首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Two novel strains of obligately alkaliphilic (pH 7.5–10.2, optimum pH 8.4–8.8) anaerobic spore-forming rod-shaped bacteria, Z-0511 and Z-7031, were isolated from enrichment cultures obtained from the iron-reducing (Lake Khadyn, Tyva) and cellulolytic (Lake Verkhnee Beloe, Buryatia) bacterial communities, respectively. The organisms ferment peptides and do not ferment proteins and amino acids, with the exception of histidine and glutamate utilized by strain Z-0511. The major fermentation products were acetate and propionate for strain Z-0511 and formate and acetate for strain Z-7031, respectively. Carbohydrates and fermentable organic acids could not serve as substrates, except for pyruvate in the case of strain Z-7031. Nitrogen and sulfur compounds were not utilized as electron acceptors by the strains grown on medium with yeast extract. Strain Z-0511 utilized fumarate, crotonate, and EDTA-Fe(III) as electron acceptors. Anthraquinone-2,6-disulfonate (quinone) and Mn(IV) were utilized by both strains, as well as amorphous ferric hydroxide (AFH), which was reduced to iron sesquioxides and magnetite. The presence of AFH stimulated growth; it enhanced the yield of the fermentation products and changed the quantitative ratios of these products. According to a phylogenetic analysis of the 16S rRNA gene sequences and the phenotypic characteristics of the new strains, they were classified as new species of the genus Natronincola, Natronincola ferrireducens sp. nov. Z-0511T (= VKM B-2402, = DSM 18346) and Natronincola peptidovorans sp. nov. Z-7031T (= VKM B-2503, = DSM 18979).  相似文献   

2.
Three strains of new obligately anaerobic alkaliphilic bacteria have been isolated as a saccharolytic component from the cellulolytic community of alkaline Lake Nizhnee Beloe (Transbaikal region, Russia), a lake with low salt concentration. DNA analysis of these strains showed an interspecies level of DNA similarity of 96–100%. Strain Z-79820 was selected for further investigations. Cells were Gram-positive, asporogenous, nonmotile short rods with pointed ends. The strain was a true alkaliphile: growth occurred from pH 7.2 to 10.2 with the optimum at pH 9.0. Strain Z-79820 was halotolerant and could grow in medium with up to 10% (w/v) NaCl, with the optimum between 0 and 4% NaCl. The new isolate obligately depended on Na+ ions in the form of carbonates or chlorides. Total Na+ content needed for optimal growth was 0.46 M Na+, with a wide range from 0.023–0.9 M Na+ at which growth also occurred. The isolate was a mesophile and grew at temperatures from 6 to 50°C (slow growth at 6 and 15°C) with an optimum at 35°C. The organotrophic organism fermented ribose, xylose, glucose, mannose, fructose, sucrose, mannitol, and peptone. The products of glucose fermentation were acetate, ethanol, formate, H2, and CO2. Yeast extract was required for some anabolic needs. The DNA G+C content of the type strain Z-79820 was 42.1 mol%. The new bacterium fell into the 16S rRNA gene cluster XV of the Gram-positive bacteria with low G+C content, where it formed an individual branch. Based on its growth characteristics and genotype traits, we propose the new genus and species named Alkalibacter saccharofermentans with the type strain Z-79820 (=DSM14828), Uniqem-218 (Institute Microbiology, RAS; ).  相似文献   

3.
Strains BSK12Z-3T and BSK12Z-4, two Gram-stain-positive, aerobic, non-spore-forming strains, were isolated from Shankou Mangrove Nature Reserve, Guangxi Zhuang Autonomous Region, China. The diagnostic diamino acid in the cell-wall peptidoglycan of strain BSK12Z-3T was LL-diaminopimelic acid and MK-8(H4) was the predominant menaquinone. The polar lipids comprised diphosphatidylglycerol (DPG), phosphatidylglycerol (PG) and phospholipid (PL). The major fatty acids was iso-C16:0. Phylogenetic analysis based on 16S rRNA gene sequences suggested that the two strains fell within the genus Nocardioides, appearing most closely related to Nocardioides ginkgobilobae KCTC 39594T (97.5–97.6 % sequence similarity) and Nocardioides marinus DSM 18248T (97.4–97.6 %). Genome-based phylogenetic analysis confirmed that strains BSK12Z-3T and BSK12Z-4 formed a distinct phylogenetic cluster within the genus Nocardioides. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values of strains BSK12Z-3T, BSK12Z-4 with their most related species N. marinus DSM18248T were within the ranges of 77.2–77.3 % and 21.3–21.4 %, respectively, clearly indicated that strains BSK12Z-3T, BSK12Z-4 represented novel species. Strains BSK12Z-3T and BSK12Z-4 exhibited 99.9 % 16S rRNA gene sequence similarity. The ANI and dDDH values between the two strains were 97.8 % and 81.1 %, respectively, suggesting that they belong to the same species. However, DNA fingerprinting discriminated that they were not from one clonal origin. Based on phylogenomic and phylogenetic analyses coupled with phenotypic and chemotaxonomic characterizatons, strains BSK12Z-3T and BSK12Z-4 could be classified as a novel species of the genus Nocardioides, for which the name Nocardioides bruguierae sp. nov., is proposed. The type strain is BSK12Z-3T (=CGMCC 4.7709T = JCM 34554T).  相似文献   

4.
5.
In the course of the search for N2O-utilizing microorganisms, two novel strains of haloalkaliphilic denitrifying bacteria, Z-7009 and AIR-2, were isolated from soda lakes of Mongolia and Kenya. These microorganisms are true alkaliphiles and grow in the pH ranges of 8.0–10.5 and 7.5–10.6, respectively. They are facultative anaerobes with an oxidative type of metabolism, able to utilize a wide range of organic substrates and reduce nitrate, nitrous oxide, and, to a lesser extent, nitrite to gaseous nitrogen. They can oxidize sulfide in the presence of acetate as the carbon source and nitrous oxide (strain Z-7009) or nitrate (strain AIR-2) as the electron acceptor. The strains require Na+ ions. They grow at 0.16–2.2 M Na+ (Z-7009) and 0.04–2.2 M Na+ (AIR-2) in the medium. The G+C contents of the DNA of strains Z-7009 and AIR-2 are 67.9 and 65.5 mol %, respectively. According to the results of 16S rRNA gene sequencing and DNA-DNA hybridization, as well as on the basis of physiological properties, the strains were classified as new species of the genus Halomonas: Halomonas mongoliensis, with the type strain Z-7009T (=DSM 17332, =VKM B2353), and Halomonas kenyensis, with the type strain AIR-2T (=DSM 17331, =VKM B2354).  相似文献   

6.
Four strains of rod-shaped gram-negative sulfur-oxidizing bacteria were isolated from Khoito-Gol hydrogen-sulfide springs in the eastern Sayan Mountains (Buryatia). The cells of the new isolates were motile by means of a single polar flagellum. The strains were obligately chemolithoautotrophic aerobes that oxidized thiosulfate (with the production of sulfur and sulfates) and hydrogen sulfide. They grew in a pH range of 6.8–9.5, with an optimum at pH 9.3 and in a temperature range of 5–39°C, with an optimum at 28–32°C. The cells contained ubiquinone Q-8. The DNA G+C content of the new strains was 62.3–64.2 mol %. According to the results of analysis of their 16S rRNA genes, the isolates belong to the genus Thiobacillus within the subclass Betaproteobacteria. However, the similarity level of nucleotide sequences of the 16S rRNA genes was insufficient to assign the isolates to known species of this genus. The affiliation to the genus Thiobacillus was confirmed by DNA-DNA hybridization of the isolates with the type strain of the type species of the genus Thiobacillus, T. thioparus DSM 505T (= ATCC 8158T). Despite the phenotypic similarity, the hybridization level was as low as 21–29%. In addition, considerable differences were revealed in the structure of the genes encoding RuBPC, the key enzyme of autotrophic CO2 assimilation, between the known Thiobacillus species and the new isolates. Based on molecular-biological features and certain phenotypic distinctions, the new isolates were assigned to a new Thiobacillus species, T. sajanensis sp. nov., with the type strain 4HGT (= VKM B-2365T).  相似文献   

7.
A Gram-stain positive, moderately thermophilic, aerobic, spore-forming and rod-shaped bacterium, designated YIM 73012T, was isolated from a sediment sample collected from a hot spring located in Tibet, China, and was characterized by using a polyphasic taxonomy approach. The strain is oxidase positive and catalase negative. Growth occurred at 37–65 °C (optimum, 45–50 °C), at pH 6.0–8.5 (optimum, pH 7.0–7.5) and with 0.5–3.5% NaCl (optimum, 0.5–1.0%, w/v). The major fatty acids were iso-C15:0, iso-C16:0 and C16:0. The major polar lipids comprised of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethylethanolamine and phosphatidylglycerol. The cell wall peptidoglycan contained meso-diaminopimelic acid. The respiratory quinone was MK-7. The G+C content of genomic DNA was 43.6 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that the strain YIM 73012T forms a distinct lineage with respect to the genus Anoxybacillus in the family Bacillaceae. Based on 16S rRNA gene sequence identities the closely related phylogenetic neighbours are Anoxybacillus caldiproteolyticus DSM 15730T (96.7%) and Saccharococcus thermophilus DSM 4749T (96.6%). Strain YIM 73012T was distinguishable from the closely related reference strains by the differences in phenotypic, chemotaxonomic and genotypic characteristics, and represents a novel species of the genus Anoxybacillus, for which the name Anoxybacillus sp. nov. is proposed. The type species is Anoxybacillus sediminis sp. nov., with the type strain YIM 73012T (=?KCTC 33884T?=?DSM 103835T).  相似文献   

8.
A bacterial isolate (SCU-B244T) was obtained in China from crickets (Teleogryllus occipitalis) living in cropland deserted for approximately 10 years. The isolated bacteria were Gram-negative, facultatively anaerobic, oxidase-negative rods. A preliminary analysis of the 16S rRNA gene sequence indicated that the strain belongs to either the genus Erwinia or Pantoea. Analysis of multilocus sequence typing based on concatenated partial atpD, gyrB and infB gene sequences and physiological and biochemical characteristics indicated that the strain belonged to the genus Erwinia, as member of a new species as it was distinct from other known Erwinia species. Further analysis of the 16S rRNA gene showed SCU-B244T to have 94.71% identity to the closest species of that genus, Erwinia oleae (DSM 23398T), which is below the threshold of 97% used to discriminate bacterial species. DNA-DNA hybridization results (5.78±2.52%) between SCU-B244T and Erwinia oleae (DSM 23398T) confirmed that SCU-B244T and Erwinia oleae (DSM 23398T) represent different species combined with average nucleotide identity values which range from 72.42% to 74.41. The DNA G+C content of SCU-B244T was 55.32 mol%, which also differs from that of Erwinia oleae (54.7 to 54.9 mol%). The polyphasic taxonomic approach used here confirmed that the strain belongs to the Erwinia group and represents a novel species. The name Erwinia teleogrylli sp. nov. is proposed for this novel taxon, for which the type strain is SCU-B244T (= CGMCC 1.12772T = DSM 28222T = KCTC 42022T).  相似文献   

9.
An alkaliphilic, moderately halophilic, bacterium, designated strain X10-1T, was isolated from saline-alkaline soil inDaqing, Heilongjiang Province, China. Strain X10-1T was determined to be a Gram-positive aerobe with rod-shaped cells. The isolate was catalase-positive, oxidase-negative, non-motile, and capable of growth at salinities of 0–16% (w/v) NaCl (optimum, 3%). The pHrange for growth was 7.5–11.0 (optimum, pH 10.0). The genomic DNA G+C content was 47.7 mol%. Itsmajor isoprenoid quinone was MK-7 and its cellular fatty acid profile mainly consisted of anteiso-C15:0, anteiso-C17:0, iso-C15:0, C16:0, and iso-C16:0. The peptidoglycan contained meso-diaminopimelic acid as the diagnostic diamino acid. The predominant polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, and phosphatidylglycerol. Phylogenetic analysis based on 16S rRNA gene sequences showed that X10-1T is a member of the genus Bacillus, being most closely related to B. saliphilus DSM15402T (97.8% similarity) and B. agaradhaerens DSM 8721T (96.2%). DNA-DNA relatedness to the type strains of these species was less than 40%. On the basis of the phylogenetic, physiological, and biochemical data, strain X10-1T represents a novel species of the genus Bacillus, for which the name Bacillus daqingensis sp. nov. is proposed. The type strain is X10-1T (=NBRC 109404T = CGMCC 1.12295T).  相似文献   

10.
Two novel Gram-staining positive, rod-shaped, moderately halotolerant, endospore forming bacterial strains 5.5LF 38TD and 5.5LF 48TD were isolated and taxonomically characterized from a landfill in Chandigarh, India. The analysis of 16S rRNA gene sequences of the strains confirmed their closest identity to Bacillus thermotolerans SgZ-8T with 99.9% sequence similarity. A comparative phylogenetic analysis of strains 5.5LF 38TD, 5.5LF 48TD and B. thermotolerans SgZ-8T confirmed their separation into a novel genus with B. badius and genus Domibacillus as the closest phylogenetic relatives. The major fatty acids of the strains are iso-C15:0 and iso-C16:0 and MK-7 is the only quinone. The major polar lipids are diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The digital DNA-DNA hybridization (DDH) and ortho average nucleotide identity (ANI) values calculated through whole genome sequences indicated that the three strains showed low relatedness with their phylogenetic neighbours. Based on evidences from phylogenomic analyses and polyphasic taxonomic characterization we propose reclassification of the species B. thermotolerans into a novel genus named Quasibacillus thermotolerans gen. nov., comb. nov with the type strain SgZ-8T (= CCTCC AB2012108T = KACC 16706T). Further our analyses also revealed that B. encimensis SGD-V-25T is a later heterotypic synonym of Bacillus badius DSM 23T.  相似文献   

11.
During a cultural diversity survey on hydrolytic bacteria in saline alkaline soils, a hydrolytic actinobacterium strain ACPA39T was enriched and isolated in pure culture from a soda solonchak soil in southwestern Siberia. It forms a substrate mycelium with rod-shaped sporangia containing 1–3 exospores. The isolate is obligately alkaliphilic, growing at pH 7.5–10.3 (optimum at 8.5–9.0) and moderately halophilic, tolerating up to 3 M total Na+ in the form of sodium carbonates. It is an obligately aerobic, organoheteroterophic, saccharolytic bacterium, utilizing various sugars and alpha/beta-glucans as growth substrates. According to the 16S rRNA gene-based phylogenetic analysis, strain ACPA39T forms a distinct branch within the family Micromonosporaceae, with the sequence identities below 94.5% with type strains of other genera. This is confirmed by phylogenomic analysis based on the 120 conserved single copy protein-based markers and genomic indexes (ANI, AAI). The cell-wall of ACPA39T contained meso-DAP, glycine, glutamic acid and alanine in a equimolar ratio, characteristic of the peptidoglycan type A1γ'. The whole-cell sugars include galactose and xylose. The major menaquinone is MK-10(H4). The identified polar lipids consist of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol. The polar lipid fatty acids were dominated by anteiso-C17:0, iso-C16:0, iso-C17:0, 10 Me-C18:0 and C18:1ω9. Based on the distinct phylogeny, the chemotaxonomy features and unique phenotypic properties, strain ACPA39T (DSM 106523T = VKM 2772T) is classified into a new genus and species in the family Micromonosporaceae for which the name Natronosporangium hydrolitycum gen. nov., sp. nov. is proposed.  相似文献   

12.
A Gram-positive, moderately halotolerant, rod-shaped, spore forming bacterium, designated strain FJAT-14515T was isolated from a soil sample in Cihu area, Taoyuan County, Taiwan. The strain grew at 10–35 °C (optimum at 30 °C), pH 5.7–9.0 (optimum at pH 7.0) and at salinities of 0–5 % (w/v) NaCl (optimum at 1 % w/v). The diagnostic diamino acid of the peptidoglycan of the isolated strain was meso-diaminopimelic acid and major respiratory isoprenoid quinone was MK-7. Major cellular fatty acids were anteiso-C15:0 (40.6 %), iso-C15:0 (20.7 %) and the DNA G+C content of strain FJAT-14515T was 37.1 mol %. A phylogenetic analysis based on 16S rRNA gene sequences indicated that strain FJAT-14515T belongs to the genus Bacillus, and was most closely related to the reference strains of Bacillus muralis DSM 16288T (97.6 %) and Bacillus simplex DSM 1321T (97.5 %). Levels of DNA–DNA relatedness between strain FJAT-14515T and the reference strains of B. muralis DSM 16288T and B. simplex DSM 1321T were 27.9 % ± 3.32 and 44.1 % ± 0.57, respectively. Therefore, on the basis of phenotypic, chemotaxonomic and genotypic properties, strain FJAT-14515T represents a novel species of the genus Bacillus, for which the name Bacillus cihuensis sp. nov. is proposed. The type strain is FJAT-14515T (=DSM 25969T = CGMCC 1.12697T).  相似文献   

13.
A search for the organisms responsible for anaerobic betaine degradation in soda lakes resulted in isolation of a novel bacterial strain, designated Z-7014T. The cells were Gram-stain-negative, non-endospore-forming rods. Growth occurred at 8–52 °C (optimum 40–45 °C), pH 7.1–10.1 (optimum pH 8.1–8.8) and 1.0–3.5 M Na+ (optimum 1.8 M), i.e. it can be regarded as a haloalkaliphile. The strain utilized a limited range of substrates, mostly peptonaceous but not amino acids, and was able to degrade betaine. Growth on betaine occurred only in the presence of peptonaceous substances which could not be replaced by vitamins. The G + C content of the genomic DNA of strain Z-7014T was 36.1 mol%. The major cellular fatty acids (>5% of the total) were C16:0 DMA, C18: 0 DMA, C16:1ω8, C16:0, C18:1 DMA, C16:1 DMA, C18:1ω9, and C18:0. Phylogenetic analysis of the 16S rRNA gene sequence revealed that strain Z-7014T formed a distinct evolutionary lineage in the order Halanaerobiales with the highest similarity to Halarsenitibacter silvermanii SLAS-1T (83.6%), Halothermothrix orenii H168T (85.6%), and Halocella cellulosilytica DSM 7362T (85.6%). AAI and POCP values between strain Z-7014T and type strains of the order Halanaerobiales were 51.7–57.8%, and 33.8–58.3%, respectively. Based on polyphasic results including phylogenomic data, the novel strain could be distinguished from other genera, which suggests that strain Z-7014T represents a novel species of a new genus, for which the name Halonatronomonas betaini gen. nov., sp. nov. is proposed. The type strain is Z-7014T (=KCTC 25237T = VKM B-3506T). On the basis of phylogenomic data, it is also proposed to evolve two novel families Halarsenitibacteraceae fam. nov. and Halothermotrichaceae fam. nov. within the current order Halanaerobiales.  相似文献   

14.
Analysis of spoilage-associated microbiota of modified-atmosphere packaged poultry meat revealed four different bacterial isolates that could not be assigned to known species. They showed a Gram-negative staining behavior, were facultatively aerobic, non-motile with variable cell morphology. Phylogenetic analysis of 16S rDNA and gyrB, rpoD and recA revealed a distinct lineage within the genus Photobacterium with Photobacterium (P.) iliopiscarium DSM 9896T, P. phosphoreum DSM 15556T, P. kishitanii DSM 19954T, P. piscicola LMG 27681T and P. aquimaris DSM 23343T as closest relatives.The designated type strain TMW 2.2021T is non-luminous and grew at 0–20 °C (optimum 10–15 °C), within pH 5.0–8.5 (optimum 6–8) and in the presence of 0.5–3% (w/v) NaCl (optimum 1%). Major cellular fatty acids of TMW 2.2021T were summed feature 3 (C16:1ω7c/iso-C15 3-OH), C16:0, C18:1ω7c and summed feature 2 (C12:0 aldehyde and C10.928 unknown). Quinone analysis revealed Q-8 as sole respiratory ubiquinone. The genome of TMW 2.2021T has a size of 4.56 Mb and a G + C content of 38.49 mol%. The ANI value between TMW 2.2021T and the type strain of closest relative P. iliopiscarium DSM 9896T was 91.43%. Fingerprinting on the base of M13-RAPD-PCR band pattern and MALDI-TOF MS profiles allowed intraspecies differentiation between our isolates but also supported their distinct lineage to a novel species. Based on phylogenetic, genomic, phenotypic and chemotaxonomic data, strain TMW 2.2021T and further strains represent a novel species of the genus Photobacterium, for which the name Photobacterium carnosum sp. nov. is proposed. The type strain is TMW 2.2021T (=DSM 105454T = CECT 9394T).  相似文献   

15.
16.
Two strains, asporogenous Z-7940 and sporogenous Z-7939, of a moderately haloalkaliphilic, obligately anaerobic, fermentative bacteria, motile, with Gram-positive cell wall structure, were isolated from soda deposits in Lake Magadi, Kenya. Both strains are mesophilic and utilize only two amino acids, histidine and glutamate, with formation of acetate and ammonium as the main end products. Strain Z-7939 in addition is able to utilize pyruvate. DNA-DNA homology between strains Z-7940 and Z-7939 was 94%, indicating that in spite of phenotypic differences they belong to the same species. They are true alkaliphiles with a pH range for growth of the type strain Z-7940 from pH 8.0 to pH 10.5, optimum at pH 9.4. Both strains obligately depend on sodium and bicarbonate ions. The optimum salt concentration for growth of the type strain is 8–10% wt/vol and the range from 4% to 16%. The G+C content of strain Z-7940 is 31.9 mol% and the strain Z-7939 is 32.3 mol%. Analysis of 16S rDNA sequence of the type strain shows it to belong to cluster XI of the low G+C Gram-positive bacteria. On the basis of its distinct phylogenetic position and physiological properties, we propose a new genus and new species Natronoincola histidinovorans for these strains. The type strain is Z-7940 (=DSM 11416). Received: 5 March 1998 / Accepted: 3 April 1998  相似文献   

17.
A spiral-shaped, highly motile bacterium was isolated from freshwater sulfidic sediment. Strain J10T is a facultative autotroph utilizing sulfide, thiosulfate, and sulfur as the electron donors in microoxic conditions. Despite high 16S rRNA gene sequence sequence identity to Magnetospirillum gryphiswaldense MSR-1 T (99.6 %), digital DNA-DNA hybridisation homology and average nucleotide identity between the two strains was of the different species level (25 % and 83 %, respectively). Strain J10T is not magnetotactic. The DNA G + C content of strain J10T is 61.9 %. The predominant phospholipid ester-linked fatty acids are C18:1ω7, C16:1ω7, and C16:0. Strain J10T (=DSM 23205 T = VKM B-3486 T) is the first strain of the genus Magnetospirillum showing lithoautotrophic growth and is proposed here as a novel species, Magnetospirillum sulfuroxidans sp. nov. In addition, we propose to establish a framework for distinguishing genera and families within the order Rhodospirillales based on phylogenomic analysis using the threshold values for average amino acid identity at ̴ 72 % for genera and ̴ 60 % for families. According to this, we propose to divide the existing genus Magnetospirillum into three genera: Magnetospirillum, Paramagnetospirillum, and Phaeospirillum, constituting a separate family Magnetospirillaceae fam. nov. in the order Rhodospirillales. Furthermore, phylogenomic data suggest that this order should accomodate six more new family level groups including Magnetospiraceae fam. nov., Magnetovibrionaceae fam. nov., Dongiaceae fam. nov., Niveispirillaceae fam. nov., Fodinicurvataceae fam. nov., and Oceanibaculaceae fam. nov.  相似文献   

18.
Three symbiotic nitrogen-fixing bacteria (BD68T, BD66 and BD73) isolated from root nodules of Lotus tenuis in lowland soils of the Flooding Pampa (Argentina), previously classified as members of the Mesorhizobium genus, were characterized in this study. Phylogenetic analysis of their 16S rRNA gene sequences showed a close relationship to M. japonicum MAFF 303099T, M. erdmanii USDA 3471T, M. carmichaelinearum ICMP 18942T, M. opportunistum WSM 2975T and M. jarvisii ATCC 33699T, with sequence identities of 99.72%–100%. Multilocus sequence analysis of other housekeeping genes revealed that the three isolates belonged to a phylogenetically distinct clade within the genus Mesorhizobium. Strain BD68T was designated as the group representative and its genome was fully sequenced. The average nucleotide identity and in silico DNA-DNA hybridization comparisons between BD68T and the most related type strains showed values below the accepted threshold for species discrimination. Phenotypic and chemotaxonomic features were also studied.Based on these results, BD68T, BD66 and BD73 could be considered to represent a novel species of the genus Mesorhizobium, for which the name Mesorhizobium intechi sp. nov. is hereby proposed. The type strain of this species is BD68T (=CECT 9304T = LMG 30179T).  相似文献   

19.
A Gram-positive, aerobic, coccoid-rod shaped, non-motile, catalase- and oxidase-positive bacterium, designated strain KJW98T, was isolated from the marine sediment of Karwar jetty, west coast of India. The strain was β-haemolytic, non-endospore-forming and grew with 0–8.5% (w/v) NaCl, at 15–48°C and at pH 6.5–9.0, with optimum growth with 0.5% (w/v) NaCl, at 42°C and at pH 7.0–8.0. Phylogenetic analyses based on 16S rRNA and gyrB gene sequences showed that strain KJW98T forms a lineage within the genus Bhargavaea. The G+C content of the genomic DNA was 55 mol%. The DNA-DNA relatedness values of strain KJW98T with B. beijingensis DSM 19037T, B. cecembensis LMG 24411T and B. ginsengi DSM 19038T were 43.2, 39 and 26.5%, respectively. The major fatty acids were anteiso-C15:0 (37.7%), iso-C15:0 (19.7%), anteiso-C17:0 (17.0%) and iso-C16:0 (11.1%). The predominant menaquinone was MK-8 and the cell-wall peptidoglycan was of A4α type with L-lysine as the diagnostic diamino acid. The major polar lipids were diphosphatidylglycerol and phosphatidylglycerol. The phenotypic, genotypic and DNA-DNA relatedness data indicate that strain KJW98T should be distinguished from the members of the genus Bhargavaea, for which the name Bhargavaea indica sp. nov. is proposed with the type strain KJW98T (=KCTC 13583T =LMG 25219T).  相似文献   

20.
A cold-adapted lipase producing bacterium, designated SS-33T, was isolated from sea sediment collected from the Bay of Bengal, India, and subjected to a polyphasic taxonomic study. Strain SS-33T exhibited the highest 16S rRNA gene sequence similarity with Staphylococcus cohnii subsp. urealyticus (97.18 %), Staphylococcus saprophyticus subsp. bovis (97.16 %) and Staphylococcus cohnii subsp. cohnii (97.04 %). Phylogenetic analysis based on the 16S rRNA gene sequences showed that strain SS-33T belongs to the genus Staphylococcus. Cells of strain SS-33T were Gram-positive, coccus-shaped, non-spore-forming, non-motile, catalase-positive and oxidase-negative. The major fatty acid detected in strain SS-33T was anteiso-C15:0 and the menaquinone was MK-7. The genomic DNA G + C content was 33 mol%. The DNA-DNA hybridization among strain SS-33T and the closely related species indicated that strain SS-33T represents a novel species of the genus Staphylococcus. On the basis of the morphological, physiological and chemotaxonomic characteristics, the results of phylogenetic analysis and the DNA-DNA hybridization, a novel species is proposed for strain SS-33T, with the name Staphylococcus lipolyticus sp. nov. The strain type is SS-33T (=MTCC 10101T?=?JCM 16560T). Staphylococcus lipolyticus SS-33T hydrolyzed various substrates including tributyrin, olive oil, Tween 20, Tween 40, Tween 60, and Tween 80 at low temperatures, as well as mesophilic temperatures. Lipase from strain SS-33T was partially purified by acetone precipitation. The molecular weight of lipase protein was determined 67 kDa by SDS-PAGE. Zymography was performed to monitor the lipase activity in Native-PAGE. Calcium ions increased lipase activity twofold. The optimum pH of lipase was pH 7.0 and optimum temperature was 30 °C. However, lipase exhibited 90 % activity of its optimum temperature at 10 °C and became more stable at 10 °C as compared to 30 °C. The lipase activity and stability at low temperature has wide ranging applications in various industrial processes. Therefore, cold-adapted mesophilic lipase from strain SS-33T may be used for industrial applications. This is the first report of the production of cold-adapted mesophilic lipase by any Staphylococcus species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号