首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
To evaluate PCR-generated artifacts (i.e., chimeras, mutations, and heteroduplexes) with the 16S ribosomal DNA (rDNA)-based cloning approach, a model community of four species was constructed from alpha, beta, and gamma subdivisions of the division Proteobacteria as well as gram-positive bacterium, all of which could be distinguished by HhaI restriction digestion patterns. The overall PCR artifacts were significantly different among the three Taq DNA polymerases examined: 20% for Z-Taq, with the highest processitivity; 15% for LA-Taq, with the highest fidelity and intermediate processitivity; and 7% for the conventionally used DNA polymerase, AmpliTaq. In contrast to the theoretical prediction, the frequency of chimeras for both Z-Taq (8.7%) and LA-Taq (6.2%) was higher than that for AmpliTaq (2.5%). The frequencies of chimeras and of heteroduplexes for Z-Taq were almost three times higher than those of AmpliTaq. The total PCR artifacts increased as PCR cycles and template concentrations increased and decreased as elongation time increased. Generally the frequency of chimeras was lower than that of mutations but higher than that of heteroduplexes. The total PCR artifacts as well as the frequency of heteroduplexes increased as the species diversity increased. PCR artifacts were significantly reduced by using AmpliTaq and fewer PCR cycles (fewer than 20 cycles), and the heteroduplexes could be effectively removed from PCR products prior to cloning by polyacrylamide gel purification or T7 endonuclease I digestion. Based upon these results, an optimal approach is proposed to minimize PCR artifacts in 16S rDNA-based microbial community studies.  相似文献   

2.
Lowell JL  Klein DA 《BioTechniques》2000,28(4):676-8, 680, 681
Microbial community analyses using molecular techniques, such as PCR followed by genomic library construction, have been helpful in better understanding microbial communities. This is especially critical in ecological systems where most of the microbes present cannot be cultured using traditional techniques. Unfortunately, there are problems associated with the use of such molecular techniques for the analysis of microbial community structure, primarily from the frequent formation of PCR artifacts. Multitemplate PCR is often subject to errors such as heteroduplex formation that is generated during the amplification of a particular gene from a mixed community of DNA. Based on work in this laboratory, heteroduplexes may be resolved before carrying out genomic library construction by including a digestion step with T7 endonuclease I. Here, the 18S rDNA gene of fungi was amplified from soil community DNA and digested with T7 endonuclease I to resolve any heteroduplexes present in the PCR product before cloning. These samples were compared with replicates that did not receive the T7 endonuclease I treatment. Digestion of the amplified community 18S rDNA with 10 U T7 endonuclease I/microgram DNA prior to cloning eliminated heteroduplexes, leaving only the desired clones. Without the T7 endonuclease I treatment, heteroduplexes were produced in approximately 10% of the recombinants screened. The addition of this step may eliminate heteroduplexes from PCR products and ensure that subsequent genomic library construction is not compromised.  相似文献   

3.
Although it has been recognized that PCR amplification of mixed templates may generate sequence artifacts, the mechanisms of their formation, frequency and potential elimination have not been fully elucidated. Here evidence is presented for heteroduplexes as a major source of artifacts in mixed-template PCR. Nearly equal proportions of homoduplexes and heteroduplexes were observed after co-amplifying 16S rDNA from three bacterial genomes and analyzing products by constant denaturing capillary electrophoresis (CDCE). Heteroduplexes became increasingly prevalent as primers became limiting and/or template diversity was increased. A model exploring the fate of cloned heteroduplexes during MutHLS-mediated mismatch repair in the Escherichia coli host demonstrates that the diversity of artifactual sequences increases exponentially with the number of both variable nucleotides and of original sequence variants. Our model illustrates how minimization of heteroduplex molecules before cloning may reduce artificial genetic diversity detected during sequence analysis by clone screening. Thus, we developed a method to eliminate heteroduplexes from mixed-template PCR products by subjecting them to ‘reconditioning PCR’, a low cycle number re-amplification of a 10-fold diluted mixed-template PCR product. This simple modification to the protocol may ensure that sequence richness encountered in clone libraries more closely reflects genetic diversity in the original sample.  相似文献   

4.
A method to measure the germline mutations induced by cancer treatment in humans is needed. To establish such a method we used a transgenic mouse model consisting of a human DNA repeat locus that has a high spontaneous mutation frequency as a biomarker. Alterations in repeat number were measured in individual sperm from mice hemizygous for an expanded (CTG)(162) human myotonic dystrophy type 1 (DM1) microsatellite repeat using single genome-equivalent (g.e.) PCR and detection by a DNA fragment analyzer. Mutation frequencies were measured in DNA from sperm from controls and sperm derived from stem spermatogonia, differentiating spermatogonia, and spermatocytes exposed to radiation and from spermatocytes of mice treated with cyclophosphamide. There was no increase above control levels in mutations, scored as >1 repeat changes, in any of the treated groups. However, moderately large deletion mutants (between 9 and 20 repeat changes) were observed at frequencies of 2.2% when spermatocytes were treated with cyclophosphamide and, 1.8 and 2.5% when spermatocytes and stem cells, respectively, were treated with radiation, which were significantly higher than the frequency of 0.3% in controls. Thus, radiation and cyclophosphamide induced deletions in the expanded DM1 trinucleotide repeat. PCR artifacts were characterized in sperm DNA from controls and from mice treated with radiation; all artifacts involved losses of more than 20 DM1 repeats, and surprisingly the artifact frequency was higher in treated sperm than in control sperm. The radiation-induced increase in the frequency of PCR artifacts might reflect alterations in sperm DNA that destabilize the genome not only during PCR amplification but also during early embryonic development.  相似文献   

5.
Artificial recombinants can be generated during PCR when more than two genetically distinct templates coexist in a single PCR reaction. These recombinant amplicons can lead to the false interpretation of genetic diversity and incorrect identification of biological phenotypes that do not exist in vivo. We investigated how recombination between 2 or 35 genetically distinct HIV-1 genomes was affected by different PCR conditions using the parallel allele-specific sequencing (PASS) assay and the next generation sequencing method. In a standard PCR condition, about 40% of amplicons in a PCR reaction were recombinants. The high recombination frequency could be significantly reduced if the number of amplicons in a PCR reaction was below a threshold of 1013–1014 using low thermal cycles, fewer input templates, and longer extension time. Heteroduplexes (each DNA strand from a distinct template) were present at a large proportion in the PCR products when more thermal cycles, more templates, and shorter extension time were used. Importantly, the majority of recombinants were identified in heteroduplexes, indicating that the recombinants were mainly generated through heteroduplexes. Since prematurely terminated extension fragments can form heteroduplexes by annealing to different templates during PCR amplification, recombination has a better chance to occur with samples containing different genomes when the number of amplicons accumulate over the threshold. New technologies are warranted to accurately characterize complex quasispecies gene populations.  相似文献   

6.
The contribution of PCR artifacts to 16S rRNA gene sequence diversity from a complex bacterioplankton sample was estimated. Taq DNA polymerase errors were found to be the dominant sequence artifact but could be constrained by clustering the sequences into 99% sequence similarity groups. Other artifacts (chimeras and heteroduplex molecules) were significantly reduced by employing modified amplification protocols. Surprisingly, no skew in sequence types was detected in the two libraries constructed from PCR products amplified for different numbers of cycles. Recommendations for modification of amplification protocols and for reporting diversity estimates at 99% sequence similarity as a standard are given.  相似文献   

7.
Saitoh K  Chen WJ 《Gene》2008,423(1):92-95
Occurrence of chimeric sequences and related artifacts in PCR cloning procedures gives us risks of over-estimation of haplotypes or alleles. Recombination among haplotypes occurs through template switching during PCR cycles or through random repair of mismatch sites on heteroduplex DNA by the host cell. To eliminate the chimeric cloning artifacts, we tested two alternative protocols using T7 endonuclease I cleavage of mismatch sites and re-extension of nascent strands. Though T7 endonuclease I effectively eliminated chimeric clones in some cases, it produced many short fragments. Protocol with single re-extension of PCR products successfully recovered non-recombinant clones with fewer short fragments. In spite of the improvement of allelic recovery through these two protocols, there were still a few recombinants that remained in both reaction mixtures, and thus interpretation of the results for haplotype diversity in a PCR-amplified DNA population should be cautionary. Because re-extension in a diluted reaction mixture is quick, inexpensive and effective, it is advisable to use this procedure for recovery of chromosomal alleles with PCR cloning.  相似文献   

8.
Evidence suggests that the genotoxic mechanism of estrogens (estrone/estradiol) in breast cancer involves their oxidation to 3,4-quinones and reaction with DNA to form depurinating N3Ade and N7Gua adducts. We examined whether estrogen genotoxicity is mutagenic in the mammary gland of the female ACI rat, a model for estrogen-dependent breast cancer. Mutagenesis was studied by PCR amplification of the H-ras1 gene (exons 1–2), cloning in pUC18, transforming Escherichia coli, and sequencing the inserts in plasmids from individual colonies. Mammary glands of both estrogen-responsive (ACI and DA) and resistant (Sprague–Dawley) rats contained pre-existing mutations at frequencies of (39.8–58.8) × 10−5, the majority (62.5–100%) of which were A·T to G·C transitions. Estradiol-3,4-quinone (200 nmol) treatment of ACI rats caused rapid (6 h to 1 day) mutagenesis (frequency (83.3–156.1) × 10−5; A·T to G·C 70–73.3%). The estrogen-induced A·T to G·C mutations were detected as G·T heteroduplexes, as would be expected if N3Ade depurinations caused Gua misincorporations by erroneous repair. These heteroduplexes were identified by the T·G-DNA glycosylase (TDG) assay. TDG converts G·T heteroduplexes to G.abasic sites, rendering DNA templates refractory to PCR amplification. Consequently, A·T to G·C mutations present as G·T heteroduplexes in the DNA are eliminated from the spectra. TDG treatment of mammary DNA from estradiol-3,4-quinone-treated ACI rats brought A·T to G·C mutations down to pre-existing frequencies. Our results demonstrate that treatment with estradiol-3,4-quinone, an important metabolite of estrogens, produced A·T to G·C mutations in the DNA of the mammary gland of ACI rats.  相似文献   

9.
The contribution of PCR artifacts to 16S rRNA gene sequence diversity from a complex bacterioplankton sample was estimated. Taq DNA polymerase errors were found to be the dominant sequence artifact but could be constrained by clustering the sequences into 99% sequence similarity groups. Other artifacts (chimeras and heteroduplex molecules) were significantly reduced by employing modified amplification protocols. Surprisingly, no skew in sequence types was detected in the two libraries constructed from PCR products amplified for different numbers of cycles. Recommendations for modification of amplification protocols and for reporting diversity estimates at 99% sequence similarity as a standard are given.  相似文献   

10.
Positive selection vectors for high-fidelity PCR cloning   总被引:1,自引:0,他引:1  
Malo MS  Husain Z 《BioTechniques》2003,34(6):1250-1258
The power of PCR cloning of a target DNA fragment is limited by polymerase-induced mutations. While high-fidelity PCR products can be achieved by reducing the number of PCR cycles, the cloning of the very small amount of DNA thus amplified should give only a few recombinant clones (carrying an insert), which would be very difficult to screen from thousands of background false-positive clones generated by all the currently available vectors, including the positive selection vectors. False-positive clones are mostly generated by the recircularization of linearized vectors that have lost some bases at their ends due to digestion with contaminating exonuclease activities present in restriction enzymes, ligases, polymerases, and other reagents. To overcome this problem, two positive selection vectors, pRGR1Ap and pREM5Tc, have been developed, based on the principles of reporter gene reconstruction and regulatory element modulation, respectively. A PCR primer carrying a vector-specific sequence at its 5' end is used in PCR. When the resultant PCR products are ligated to the specific vector, an antibiotic resistance gene is expressed, thus donating positive selection capability to the harboring cells in a specific selection medium. These vectors cloned PCR fragments generated from less than a femtomole quantity of Escherichia coli genomic DNA after only three cycles of PCR amplification, thus greatly reducing the number of recombinant clones containing polymerase-induced mutations.  相似文献   

11.
Mutation detection using Surveyor nuclease   总被引:2,自引:0,他引:2  
We have developed a simple and flexible mutation detection technology for the discovery and mapping of both known and unknown mutations. This technology is based on a new mismatch-specific DNA endonuclease from celery, Surveyor nuclease, which is a member of the CEL nuclease family of plant DNA endonucleases. Surveyor nuclease cleaves with high specificity at the 3' side of any mismatch site in both DNA strands, including all base substitutions and insertion/deletions up to at least 12 nucleotides. Surveyor nuclease technology involves four steps: (i) PCR to amplify target DNA from both mutant and wild-type reference DNA; (ii) hybridization to form heteroduplexes between mutant and wild-type reference DNA; (iii) treatment of annealed DNA with Surveyor nuclease to cleave heteroduplexes; and (iv) analysis of digested DNA products using the detection/separation platform of choice. The technology is highly sensitive, detecting rare mutants present at as low as 1 in 32 copies. Unlabeled Surveyor nuclease digestion products can be analyzed using conventional gel electrophoresis or high-performance liquid chromatography (HPLC), while end labeled digestion products are suitable for analysis by automated gel or capillary electrophoresis. The entire protocol can be performed in less than a day and is suitable for automated and high-throughput procedures.  相似文献   

12.
PCR amplification of genomic DNA or cDNA has become a standard tool for identification of mutations underlying genetic disease. There are inherent limitations in the application of this method in compound heterozygotes. One problem which is encountered is the disruption of phase (linkage) between heterozygous polymorphisms represented on heterologous alleles. A test system was used to demonstrate and quantitate the disruption of phase between two polymorphic restriction sites. Phase is disrupted in approximately 1% of the PCR amplified material, possibly due to incomplete chain elongations and subsequent priming on the heterologous allele. Phase is disrupted in approximately 1/4 of cloned PCR fragments, possibly due to excision repair of heteroduplexes during cloning. The implications of these disruptions for the use of PCR in identifying mutations are discussed.  相似文献   

13.
Detecting single base substitutions as heteroduplex polymorphisms.   总被引:25,自引:0,他引:25  
We have developed a sensitive technique for detecting single base substitutions in polymerase chain reaction (PCR) products from individuals heterozygous for polymorphisms or new mutations. This technique takes advantage of the formation of heteroduplexes in the PCR between different alleles from heterozygous individuals. These heteroduplexes can be detected on polyacrylamide gels because they migrate slower than their corresponding homoduplexes. Using PCR, we have generated a series of point mutations in a defined region of DNA in the equine infectious anemia virus (EIAV). Each mutation is the result of a single base substitution. By mixing the PCR products amplified from these mutations with one another, as well as with wildtype PCR products, we can generate heteroduplexes in which the identity of the mismatched bases is known. We detected eight of nine point mutations using this technique. We have also modified the electrophoretic conditions to optimize the detection of these heteroduplexes. In addition, the usefulness of this technique is demonstrated by its ability to detect a mutation in the cystic fibrosis gene that is the result of a single base substitution. This technique should prove useful for rapidly screening large numbers of individuals for new mutations or polymorphisms.  相似文献   

14.
A protocol for TILLING and Ecotilling in plants and animals   总被引:2,自引:0,他引:2  
We describe Targeting-Induced Local Lesions IN Genomes (TILLING), a reverse-genetic strategy for the discovery and mapping of induced mutations. TILLING is suitable for essentially any organism that can be mutagenized. The TILLING procedure has also been adapted for the discovery and cataloguing of natural polymorphisms, a method called Ecotilling. To discover nucleotide changes within a particular gene, PCR is performed with gene-specific primers that are end-labeled with fluorescent molecules. After PCR, samples are denatured and annealed to form heteroduplexes between polymorphic DNA strands. Mismatched base pairs in these heteroduplexes are cleaved by digestion with a single-strand specific nuclease. The resulting products are size-fractionated using denaturing polyacrylamide gel electrophoresis and visualized by fluorescence detection. The migration of cleaved products indicates the approximate location of nucleotide polymorphisms. Throughput is increased and costs are reduced by sample pooling, multi-well liquid handling and automated gel band mapping. Once genomic DNA samples have been obtained, pooled and arrayed, thousands of samples can be screened daily.  相似文献   

15.
The present study investigated cDNA chimeras using two closely related members of the rice secretory protein gene family as an example. The chimeras detected in initial cDNA products that were amplified using LA Taq polymerase involved two categories: single-site type and multiple-site type with the frequency being about 20% and 3%, respectively. Further investigation revealed that PCR buffer additives and type of DNA polymerase had a major effect on the formation of chimeras in mixed-template amplification. Heteroduplex repair by microbial DNA repair systems in cDNA cloning was confirmed to produce the chimeras too, but it was not the major source.  相似文献   

16.
Changes in the number of mutant copies of mitochondrial DNA (mtDNA) were studied in the brain and spleen tissues of mice after their X-irradiation at a dose of 5 Gy. For this purpose, heteroduplexes obtained via hybridization of the products of PCR amplification of mtDNA (ND3 gene and two D-loop regions) from irradiated and control mice were digested with the CelI nuclease capable of specific mismatch cleavage. Heteroduplexes obtained via hybridization of the products of PCR amplification of mtDNA from irrradiated and control mice were digested by the CelI nuclease to a greater degree than heteroduplexes of the PCR products of mtDNA of mice from the control group. This suggests the presence of mutations in mtDNA regions in irradiated mice. Digestion by the CelI nuclease of heteroduplexes obtained via hybridization of the PCR products of mtDNA (ND3 gene and D-loop regions) on day 8 after irradiation is essentially more efficient than digestion of heteroduplexes obtained via hybridization of the PCR products of mtDNA isolated from mouse tissues on days 14 and 28 of the postradiation period. These results indicate a reduction in the number of mtDNA copies with mutations in tissues of irradiated mice by day 28 of the postradiation period. The reduction in the level of mutant mtDNA copies by this term is especially significant in the spleen. The total number of mtDNA copies in the mouse brain and spleen tissues estimated by real-time PCR, relative to the nuclear β-actin gene, is also decreased by 30–50% as compared to the control on days 8 to 28 after irradiation. The results of the study suggest that mutant mtDNA copies are eliminated from tissues of irradiated animals in the postradiation period. This elimination can be regarded either as a result of selective degradation of mitochondria carrying mutant DNA copies or as a result of cell death being continued in tissues of irradiated animals.  相似文献   

17.
用变性梯度凝胶电泳分析PCR克隆的突变率   总被引:1,自引:0,他引:1  
用变性梯度凝胶电泳技术比较分析了分别由Taq DNA聚合酶和Pfu DNA聚合酶催化扩增的产物克隆入pUCm-T/DH5a系统中产生的重组子,发现包含突变的重组子分别为21.50%和3.50%,前为后的6.15倍。转化为每100nt净扩增长度的突变率分别为7.44%和1.21%。  相似文献   

18.
G C Wang  Y Wang 《Applied microbiology》1997,63(12):4645-4650
PCR is routinely used in amplification and cloning of rRNA genes from environmental DNA samples for studies of microbial community structure and identification of novel organisms. There have been concerns about generation of chimeric sequences as a consequence of PCR coamplification of highly conserved genes, because such sequences may lead to reports of nonexistent organisms. To quantify the frequency of chimeric molecule formation, mixed genomic DNAs from eight actinomycete species whose 16S rRNA sequences had been determined were used for PCR coamplification of 16S rRNA genes. A large number of cloned 16S ribosomal DNAs were examined by sequence analysis, and chimeric molecules were identified by multiple-sequence alignment with reference species. Here, we report that the level of occurrence of chimeric sequences after 30 cycles of PCR amplification was 32%. We also show that PCR-induced chimeras were formed between different rRNA gene copies from the same organism. Because of the wide use of PCR for direct isolation of 16S rRNA sequences from environmental DNA to assess microbial diversity, the extent of chimeric molecule formation deserves serious attention.  相似文献   

19.
Polycyclic aromatic hydrocarbons (PAH) form stable and depurinating DNA adducts in mouse skin to induce preneoplastic mutations. Some mutations transform cells, which then clonally expand to establish tumors. Strong clues about the mutagenic mechanism can be obtained if the PAH-DNA adducts can be correlated with both preneoplastic and tumor mutations. To this end, we studied mutagenesis in PAH-treated early preneoplastic skin (1 day after exposure) and in the induced papillomas in SENCAR mice. Papillomas were studied by PCR amplification of the H-ras gene and sequencing. For benzo[a]pyrene (BP), BP-7,8-dihydrodiol (BPDHD), 7,12-dimethylbenz[a]anthracene (DMBA) and dibenzo[a,l]pyrene (DB[a,l]P), the codon 13 (GGC to GTC) and codon 61 (CAA to CTA) mutations in papillomas corresponded to the relative levels of Gua and Ade-depurinating adducts, despite BP and BPDHD forming significant amounts of stable DNA adducts. Such a relationship was expected for DMBA and DB[a,l]P, as they formed primarily depurinating adducts. These results suggest that depurinating adducts play a major role in forming the tumorigenic mutations. To validate this correlation, preneoplastic skin mutations were studied by cloning H-ras PCR products and sequencing individual clones. DMBA- and DB[a,l]P-treated skin showed primarily A.T to G.C mutations, which correlated with the high ratio of the Ade/Gua-depurinating adducts. Incubation of skin DNA with T.G-DNA glycosylase eliminated most of these A.T to G.C mutations, indicating that they existed as G.T heteroduplexes, as would be expected if they were formed by errors in the repair of abasic sites generated by the depurinating adducts. BP and its metabolites induced mainly G.C to T.A mutations in preneoplastic skin. However, PCR over unrepaired anti-BPDE-N(2)dG adducts can generate similar mutations as artifacts of the study protocol, making it difficult to establish an adduct-mutation correlation for determining which BP-DNA adducts induce the early preneoplastic mutations. In conclusion, this study suggests that depurinating adducts play a major role in PAH mutagenesis.  相似文献   

20.
Experimental strategy has been developed for selection of mismatched DNA binding phages from library of E. coli f1 filamentous phages carrying random peptide inserts on the surface of bacteriophage particles. The strategy is based on the use of phage display technique, DNA heteroduplexes (with single nucleotide variations), and paramagnetic beads. DNA heteroduplexes have been obtained from biotin-labeled PCR product. During the first stage the phage particles were incubated with DNA heteroduplexes possessing mismatched nucleotides. The next step after elimination of free phages and separation of bound phages from DNA heteroduplexes was subtraction of phages binding with DNA heteroduplexes (without mismatched nucleotides). Phages selected by this method were capable of discriminating DNA heteroduplexes with single nucleotide variations from DNA homoduplexes. Phages immobilized on solid base retain their activity and specificity, and therefore can be used for developing a new screening automated method for detecting point mutations and gene polymorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号