首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Mutations in the araC gene of Escherichia coli B/r were isolated which alter both activation of the araBAD operon expression and autoregulation. The mutations were isolated on an araC-containing plasmid by hydroxylamine mutagenesis of plasmid DNA. The mutant phenotype selected was the inability to autoregulate. The DNA sequence of 16 mutants was determined and found to consist of seven different missense mutations located within the distal third of the araC gene. Enzyme activities revealed that each araC mutation had altered both autoregulatory and activator functions of AraC protein. The mutational analysis presented in this paper suggests that both autoregulatory and activator functions are localized to the same determinants of the AraC protein and that the amino acid sequence within the carboxy-terminal region of AraC protein is important for site-specific DNA binding.  相似文献   

2.
3.
The Salmonella typhimurium araC gene product is known to be susceptible to proteolytic degradation. Limited cleavage by trypsin, kallikrein, elastase and pronase E yields stable fragments comprising approximately the N-terminal two thirds of the AraC protein. These fragments have in common the ability to dimerize in solution and to bind L-arabinose and D-fucose. Under appropriate conditions, hydrolysis of the AraC protein with Staphylococcus aureus V8 protease leads to a small C-terminal fragment which is able to bind specifically to a synthetic ara consensus sequence. These results indicate that, as with several other prokaryotic gene regulatory proteins, the basic functions of effector binding, subunit interaction and specific DNA binding are segregated into distinct domains of the AraC protein.  相似文献   

4.
5.
6.
A total of 400 suppressible mutations have been isolated in the araC gene of Escherichia coli. Based on deletion mapping, growth patterns when suppressed, and intragenic recombination, 37 mutants have been determined to contain unique mutations. Rapid plate assays were developed to test for each of the three AraC protein functions: inducing araBAD, repressing araBAD, and araC self-repression. The 185 mutant proteins, resulting from 37 mutants each suppressed by five different suppressors, were assayed for each of the three AraC functions. These plate assays showed that: (i) for each function, some areas of the gene map are more sensitive to mutation than other areas, and (ii) three of the mutant AraC proteins were unlike previously characterized AraC mutants. Enzyme assays on the mutant proteins confirmed their novel character. The first mutant cannot induce araBAD but retains the capacity to perform both repression functions; and the second and third can each perform one of the two repression functions better than it can perform the other. These characteristics suggest that previously proposed models of ara regulation are incomplete.  相似文献   

7.
8.
9.
10.
The araB and araC genes of Erwinia carotovora were expressed in Escherichia coli and Salmonella typhimurium. The araB and araC genes in E. coli, E. carotovora, and S. typhimurium were transcribed in divergent directions. In E. carotovora, the araB and araC genes were separated by 3.5 kilobase pairs, whereas in E. coli and S. typhimurium they were separated by 147 base pairs. The nucleotide sequence of the E. carotovora araC gene was determined. The predicted sequence of AraC protein of E. carotovora was 18 and 29 amino acids longer than that of AraC protein of E. coli and S. typhimurium, respectively. The DNA sequence of the araC gene of E. carotovora was 58% homologous to that of E. coli and 59% homologous to that of S. typhimurium, with respect to the common region they share. The predicted amino acid sequence of AraC protein was 57% homologous to that of E. coli and 58% homologous to that of S. typhimurium. The 5' noncoding regions of the araB and araC genes of E. carotovora had little homology to either of the other two species.  相似文献   

11.
12.
We examined the recognition of the araBAD promoter by the AraC protein in the Escherichia coli arabinose operon. A mutant promoter, with base substitutions at positions contacted by AraC, was used to isolate suppressor mutations in araC by direct selection. Two hydroxylamine-induced araC mutations were isolated repeatedly; each contained a single amino acid substitution. When tested against a set of base substitution promoter mutants, one revertant, an Arg to His substitution at residue 250, displayed altered base specificity for a single position within the araBAD promoter. The other revertant, a Cys to Tyr substitution at residue 204, did not show consistent base-specific suppression. Neither demonstrated a higher affinity than the wild type protein for the mutant promoter in vitro. Both proteins suppress mutant sequences by a mechanism that does not appear to involve the formation of new net favorable contacts with the mutant base pairs of the promoter.  相似文献   

13.
The araBAD operon of Escherichia coli B/r is positively and negatively regulated by the araC+ regulatory protein. Mutations in gene araC can result in a variety of different regulatory phenotypes: araC null mutants (those carrying a null allele exhibiting no repressor or activator activity) are unable to achieve operon induction; araC-constitutive (araCc) mutants are partially constitutive, inducible by D-fucose, and resistant to catabolite repression; araCh mutants are hypersensitive to catabolite repression; and araCi mutants are resistant to catabolite repression. Various mutant alleles of gene araC were cloned into a derivative of plasmid pBR322 by in vivo recombination. Various heterozygous araC allelic combinations were constructed by transformation. Analysis of isomerase (araA) specific activity levels under various growth conditions indicated the following dominance relationships with regard to sensitivity to catabolite repression: araCh greater than araC+ greater than (araCc and araCi) greater than araC. It was concluded that the araCh protein may form a repressor complex that is refractory to removal by cyclic AMP receptor protein-cyclic AMP complex. This was interpreted in terms of the known nucleoprotein interactions between ara regulatory proteins and ara regulatory DNA.  相似文献   

14.
The allosteric mechanism by which the gene expression regulatory protein AraC regulates its DNA-binding activity is shown to be portable by grafting it to beta-galactosidase, generating an arabinose-regulated beta-galactosidase. A portion of the alpha-peptide sequence that complements the activity of alpha-acceptor beta-galactosidase was inserted into a nonessential region of the regulatory peptidyl arm of AraC protein. Arabinose, which regulates the position of the arm in AraC protein now regulates the availability of the alpha-peptide to alpha-acceptor beta-galactosidase, thereby modulating its activity in response to arabinose.  相似文献   

15.
16.
The Bacillus subtilis araC locus, mapped at about 294 degrees on the genetic map, was defined by mutations conferring an Ara- phenotype to strains bearing the metabolic araA, araB, and araD wild-type alleles (located at about 256 degrees on the genetic map) and by mutants showing constitutive expression of the three genes. In previous work, it has been postulated that the gene in which these mutations lie exerts its effect on the ara metabolic operon in trans, and this locus was named araC by analogy to the Escherichia coli regulatory gene. Here, we report the cloning and sequencing of the araC locus. This region comprises two open reading frames with divergently arranged promoters, the regulatory gene, araC, encoding a 41-kDa polypeptide, and a partially cloned gene, termed araE, which most probably codes for a permease involved in the transport of L-arabinose. The DNA sequence of araC revealed that its putative product is very similar to a number of bacterial negative regulators (the GalR-LacI family). However, a helix-turn-helix motif was identified in the N-terminal region by its identity to the consensus signature sequence of another group of repressors, the GntR family. The lack of similarity between the predicted primary structure of the product encoded by the B. subtilis regulatory gene and the AraC regulator from E. coli and the apparently different modes of action of these two proteins lead us to propose a new name, araR, for this gene. The araR gene is monocistronic, and the promoter region contains -10 and -35 regions (as determined by primer extension analysis) similar to those recognized by RNA polymerase containing the major vegetative cell sigma factor sigmaA. An insertion-deletion mutation in the araR gene leads to constitutive expression of the L-arabinose metabolic operon. We demonstrate that the araR gene codes for a negative regulator of the ara operon and that the expression of araR is repressed by its own product.  相似文献   

17.
18.
Zhu C  Johansson M  Karlsson A 《FEBS letters》2000,474(2-3):129-132
The anti-leukemic nucleoside analogs 1-beta-D-arabinofuranosylcytosine (araC) and 9-beta-D-arabinofuranosylguanine (araG) are dependent on intracellular phosphorylation for pharmacological activity. AraC is efficiently phosphorylated by deoxycytidine kinase (dCK). Although araG is phosphorylated by dCK in vitro, it is a preferred substrate of mitochondrial deoxyguanosine kinase. We have used autoradiography to show that araC was incorporated into nuclear DNA in Molt-4 and CEM T-lymphoblastoid cells as well as in Chinese hamster ovary cells. In contrast, araG was predominantly incorporated into mitochondrial DNA in the investigated cell lines, without detectable incorporation into nuclear DNA. These data suggest that the molecular targets of araG and araC may differ.  相似文献   

19.
Cytosine arabinoside (araC) is an important drug used for the treatment of human leukemias. In order to exert its cytotoxic effects, araC must be incorporated into chromosomal DNA. Although specific DNA lesions that involve base loss or modification stimulate nucleic acid cleavage mediated by type II topoisomerases, the effects of deoxyribose sugar ring modification on enzyme activity have not been examined. Therefore, the effects of incorporated araC residues on the DNA cleavage/religation equilibrium of human topoisomerase IIalpha and beta were characterized. AraC lesions were position-specific topoisomerase II poisons and stimulated DNA scission mediated by both human type II enzymes. However, the positional specificity of araC residues differed from that previously reported for other cleavage-enhancing DNA lesions. Finally, additive or synergistic increases in DNA cleavage were observed in the presence of araC lesions and etoposide. These findings broaden the range of DNA lesions known to alter topoisomerase II function and raise the possibility that this enzyme may mediate some of the cellular effects of araC.  相似文献   

20.
The effects of UVC radiation (lambda = 254 nm, 85 J/m2) and/or 1-beta-D-arabino-furanosylcytosine (araC, 2 x 10(-3) M, 2 h) on two mouse lymphoma cell lines, UVC-sensitive and X-ray resistant L5178Y-R and UVC-resistant and X-ray sensitive L5178Y-S, were investigated. AraC treatment inhibited the semiconservative DNA replication to 1.4% and 3.8% in L5178Y-R and L5178Y-S cells, respectively, and decreased the sedimentation distance of nucleoids from the cells of both lines. The shortening of sedimentation distances induced by UVC and araC treatment was 8.1 mm for L5178Y-R cells and 11.8 mm for L5178Y-S, and indicated a higher number of DNA breaks in L5178Y-S cells. Assuming that such breaks are the result of the inhibition of DNA repair replication by araC, we conclude that L5178Y-S cells have a greater number of repaired sites than L5178Y-R cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号