首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of various detergents on polyphosphoinositide-specific phospholipase C activity in highly purified wheat root plasma membrane vesicles was examined. The plasma membrane-bound enzyme was solubilized in octylglucoside and purified 25-fold by hydroxylapatite and ion-exchange chromatography. The purified enzyme catalyzed the hydrolysis of phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2) with specific activities of 5 and 10 mumol/min per mg protein, respectively. Phosphatidylinositol (PI) was not a substrate. Optimum activity was between pH 6-7 (PIP) and pH 6-6.5 (PIP2). The enzyme was dependent on micromolar concentrations of Ca2+ for activity, and millimolar Mg2+ further increased the activity. Other divalent cations (4 mM Ca2+, Mn2+ and Co2+) inhibited (PIP2 as substrate) or enhanced (PIP as substrate) phospholipase C activity.  相似文献   

2.
5'-guanylylimidodiphosphate (GppNHp) in the presence of deoxycholate, stimulated the phospholipase C-mediated hydrolysis of exogenous [3H]phosphatidylinositol 4,5-bisphosphate ([3H]PIP2) to myo-[3H]inositol 1,4,5-trisphosphate in rat liver plasma membranes. Activation was not specific for guanine nucleotides as 5'-adenylylimidodiphosphate, imidodiphosphate and pyrophosphate stimulated the enzyme with similar efficacies and potencies. Enzyme activation by GppNHp was most pronounced when [3H]PIP2 was used as substrate. No added Ca++ was required for [3H]PIP2 breakdown but hydrolysis was inhibited by divalent ion chelators. GppNHp stimulation was apparent in the presence of Ca++ or Mg++ as well as chelator concentrations that partially inhibited the enzyme, indicating that this effect was not attributed to changes in affinity of these divalent cations for the enzyme or substrate. These results suggest that guanine nucleotides can stimulate the hydrolysis of exogenous [3H]PIP2 in rat liver membranes by a non-specific effect probably due to the interaction of the diphosphate moiety with the enzyme or substrate.  相似文献   

3.
A phosphoinositide-specific phospholipase C activity was identified in oat root (Avena sativa, cv Victory) plasma membranes purified by separation in an aqueous two-phase polymer system. The enzyme is highly active toward inositol phospholipids but only minimally active toward phosphatidylethanolamine and phosphatidylcholine. Activity approaches maximal levels at 200 micromolar phosphatidylinositol 4-phosphate (PIP) and is highly dependent on calcium; it is inhibited by 1 millimolar EGTA and is activated by calcium with an apparent activation constant of 2 micromolar. At 10 micromolar calcium and 200 micromolar inositol phospholipid, the enzyme is specific for phosphatidylinositol 4,5-bisphosphate (PIP2) and PIP, which are hydrolyzed at 10 and 4 times, respectively, the rate of phosphatidylinositol (PI) hydrolysis. The principle water soluble products of hydrolysis, as determined by high performance liquid chromatography, are inositol 1,4,5-trisphosphate from PIP2, inositol 1,4-bisphosphate from PIP, and inositol phosphate from PI.  相似文献   

4.
R Graber  G A Losa 《Enzyme》1989,41(1):17-26
Peripheral blood mononuclear cells from normal donors exhibited phosphatidylinositol 4,5-bisphosphate phospholipase C (PIP2-PLC), inositol 1,4,5-trisphosphate (IP3) and inositol 1-phosphate (IP)-monophosphatase activities which were mostly recovered in the cytosol fraction. In both cytosol and particulate fractions PIP2-PLC displayed the highest activity at pH 6.2, whereas IP3 and IP-monophosphatases showed the same optimal pH at 7.0. While the PIP2-PLC displayed close apparent Km values in cytosol and particulate fractions, both inositol-monophosphatases were found to show substrate affinities for IP and IP3 characteristic of these two fractions, with an higher affinity in the soluble fraction.  相似文献   

5.
myo-Inositol 1,4,5-trisphosphate is an intracellular second messenger generated from the hydrolysis of phosphatidylinositol 4,5-bisphosphate by phospholipase C. In the present study, we have used the abilities of inositol 1,4,5-trisphosphate to inhibit inositol 1,4,5-tris[32P]phosphate binding and to stimulate release of sequestered stores of 45Ca2+ to assay the mass of inositol 1,4,5-trisphosphate in extracts derived from [3H]inositol-prelabeled chemoattractant-stimulated neutrophils. These assays are specific for inositol 1,4,5-trisphosphate since the relative capacity of the extracts to compete with inositol 1,4,5-tris[32P]phosphate binding and to release 45Ca2+ correlated well with the [3H]inositol 1,4,5-trisphosphate content of the extract as determined by high pressure liquid chromatography. No correlation of these activities was observed with the content in the extract of either [3H]inositol 1,3,4-trisphosphate or [3H]inositol 1,3,4,5-tetrakisphosphate, whose formation exhibited kinetics distinct from [3H]inositol 1,4,5-trisphosphate. Thus, within 10 s of stimulation with 10 nM formyl-methionyl-leucyl-phenylalanine, the inositol 1,4,5-trisphosphate content of the extract increased from 0.05 to 0.55 pmol/10(6) cells, equivalent to a change in intracellular concentration from 100 nM to 1.1 microM. These studies demonstrate that neutrophils produce sufficient quantities of inositol 1,4,5-trisphosphate to mobilize Ca2+ from intracellular stores.  相似文献   

6.
Human erythrocyte ghosts exhibit an inositol trisphosphate phosphomonoesterase activity that rapidly converts inositol 1,4,5-trisphosphate into inositol 1,4-bisphosphate and Pi. Degradation of the released inositol 1,4-bisphosphate is not observed. This activity is dependent on Mg2+ (or Mn2+) and it is not activated by Ca2+. Optimum activity is around pH 7 and activity is abolished by heat denaturation. The Km for inositol trisphosphate is approx. 25 microM. 2,3-bisphosphoglycerate is a competitive inhibitor, with a Ki of approx. 0.35 mM. Glycerophosphoinositol 4,5-bisphosphate is attacked at about one-eighth of the rate for inositol trisphosphate, but glycerophosphoinositol 4-phosphate is not a substrate. Incubation of 32P-labelled erythrocyte membranes with Mg2+ causes little breakdown of phosphatidylinositol 4,5-bisphosphate, the parent compound from which both glycerophosphoinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate are derived. On the basis of its substrate specificity and the inhibition by 2,3-bisphosphoglycerate, we suggest that this enzyme is selective for the 5-phosphate in those water-soluble phosphate esters of inositol that possess the vicinal pair of 4,5-phosphates but that it may also interact less strongly with other water-soluble compounds that have pairs of vicinal phosphates.  相似文献   

7.
How do inositol phosphates regulate calcium signaling?   总被引:7,自引:0,他引:7  
Activation of a variety of cell surface receptors results in the phospholipase C-catalyzed hydrolysis of the minor plasma membrane phospholipid phosphatidylinositol 4,5-bisphosphate, with concomitant formation of inositol 1,4,5-trisphosphate and diacylglycerol. There is strong evidence that inositol 1,4,5-trisphosphate stimulates Ca2+ release from intracellular stores. The Ca2+-releasing actions of inositol 1,4,5-trisphosphate are terminated by its metabolism through two distinct pathways. Inositol 1,4,5-trisphosphate is dephosphorylated by a 5-phosphatase to inositol 1,4-bisphosphate; alternatively, inositol 1,4,5-trisphosphate can also be phosphorylated to inositol 1,3,4,5-tetrakisphosphate by a 3-kinase. Although the mechanism of Ca2+ mobilization is understood, the precise mechanisms involved in Ca2+ entry are not known; the proposal that inositol 1,4,5-trisphosphate secondarily elicits Ca2+ entry by emptying an intracellular Ca2+ pool is considered.  相似文献   

8.
Antigen-mediated exocytosis in intact rat basophilic leukemia (RBL-2H3) cells is associated with substantial hydrolysis of membrane inositol phospholipids and an elevation in concentration of cytosol Ca2+ ([ Ca2+i]). Paradoxically, these two responses are largely dependent on external Ca2+. We report here that cells labeled with myo-[3H]inositol and permeabilized with streptolysin O do release [3H]inositol 1,4,5-trisphosphate upon stimulation with antigen or guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) at low (less than 100 nM) concentrations of free Ca2+. The response, however, is amplified by increasing free Ca2+ to 1 microM. The subsequent conversion of the trisphosphate to inositol 1,3,4,5-tetrakisphosphate is enhanced also by the increase in free Ca2+. Although [3H]inositol 1,4,5-trisphosphate accumulates in greater amounts than is the case in intact cells, [3H]inositol 1,4-bisphosphate is still the major product in permeabilized cells even when the further metabolism of [3H]inositol 1,4,5-trisphosphate is suppressed (by 77%) by the addition of excess (1000 microM) unlabeled inositol 1,4,5-trisphosphate and the phosphatase inhibitor 2,3-bisphosphoglycerate. It would appear that either the activity of the membrane 5-phosphomonoesterase allows virtually instantaneous dephosphorylation of the inositol 1,4,5-trisphosphate under all conditions tested or both phosphatidylinositol 4-monophosphate and the 4,5-bisphosphate are substrates for the activated phospholipase C. The latter alternative is supported by the finding that permeabilized cells, which respond much more vigorously to high (supraoptimal) concentrations of antigen than do intact RBL-2H3 cells, produce substantial amounts of [3H]inositol 1,4-bisphosphate before any detectable increase in levels of [3H]inositol 1,4,5-trisphosphate.  相似文献   

9.
An enzyme which catalyses the ATP-dependent phosphorylation of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] was purified approx. 180-fold from rat brain cytosol by (NH4)2SO4 precipitation, chromatography through hydroxyapatite, anion-exchange fast protein liquid chromatography and gel-filtration chromatography. Gel filtration on Sepharose 4B CL gives an Mr of 200 x 10(3) for the native enzyme. The inositol tetrakisphosphate (InsP4) produced by the enzyme has the chromatographic, chemical and metabolic properties of Ins(1,3,4,5)P4. Ins(1,4,5)P3 3-kinase displays simple Michaelis-Menten kinetics for both its substrates, having Km values of 460 microM and 0.44 microM for ATP and Ins(1,4,5)P3 respectively. When many of the inositol phosphates known to occur in cells were tested, only Ins(1,4,5)P3 was a substrate for the enzyme; the 2,4,5-trisphosphate was not phosphorylated. Inositol 4,5-bisphosphate and glycerophosphoinositol 4,5-bisphosphate were phosphorylated much more slowly than Ins(1,4,5)P3. CTP, GTP and adenosine 5'-[gamma-thio]triphosphate were unable to substitute for ATP. When assayed under conditions of first-order kinetics, Ins(1,4,5)P3 kinase activity decreased by about 40% as the [Ca2+] was increased over the physiologically relevant range. This effect was insensitive to the presence of calmodulin and appeared to be the result of an increase in the Km of the enzyme for Ins(1,4,5)P3. Preincubation with ATP and the purified catalytic subunit of cyclic AMP-dependent protein kinase did not affect the rate of phosphorylation of Ins(1,4,5)P3 when the enzyme was assayed at saturating concentrations of Ins(1,4,5)P3 or at concentrations close to its Km for this substrate.  相似文献   

10.
Hydrolysis-resistant analogues of GTP specifically stimulate the formation of [3H]inositol mono-, bis- and trisphosphates by saponin-permeabilized Swiss 3T3 cells prelabelled with [3H]inositol. Each inositol phosphate is formed largely by hydrolysis of its parent lipid and not by dephosphorylation of inositol 1,4,5-trisphosphate [(1,4,5)IP3]. Although hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) is most sensitive to guanine nucleotides, hydrolysis of phosphatidyl-inositol (PI) and phosphatidylinositol 4-phosphate (PIP) is quantitatively more important. These results suggest that a guanine nucleotide-dependent regulatory protein(s) (G-protein) is involved in regulating the hydrolysis of PI and PIP, as well as PIP2, and so may allow formation of diacylglycerol (DG) without simultaneous production of (1,4,5)IP3 and mobilization of intracellular Ca2+.  相似文献   

11.
Hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) by phosphatidylinositol-specific phospholipase C (PI-PLC) generates two second messengers, inositol 1,4,5-trisphosphate and 1,2-diacylglycerol. The polymerase chain reaction was used to isolate a Saccharomyces cerevisiae gene (PLC1) that encodes a protein of 869 amino acids (designated Plc1p) that bears greatest resemblance to the delta isoforms of mammalian PI-PLC in terms of overall sequence similarity and domain arrangement. Plc1p contains the conserved X and Y domains found in all higher eukaryotic PI-PLCs (51 and 29% identity, respectively, to the corresponding domains of rat delta 1 PI-PLC) and also contains a presumptive Ca(2+)-binding site (an E-F hand motif). Plc1p, modified by in-frame insertion of a His6 tract and a c-myc epitope near its amino terminus, was overexpressed from the GAL1 promoter, partially purified by nickel chelate affinity chromatography, and shown to be an active PLC enzyme in vitro with properties similar to those of its mammalian counterparts. Plc1p activity was strictly Ca2+ dependent: at a high Ca2+ concentration (0.1 mM), the enzyme hydrolyzed PIP2 at a faster rate than phosphatidylinositol, and at a low Ca2+ concentration (0.5 microM), it hydrolyzed PIP2 exclusively. Cells carrying either of two different deletion-insertion mutations (plc1 delta 1::HIS3 and plc1 delta 2::LEU2) were viable but displayed several distinctive phenotypes, including temperature-sensitive growth (inviable above 35 degrees C), osmotic sensitivity, and defects in the utilization of galactose, raffinose, and glycerol at permissive temperatures (23 to 30 degrees C). The findings reported here suggest that hydrolysis of PIP2 in S. cerevisiae is required for a number of nutritional and stress-related responses.  相似文献   

12.
A phosphatidylinositol-specific phospholipase C (PI-PLC) has been isolated from bovine brain (purification factor of 5.6 x 10(4)). By sodium dodecyl sulfate-polyacrylamide gel electrophoresis, it had a Mr of 57,000. Neither amino nor neutral sugars were detected in the purified enzyme. The pH optimum was 7.0-7.5, and the activity decreased only slightly at pH 8.0. When phosphatidylinositol was used as a substrate, the optimum Ca2+ requirement was 4 mM, and Km was 260 microM. When phosphatidylinositol 4,5-bisphosphate was used, the optimum Ca2+ requirement was 10(-7) M, and the Km was reduced to 90 microM. Lipid specificity studies showed that equal amounts of inositol phosphate and diacylglycerol were released from phosphatidylinositol but 4 times as much inositol 1,4,5-trisphosphate was released from phosphatidylinositol 4,5-bisphosphate. Other lipids, phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin, were not substrates. Failure to detect phosphatidic acid confirmed the absence of a phospholipase D activity in the purified enzyme. Myelin basic protein (MBP) stimulated the PI-PLC activity between 2- and 3-fold. Histone had a small effect only, whereas bovine serum albumin and cytochrome C had no effect. Phosphorylation of MBP reduced the stimulatory effect. Protein-protein interactions between MBP and PI-PLC have been demonstrated both immunologically and by sucrose density gradients. A stoichiometry of 1:1 has been suggested by the latter method. A number of peptides have been prepared by chemical, enzymatic, and synthetic methods. Peptides containing the MBP sequences consisting of residues 24-33 and 114-122 stimulated the PI-PLC but were less effective than the intact protein.  相似文献   

13.
In the course of delineating the regulatory mechanism underlying phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) metabolism, we have discovered three distinct phosphoinositide-specific phospholipase D (PI-PLD) isozymes from rat brain, tentatively designated as PI-PLDa, PI-PLDb, and PI-PLDc. These enzymes convert [3H]PI(3,4,5)P3 to generate a novel inositol phosphate, D-myo-[3H]inositol 3,4,5-trisphosphate ([3H]Ins(3,4,5)P3) and phosphatidic acid. These isozymes are predominantly associated with the cytosol, a notable difference from phosphatidylcholine PLDs. They are partially purified by a three-step procedure consisting of DEAE, heparin, and Sephacryl S-200 chromatography. PI-PLDa and PI-PLDb display a high degree of substrate specificity for PI(3,4, 5)P3, with a relative potency of PI(3,4,5)P3 > phosphatidylinositol 3-phosphate (PI(3)P) or phosphatidylinositol 4-phosphate (PI(4)P) > phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) > phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2). In contrast, PI-PLDc preferentially utilizes PI(3)P as substrate, followed by, in sequence, PI(3,4,5)P3, PI(4)P, PI(3,4)P2, and PI(4,5)P2. Both PI(3, 4)P2 and PI(4,5)P2 are poor substrates for all three isozymes, indicating that the regulatory mechanisms underlying these phosphoinositides are different from that of PI(3,4,5)P3. None of these enzymes reacts with phosphatidylcholine, phosphatidylserine, or phosphatidylethanolamine. All three PI-PLDs are Ca2+-dependent. Among them, PI-PLDb and PI-PLDc show maximum activities within a sub-microM range (0.3 and 0.9 microM Ca2+, respectively), whereas PI-PLDa exhibits an optimal [Ca2+] at 20 microM. In contrast to PC-PLD, Mg2+ has no significant effect on the enzyme activity. All three enzymes require sodium deoxycholate for optimal activities; other detergents examined including Triton X-100 and Nonidet P-40 are, however, inhibitory. In addition, PI(4,5)P2 stimulates these isozymes in a dose-dependent manner. Enhancement in the enzyme activity is noted only when the molar ratio of PI(4,5)P2 to PI(3,4, 5)P3 is between 1:1 and 2:1.  相似文献   

14.
The effect of various detergents on polyphosphoinositide-specific phospholipase C activity in highly purified wheat root plasma membrane vesicles was examined. The plasma membrane-bound enzyme was solubilized in octylglucoside and purified 25-fold by hydroxylapatite and ion-exchange chromatography. The purified enzyme catalyzed the hydrolysis of phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2) with specific activities of 5 and 10 μmol/min per mg protein, respectively. Phosphatidylinositol (PI) was not a substrate. Optimum activity was between pH 6–7 (PIP) and pH 6–6.5 (PIP2). The enzyme was dependent on micromolar concentrations of Ca2+ for activity, and millimolar Mg2+ further increased the activity. Other divalent cations (4 mM Ca2+, Mn2+ and Co2+) inhibited (PIP2 as substrate) or enhanced (PIP as substrate) phospholipase C activity.  相似文献   

15.
Platelets, and a variety of other cells, rapidly hydrolyze the phosphoinositides in response to stimulation by agonists. One of the products of hydrolysis of phosphatidylinositol 4,5-diphosphate is inositol 1,4,5-trisphosphate, which recently has been suggested to mediate intracellular Ca2+ mobilization. We have found that human platelets contain an enzyme that degrades inositol 1,4,5-trisphosphate. We have isolated this soluble enzyme and find that it hydrolyzes the 5-phosphate of inositol 1,4,5-trisphosphate (Km = 30 microM, Vmax = 5.3 microM/min/mg of protein). The products of the reaction are inositol 1,4-diphosphate and phosphate. The apparent molecular weight of the enzyme is 38,000 as determined both by gel filtration and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence and absence of 2-mercaptoethanol. This enzyme is specific for inositol 1,4,5-trisphosphate. Other water soluble inositol phosphates as well as phosphorylated sugars are not hydrolyzed, while the only inositol containing phospholipid hydrolyzed is phosphatidylinositol 4,5-diphosphate at a rate less than 1% that for inositol 4,5-trisphosphate. The inositol 1,4,5-trisphosphate 5-phosphomonoesterase requires Mg2+ for activity and is inhibited by Ca2+, Ki = 70 microM. Li+, up to 40 mM, has no effect on enzyme activity. The duration and magnitude of any inositol 1,4,5-trisphosphate response in stimulated platelets may be determined by the activity of this enzyme.  相似文献   

16.
For studies of phospholipase C (PLC) activity in cell-free systems, 32P-labelled phosphatidylinositol 4,5-bisphosphate (PIP2) was prepared enzymatically by phosphorylating phosphatidylinositol 4-phosphate (PIP) in the presence of [gamma-32P]ATP using a PIP kinase partially purified from bovine retinae. PLC activity was determined by incubating membranes of DDT1 MF-2 cells with 32P-PIP2 and measuring remaining non-hydrolyzed substrate as well as accumulation of the hydrolysis product, inositol trisphosphate (IP3). Guanine nucleotides stimulated PIP2 hydrolysis and IP3 release. Additional increase in IP3 accumulation was observed with adrenaline plus guanine nucleotides.  相似文献   

17.
Purification of D-myo-inositol 1,4,5-trisphosphate 3-kinase from rat brain   总被引:7,自引:0,他引:7  
The ATP-dependent, calmodulin-sensitive 3-kinase responsible for the conversion of D-myo-inositol 1,4,5-trisphosphate to D-myo-inositol 1,3,4,5-tetrakisphosphate has been purified 2,700-fold from rat brain to a specific activity of 2.3 mumol/min/mg protein. A method of purification is described involving chromatography on phosphocellulose, Orange A dye ligand, calmodulin agarose, and hydroxylapatite columns. Neither the highly purified enzyme nor enzyme eluting from the phosphocellulose column were activated by Ca2+. However, enzyme in the 100,000 x g supernatant from rat brain was activated by Ca2+ over the range from 10(-7) to 10(-6) M and Ca2+ sensitivity of the purified enzyme was restored by the addition of calmodulin. The enzyme has a catalytic subunit Mr of 53,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Size exclusion chromatography of the purified enzyme on a Superose 12 column gave a Mr value of 70,000, indicating that the purified enzyme was present as a monomer. In contrast, the 100,000 x g supernatant and the purified enzyme after addition of calmodulin and 10(-6) M Ca2+ chromatographed on size exclusion chromatography with a Mr of 150,000-160,000. These results imply that the native enzyme is a dimeric structure of two catalytic subunits plus calmodulin. The purified enzyme showed a Km of 0.21 +/- 0.08 microM for D-myo-inositol 1,4,5-trisphosphate and had a pH optimum of 8.5. Addition of calmodulin increased both the Km and the Vmax of the purified enzyme about 2-fold. The high affinity of the 3-kinase for D-myo-inositol 1,4,5-trisphosphate together with its activation by Ca2+/calmodulin suggests that this enzyme may exert an important regulatory role in inositol phosphate signaling by promoting the formation of additional inositol polyphosphate isomers.  相似文献   

18.
Phosphoinositides of human, rabbit, rat, and turkey erythrocytes were radiolabeled by incubation of intact cells with [32P]Pi. Guanosine 5'-O-(thiotriphosphate) (GTP gamma S) and NaF, which are known activators of guanine nucleotide regulatory proteins, caused a large increase in [32P]inositol phosphate release from plasma membranes derived from turkey erythrocytes, but had no effect on inositol phosphate formation by plasma membranes prepared from the mammalian erythrocytes. High performance liquid chromatography analysis indicated that inositol bisphosphate, inositol 1,3,4-trisphosphate, inositol 1,4,5-trisphosphate, and inositol 1,3,4,5-tetrakisphosphate all increased by 20-30-fold during a 10-min incubation of turkey erythrocyte membranes with GTP gamma S. The increase in inositol phosphate formation was accompanied by a similar decrease in radioactivity in phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2). GTP gamma S increased inositol phosphate formation with a K0.5 of 600 nM; guanosine 5'-(beta, gamma-imido)trisphosphate was 50-75% as efficacious as GTP gamma S and expressed a K0.5 of 36 microM. Although GTP alone had little effect on inositol phosphate formation, it blocked GTP gamma S-stimulated inositol phosphate formation, as did guanosine 5'-O-(2-thiodiphosphate). Turkey erythrocytes were also shown to express phosphatidylinositol synthetase activity in that incubation of cells with [3H] inositol resulted in incorporation of radiolabel into phosphatidylinositol, PIP, and PIP2. Incubation of membranes derived from [3H]inositol-labeled erythrocytes with GTP gamma S resulted in large increases in [3H] inositol phosphate formation and corresponding decreases in radiolabel in PIP and PIP2. The data suggest that, in contrast to mammalian erythrocytes, the turkey erythrocyte expresses a guanine nucleotide-binding protein that regulates phospholipase C, and as such, should provide a useful model system for furthering our understanding of hormonal regulation of this enzyme.  相似文献   

19.
The molecular mechanisms underlying the ability of muscarinic agonists to enhance the metabolism of inositol phospholipids were studied using rat parotid gland slices prelabelled with tracer quantities of [3H]inositol and then washed with 10 mM unlabelled inositol. Carbachol treatment caused rapid and marked increases in the levels of radioactive inositol 1-phosphate, inositol 1,4-bisphosphate, inositol 1,4,5-trisphosphate and an accumulation of label in the free inositol pool. There were much less marked changes in the levels of [3H]phosphatidylinositol, [3H]phosphatidylinositol 4-phosphate and [3H]phosphatidylinositol 4,5-bisphosphate. At 5 s after stimulation with carbachol there were large increases in [3H]inositol 1,4-bisphosphate and [3H]inositol 1,4,5-trisphosphate, but not in [3H]inositol 1-phosphate. After stimulation with carbachol for 10 min the levels of radioactive inositol 1,4-bisphosphate and inositol 1,4,5-trisphosphate greatly exceeded the starting level of radioactivity in phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate respectively. When carbachol treatment was followed by addition of sufficient atropine to block all the muscarinic receptors the radioactive inositol phosphates rapidly returned towards control levels. The carbachol-evoked changes in radioactive inositol phosphate and phospholipid levels were blocked in the presence of 2,4-dinitrophenol (an uncoupler of oxidative phosphorylation). The results suggest that muscarinic agonists stimulate a polyphosphoinositide-specific phospholipase C and that these lipids are continuously replenished from the labelled phosphatidylinositol pool. [3H]Inositol 1-phosphate in the stimulated glands probably arises via hydrolysis of inositol 1,4-bisphosphate and not directly from phosphatidylinositol.  相似文献   

20.
One of the earliest actions of thrombin in fibroblasts is stimulation of a phospholipase C (PLC) that hydrolyses phosphatidylinositol 4,5-bisphosphate (PIP2) to inositol 1,4,5-trisphosphate (IP3) and diacylglycerol. In membranes prepared from WI-38 human lung fibroblasts, thrombin activated an inositol-lipid-specific PLC that hydrolysed [32P]PIP2 and [32P]phosphatidylinositol 4-monophosphate (PIP) to [32P]IP3 and [32P]inositol 1,4-bisphosphate (IP2) respectively. Degradation of [32P]phosphatidylinositol was not detected. PLC activation by thrombin was dependent on GTP, and was completely inhibited by a 15-fold excess of the non-hydrolysable GDP analogue guanosine 5'-[beta-thio]diphosphate (GDP[S]). Neither ATP nor cytosol was required. Guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG) also stimulated polyphosphoinositide hydrolysis, and this activation was inhibited by GDP[S]. Stimulation of PLC by either thrombin or p[NH]ppG was dependent on Ca2+. Activation by thrombin required Ca2+ concentrations between 1 and 100 nM, whereas stimulation of PLC activity by GTP required concentrations of Ca2+ above 100 nM. Thus the mitogen thrombin increased the sensitivity of PLC to concentrations of free Ca2+ similar to those found in quiescent fibroblasts. Under identical conditions, another mitogen, platelet-derived growth factor, did not stimulate polyphosphoinositide hydrolysis. It is concluded that an early post-receptor effect of thrombin is the activation of a Ca2+- and GTP-dependent membrane-associated PLC that specifically cleaves PIP2 and PIP. This result suggests that the cell-surface receptor for thrombin is coupled to a polyphosphoinositide-specific PLC by a GTP-binding protein that regulates PLC activity by increasing its sensitivity to Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号