chromosomes were found in root-tip cells (uncertain of sexuality). The kar -L--M--S-yotype is 2n = 30 = 8st + 6sm + 2st + 6m + 6sm + 2st (Plate 3: 1, 5), consisting mainly of sm and st chromosomes. There are 4 pairs of L chromosomes which are all subterminal and the m chromosomes appear to fall all into S category. Though the karyotype belongs to 3B, it is less symmetrical than that of S. nipponica. The species is karyologically rather different from S. nipponica, therefore. The first pair of chromosomes of this material are unequal in length, and it may be a male. The karyotype of this species is first reported. 3. S. sieboldii Miq. The species is a thorny climbing shrub, distributed in East Asia. At PMCs All, 16 chromosomes (n= 16) were found (Plate 2: 6), in accordance with Nakajima's (1933) report for a Japanese material. 4. S. china L. This species, a thorny climbing shrub, is of a wide distribution range mainly in East Asia and Southeast Asia. Two karyotypes were observed in different populations. (1) The population from Xikou has 2n = 96(6x) = 20st+L- -M- 6t + 6sm + 12st + 52(S) (Plate 3:7), of which the first three pairs of chromosomes are terminal, different from those in the other species. The arm ratios of both L and M chromosomes are larger than 2.0, which resembles those of S. davidiana. (2) PMCs MI of the population from Shangyu shew 15 chromosomes (n 15). The hexaploid of the species is recorded for the first time. Hsu (1967,1971) reported 2n = 30 from Taiwai and Nakajima (1937) recorded n = 30 from Japan, which indicates that the karyotype of the species varies not only in ploidy, but also in number. 5. S. davidiana A. DC. The somatic cells were found to have 32 chromosomes, and PMCs MI shew 16 bivalents (Plate 2: 1-5). The karyotype is 2n = 32=-L- -M- -S 8st + 4sm + 4st + 8sm + 8st. The karyotype belongs to 3B, and is less symmetrical than those in herbaceous species. The D. V. (0.20) of relative length between the two homologues of the first pair is slightly larger in the male than in the female (0.14), and it is thus difficult to determine whether they are sexual chromosomes or not. 6. S. glabra Roxb. The species is a non-thorny climbing shrub, distributed in East Asia and Southeast Asia. 32 chromosomes were found in somatic cells. The -L- -M- - Skaryotype is 2n= 32= 8st + 10st+6sm+8st (Plate 3: 2, 6),with only 3 pairs of sm chromosomes (12, 13 and 16th). The karyotype is more asymmetric than that of S. davidiana, although it is also of 3B (Table 1). The karyotype is first reported for the species. 7. S. nervo-marginata Hay. var. liukiuensis (Hay.) Wang et Tang The variety has a relatively narrow distribution range, mainly occurring in eastern China. The chromosomal number of somatic cells is 2n= 32 (Plate 3: 3-4). The karyotype is -L- -M- -S 2n = 32 = 2sm + 6st + 2sm + 2st + 2m + 6sm + 12st, evidently different from that of S. glabra. The first pair of chromosomes are submedian, and much longer than the 2nd to 4th pairs. The ratio in length of the largest chromosome to the smallest one is 4.3. The symmetric degree is of 3C, a unique type. The karyotype of the species is reported for the first time. In Smilax, the known basic numbers are 13, 15, 16 and 17. The two herbaceous species distributed in East Asia have three basic numbers: 13, 15 and 16, while the woody species studied mainly have 16, with no 13 recorded. Mangaly (1968) studied 8 herbaceous species in North America and reported 2n=26 for them except S. pseudo-china with 2n=30. Mangaly considered that a probably ancestral home of Smilax, both the herbaceous and woody, is in Southeast Asia and the eastern Himalayas, and speculated that the ancestral type of Sect. Coprosmanthus is possibly an Asian species, S. riparia. The karyotypes of the two herbaceous species in East Asia consist mostly of sm and m chromosomes, whereas those for the North American species are all of st chromosomes. Based on the general rule of karyotypic evolution, i.e. from symmetry to asymmetry, his speculation seems reasonable. Researches on sex-chromosomes of Smilax have been carried out since 1930 (Lindsay, 1930; Jensen, 1937; Nakajima, 1937; Mangaly, 1968), and they are generally considered to be the largest pair, but there is still no adequate evidence. The result of our observation on S. nipponica may confirm that the first pair of chromosomes of this species is XY type of sex-chromosomes. Chromosomes of the genus are small and medium-sized, varying between 1-6 μm, slightly larger in herbaceous species than in woody ones, larger in the karyotype of 2n=26 than in that of 2n=32. Based on karyotype constitution of the above 5 species, the karyotype in the genus is characterized by 4 pairs of L chromosomes and 2-5 pairs of M chromosomes, and mostly st and sm chromosomes, and by rather asymmetrical 3B type. The degree of symmetry in the above 5 species is from Sect. Coprosmanthus to Sect. Coilanthus, and herbaceous species towoody ones.  相似文献   

17.
In Cephalotascus sinensis (Rehd. et Wils. ) Li the somatic chromosome number was found to be of 2n=24. Eleven pairs of chromosomes possessed their centromeres at median or median-submedian regions. The shortest pair of chromosomes was the SAT chromosome which possessed their centromeres at the submedian regions. The sex chromosomes were demonstrated by the Giemsa C-banding technique. The sexual determination mechanism of female was WZ type (2n=24=22A+WZ), and that of male was ZZ type (2n=24=22A +ZZ).  相似文献   

18.
Using the fluorescence in situ hybridization (FISH) technique, we conducted karyotype analyses to identify the lost chromosomes in three somaclonal variants obtained from tissue culture of wildAllium tuberosum (2n = 4X = 32). The three lost chromosomes of the At29 variant (2n = 29) were all chromosome 2, the two for At30 (2n = 30) were chromosomes 7 and 8, and At31 was missing chromosome 2. Chromosome compositions of these variants were confirmed as being fixed lines during two years of greenhouse cultivation. The bicolor FISH technique, involving both 5S and 18S–5.8S–26S ribosomal RNA genes as probes, was used to assign chromosomal locations and to confirm whether the lost chromosomes contained any rRNA markers. The 5S rRNA gene signals in all variants as well as the wild type were detected as two sets, one on the intercalary region of the short arm of chromosome 3, the other on the intercalary region of the long arm of chromosome 6. One 18S–5.8S–26S rRNA gene site on the secondary constriction included a flanking satellite and terminal region on the short arm of chromosome 8. Signals of the 18S–5.8S–26S rRNA gene in At30 showpd in only three chromosomes, indicating that one of the lost chromosomes was chromosome 8. Overall, three marker chromosomes were established by FISH, using rRNA multigene families.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号