首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Although endophytic fungi are ubiquitous in plants, their full range of ecological effects has yet to be characterized, particularly in non-agronomic systems. In this study, we compared the responses of two congeneric bluegrass species to flooding. Both plant species co-occur in subalpine zones of the Rocky Mountains. Marsh bluegrass (Poa leptocoma) commonly hosts a vertically transmitted fungal endophyte (Epichloë sp.) and naturally grows in wetter conditions than does nodding bluegrass (Poa reflexa), which lacks an epichloid endophyte. We investigated the novel hypothesis that endophyte symbiosis promotes host fitness under flooded conditions, contributing to niche differentiation between the two bluegrass species. We used a factorial greenhouse experiment to test whether endophyte presence improved survival, growth, or reproduction of P. leptocoma under flooded versus non-flooded edaphic conditions by experimentally removing the endophyte from half of the plants. We compared P. leptocoma responses to those of the endophyte-free congener. In contrast to expectations generated from the natural distributions of the two plant species, endophyte presence was more beneficial to P. leptocoma under ambient soil moisture than under flooding. Increased benefits of symbiosis in drier soils are consistent with studies of other grass endophytes. Flooded soils also unexpectedly improved the growth of P. reflexa more than that of the wet habitat specialist, P. leptocoma. While our results demonstrate an overall benefit of fungal symbiosis in this system, ecological factors other than flooding per se likely underlie the observed geographical distributions of these congeneric grasses in nature.  相似文献   

2.
Seedborne systemic endophytic fungi of grasses are thought to be plant mutualists, because they have been shown to improve their host’s resistance against biotic and abiotic stresses. The interactions in plant–endophyte associations vary from mutualistic to parasitic with environmental conditions and the genotypes of interacting species. The possible pros and cons of endophytic fungi are expected to be most evident during the seedling establishment, where host fitness is most directly affected. If this holds true, endophytes may play a focal role in local adaptation of hosts to different environments. We examined if endophyte-infected and uninfected seeds and seedlings of two native grass species, Festuca rubra and F. ovina, differ in seed germination and seedling growth rates under greenhouse conditions. The germination of F. rubra seeds was also studied in the field. This is the first time that the effects of Epichloë endophyte on seedling establishment of fine fescues from natural populations have been experimentally evaluated. Mother plant (seed family) had a marked effect on many response variables in both grass species. Length and mean biomass of tillers of endophyte-infected (E+) F. ovina seedlings were lower, but root:shoot ratios were higher than in endophyte-free (E?) seedlings. In F. rubra, the effects of the endophyte were dependent on the habitat where the seeds were collected. The E+ seeds from river banks germinated faster than E+ seeds from meadows, and E+ seedlings from the river banks produced fewer but taller and heavier tillers than the other seedlings. Our data suggest that the effects of the endophyte infection on the seedling stage of fine fescues are dependent the species of grass, host genetic background and mother plant habitat. The germination strategy and growth form of E+ red fescue seedlings from river banks may be beneficial to surviving in the harsh conditions of that habitat.  相似文献   

3.
Plants growing in highly saline soils harbor unique communities of fungal root endophytes. We aimed to gain insight into how these communities are established in natural plant populations. We used cultivation-based and molecular approaches to examine root-endophytic colonization in the annual halophyte Salicornia patula at three time points over a 5-month period, from establishment to flowering. At the last sampling, the endophytic community of S. patula was compared to that in the related but perennial halophyte Arthrocnemum macrostachyum. The presence of root endophytes in S. patula was negligible at the first two sampling times, and remained low at the last sampling compared to A. macrostachyum. The latter species showed a well-established endophytic community in its roots that differed from that in S. patula, which was dominated by members of Pleosporales. Although such differences could be partially due to the host lifestyle, the possibility of a strong effect of the substratum could not be excluded. Altogether, our data indicate that the fungal endophytic colonization of roots is a slow process under salt stress. Therefore, we suggest that, in contrast to what is proposed for other systems, endophyte symbioses are unlikely to impact the development of the short-life-cycled S. patula living in these environments.  相似文献   

4.
Most terrestrial plants establish symbiotic associations with microorganisms that enable them to overcome abiotic or biotic filters in ecosystems. Here we investigated how aerial mutualisms involving invasive species may affect the recipient community’s structure. We hypothesized that the endophyte Epichloë occultans enhances the ability of Lolium multiflorum to establish and colonize, but that success would depend on the structure and invasion resistance of the recipient grassland community. Seeds of L. multiflorum with high (E+) and low (E?) endophyte incidence were sown in plots located in grasslands with or without recent grazing history. Relative cover of L. multiflorum and floristic groups was determined during the growing season. Whereas we did not detect any endophyte effect in sites with grazing history, L. multiflorum cover was 63 % in E+ and 27 % in E? plots in sites without grazing history. As cover of L. multiflorum increased in these sites, the cover of warm- and cool-season grasses decreased in spring, with that of warm-season grasses continuing to decrease in summer. These decreases corresponded to 1.9, 3.7 and 1.6 %, for every % increase of L. multiflorum cover. Path analysis and posterior modelling predicted a greater impact of the endophyte on L. multiflorum cover than of seed addition when resident L. multiflorum cover was ≤20 %. This effect decreased asymptotically as L. multiflorum cover increased beyond 20 %. Our results suggest that the endophyte may boost the invasion ability of L. multiflorum particularly in natural grassland without grazing history with potential longer-term consequences for community structure and dynamics.  相似文献   

5.
The relationship between diversity and invasibility might be confounded by extrinsic environmental factors and the evolutionary structure of the resident community. To examine the role of extrinsic environmental factors, species and phylogenetic diversity in regulating community susceptibility to invasion, we established 109 plots either with or without Ageratum conyzoides L. in Liandu, China. We identified all the species in our samples, weighed the aboveground biomass of each species, and measured environmental variables. For all species recorded in our survey, we constructed a community phylogeny using PhytoPhylo mega-phylogeny as a backbone. We selected the best-fit environment model based on the minimum corrected Akaike information criteria score to examine the effect of extrinsic environmental variables on the relative abundance of A. conyzoides. Relationship between biodiversity and invasion of A. conyzoides was examined by a multiple regression, in which extrinsic ecological factors and biodiversity were combined to predict the relative abundance of A. conyzoides. To reduce the number of extrinsic variables, the first six components produced by a principal component analysis of environmental variables were used as predictive variables in the multiple regression. The best-fit environment model indicated that the relative abundance of A. conyzoides was higher in summer and in communities with lower total organic matter and higher total nitrogen in the soil. The multiple regression indicated that only the positive relationship between the Shannon–Wiener diversity of exotics and the relative abundance of A. conyzoides was significant. This result challenges the importance of diversity–resistance to plant invasion. Generalist facilitation might exist between A. conyzoides and other exotic species, although mechanisms for such facilitation are unclear. Overall, our finding suggests the extrinsic factors covarying with diversity are more important than diversity itself in regulating community susceptibility to invasion.  相似文献   

6.
While symbiotic fungi play a key role in the growth of endangered Calanthe orchid species, the relationship between fungal diversity and Calanthe species remains unclear. Here, we surveyed root associated fungal diversity of six Calanthe orchid species by sequencing the internal transcribed spacer (ITS) region using 454 pyrosequencing. Our results revealed that Paraboeremia and Coprinopsis are dominant fungal genera among Calanthe species. In terms of overall relative abundance, Paraboeremia was the most common fungal genus associated with Calanthe roots, followed by Coprinopsis. Overall fungal diversity showed a significant degree of variation depending on both location and Calanthe species. In terms of number of different fungal genera detected within Calanthe species, C. discolor had the most diverse fungal community, with 10 fungal genera detected. This study will contribute toward a better understanding of those fungi that are required for successful cultivation and conservation of Korean Calanthe species.  相似文献   

7.
When symbionts are inherited by offspring, they can have substantial ecological and evolutionary consequences because they occur in all host life stages. Although natural frequencies of inherited symbionts are commonly <100 %, few studies investigate the ecological drivers of variation in symbiont prevalence. In plants, inherited fungal endophytes can improve resistance to herbivory, growth under drought, and competitive ability. We evaluated whether native ungulate herbivory increased the prevalence of a fungal endophyte in the common, native bunchgrass, Festuca campestris (rough fescue, Poaceae). We used large-scale (1 ha) and long-term (7–10 year) fencing treatments to exclude native ungulates and recorded shifts in endophyte prevalence at the scale of plant populations and for individual plants. We characterized the fungal endophyte in F. campestris, Epichloë species FcaTG-1 (F. campestris taxonomic group 1) for the first time. Under ungulate exclusion, endophyte prevalence was 19 % lower in plant populations, 25 % lower within plant individuals, and 39 % lower in offspring (seeds) than in ungulate-exposed controls. Population-level endophyte frequencies were also negatively correlated with soil moisture across geographic sites. Observations of high within-plant variability in symbiont prevalence are novel for the Epichloë species, and contribute to a small, but growing, literature that documents phenotypic plasticity in plant-endophyte symbiota. Altogether, we show that native ungulates can be an important driver of symbiont prevalence in native plant populations, even in the absence of evidence for direct mechanisms of mammal deterrence. Understanding the ecological controls on symbiont prevalence could help to predict future shifts in grasslands that are dominated by Epichloë host plants.  相似文献   

8.
Choosing the provenance of seed used in ecological restoration could entail its success. An alternative approach to examine local adaptation in seed sourcing is the assessment of genetic structure and diversity based on molecular markers. These types of analyses focus on the genetics of the target plant itself and eliminate the genetic influence of associated organisms, such as Epichloë/Neotyphodium endophytes in grasses. By impacting the fitness of their host, such symbionts may influence population genetic structure and diversity. Therefore, seed sourcing for grasses must consider the influence of their endophytes to increase seed translocation success and minimize the risks associated with this practice. To delineate seed zones for restoration of the alpine fescue Festuca eskia Ramond ex. DC. (Poaceae), we assessed population genetic differentiation and diversity patterns in the species including endophyte occurrence along altitudinal and longitudinal gradients in the Pyrenees Mountains. Twenty-three populations were analysed for endophyte status, and three STS and one SSR marker were used to examine genetic differentiation and diversity patterns. Results showed that F. eskia hosts an asexual form of Epichloë and infection frequency within populations decreased from East to West (100 vs. 8–25%). Molecular markers separated F. eskia into two East and West groups, and endophyte infection and genetic patterns were congruent with molecular data. Little evidence for genetic differentiation or difference in endophyte occurrence associated with altitude was detected. Little variation was found in within population diversity, regardless of provenance altitude and site, and/or endophyte infection frequency. The results of this study suggested the establishment of two distinct management units for F. eskia seed sourcing restoration.  相似文献   

9.
Many species are characterized by high levels of intraspecific or ecotypic diversity, yet we know little about how diversity within species influences ecosystem processes. Using a common garden experiment, we studied how intraspecific diversity within the widespread and often dominant North American native Pseudoroegneria spicata (Pursh) Á. Löve. affected invasion by Centaurea stoebe L. We experimentally manipulated Pseudoroegneria intraspecific diversity by changing the number of Pseudoroegneria ecotypes in common garden plots, using ecotypes collected throughout western North America. Invader biomass was 46% lower in mono-ecotype Pseudoroegneria plots than in control plots without any plants prior to invasion, and plots with 3–12 Pseudoroegneria ecotypes were 44% less invaded by Centaurea than the mono-ecotype plots. Across all plots, the total biomass of invading Centaurea plants was negatively correlated with total Pseudoroegneria biomass, but biotic resistance provided by high ecotypic diversity of Pseudoroegneria was not explained only by the increase in productivity that occurred with ecotypic diversity. Relative to Pseudoroegneria yield, Centaurea yield was lowest when Pseudoroegneria overyielded due to size-independent “complementarity” effects. This was not observed when overyielding was due to size-dependent effects. Our results suggest that the intraspecific diversity of a widespread and dominant species has the potential to impact invasion outcomes beyond its effects on native plant productivity and that mechanisms of biotic resistance to invaders may be to some degree independent of plant size.  相似文献   

10.

Aims

Novel fungal endophyte (Neotyphodium coenophialum; Latch, Christensen and Samuels; Glenn, Bacon, and Hanlin) genotypes in symbiosis with tall fescue (Lolium arundinaceum; Schreb. Darbysh.) have been recently introduced to agricultural seed markets. These novel endophytes do not produce the full suite of toxins that the ‘common toxic’ form does, and therefore, may not have the same consequences on plant and soil processes. Here, we evaluated the effects of endophyte presence and genotype on ecosystem processes of tall fescue stands.

Methods

We quantified the effects of the presence of the common toxic endophyte (CT), two novel endophyte genotypes (AR-542, AR-584), no endophyte (endophyte free, E-), and a mixture of all endophyte statuses (mix) within a single genotype of tall fescue (PDF) on various soil and plant parameters.

Results

Endophyte presence and genotype affected tall fescue cover and plant species diversity: cover—CT, AR-542, AR -584, mix > E- and species diversity—E- > AR-542, AR -584 > CT, mix. Most measured soil parameters had significant endophyte effects. For example, higher fluxes of soil CO2 and N2O were measured from stands of AR-542 than from the other endophyte treatments.

Conclusions

These results indicate that endophyte presence and genetic identity are important in understanding the ecosystem-scale effects of this agronomically important grass-fungal symbiosis.  相似文献   

11.
The diversity of endophytic microorganisms may change due to the genotype of the host plant and its phenological stage. In this study we evaluated the effect of phenological stage, transgenes and genetic composition of maize on endophytic bacterial and fungal communities. The maize populations were composed of a local variety named Rosado (RS) and three isogenic hybrids. One isogenic hybrid was not genetically modified (NGM). Another hybrid (Hx) contained the transgenes cry1F and pat (T1507 event), which provide resistance to insects of the order Lepidoptera and tolerance to the glufosinate-ammonium herbicide, respectively. The third hybrid (Hxrr) contained the transgene cp4 epsps (NK603 event) combined with the transgenes cry1F and pat (T1507 event), which allow tolerance to the Roundup Ready herbicide, besides the characteristics of Hx. Evaluation of the foliar tissue was done through PCR-DGGE analysis, with specific primers for bacteria and fungi within four phenological stages of maize. The endophytic bacteria were only clustered by phenological stages; the structure of the fungal community was clustered by maize genotypes in each phenological stage. The fungal community from the local variety RS was different from the three hybrids (NGM, Hx and Hxrr) within the four evaluated stages. In the reproductive stage, the fungal community from the two transgenic hybrids (Hx and Hxrr) were separated, and the Hxrr was different from NGM, in the two field experiments. This research study showed that the genetic composition of the maize populations, especially the presence of transgenes, is the determining factor for the changes detected in the endophytic fungal community of maize leaves.  相似文献   

12.
Microbial plant symbionts have been suggested to mediate plant-soil feedback and affect ecosystem functions. Systemic Epichloë fungal endophytes of grasses are found to mediate litter decomposition. These effects are often linked to alkaloids produced by Epichloë species, which are hypothesized to negatively affect decomposers. Although endophytes have been found to affect plant community and soil biota, direct (through litter quality) and indirect (through the environment) effects of fungal endophytes on litter decomposition have been scarcely scrutinized. We placed litterbags with endophyte-symbiotic (E+) and non-symbiotic (E?) Schedonorus pratensis plant litter in plots dominated by E+ or E? plants of the same species, and followed the dynamics of mass losses over time. We predicted the endophyte would hinder decomposition through changes in litter quality and that both types of litter would decompose faster in home environments. E+ litter decomposed faster in both environments. The mean difference between decomposition rate of E+ and E? litter tended to be higher in E? plots. Nitrogen and phosphorus, two elements usually associated with high decomposition rates, were significantly lower in E+ litter. We also detected a higher proportion of C in the cellulose form in E+ litter. Contrary to the general assumption, we found that symbiosis with Epichloë fungal endophytes can be associated with higher decomposition of plant litter. Since direct effects of Epichloë fungi were still stronger than indirect effects, it is suggested that besides the alkaloids, other changes in plant biomass would explain in a context-dependent manner, the endophyte effects on the litter decomposition.  相似文献   

13.
Fungal endophytes were isolated from inner bark of Taxus baccata L., an important source of potent anticancer drug taxol. Bark samples were collected from two locations of Arunachal Pradesh, India, part of the Indo-Burma mega biodiversity hotspot, during two seasons i.e. monsoon and winter. Altogether 77 fungal strains representing 18 genera were isolated from T. baccata bark during the present investigation. The colonizing frequency was recorded as 38.5% and the fungal community comprised of 78% of Hyphomycetes, 5.2% of Coelomycetes, 2.6% of Zygomycetes and Ascomycetes and 9.1% of sterile mycelia. Most common and frequently isolated genera were Fusarium, Penicillium and Aspergillus. Simpson and Shannon diversity indices indicated higher species diversity during monsoon than during winter seasons irrespective of the locations. The two locations harbored 5 to 37 endophyte species and the similarity index was low during winter and high during monsoon. Ethyl acetate extract of fermentation cultures of these fungi were tested for their antimicrobial activity against a panel of human pathogenic Gram-positive and Gram-negative bacteria and fungi. Fifteen fungal isolates out of the isolated strains displayed antimicrobial activity. An endophytic fungus, identified as Fusarium sp. displayed significant antimicrobial activity against all the test pathogens.  相似文献   

14.
15.
The effect of native plant restoration on invasion by giant ragweed (Ambrosia trifida), an invasive species, is currently unknown. We hypothesized that (1) functional group identity would be a good predictor of biotic resistance to A. trifida, and (2) mixtures of species would be more resistant to invasion than monocultures. Using seven functional traits, 37 native and non-native plants were divided into three functional groups that differed primarily in longevity and woodiness. We conducted a competition experiment using an additive competition design with A. trifida and monocultures or mixtures of 14 species. Biotic resistance was evaluated by calculating a relative competition index (RCIavg) based on the average performance of A. trifida in treatments compared with that in control. In monocultures, RCIavg of resident plants did not significantly differ among the three functional groups or within each functional group. The highest RCIavg (40%) was observed for some fast-growing annuals (FG1) such as Zea mays and Secale cereal, which were strong competitors. RCIavg of resident plants was not significantly greater in mixtures than in monocultures. Taken together, the results show that plant diversity did not control invasion by A. trifida and that giant ragweed invasion cannot be well controlled by biotic resistance.  相似文献   

16.
Invasion by exotic plant species and herbivory can individually alter native plant species diversity, but their interactive effects in structuring native plant communities remain little studied. Many exotic plant species escape from their co-evolved specialized herbivores in their native range (in accordance with the enemy release hypothesis). When these invasive plants are relatively unpalatable, they may act as nurse plants by reducing herbivore damage on co-occurring native plants, thereby structuring native plant communities. However, the potential for unpalatable invasive plants to structure native plant communities has been little investigated. Here, we tested whether presence of an unpalatable exotic invader Opuntia ficus-indica was associated with the structure of native plant communities in an ecosystem with a long history of grazing by ungulate herbivores. Along 17 transects (each 1000 m long), we conducted a native vegetation survey in paired invaded and uninvaded plots. Plots that harboured O. ficus-indica had higher native plant species richness and Shannon–Wiener diversity H′ than uninvaded plots. However, mean species evenness J was similar between invaded and uninvaded plots. There was no significant correlation between native plant diversity and percentage plot cover by O. ficus-indica. Presence of O. ficus-indica was associated with a compositional change in native community assemblages between paired invaded and uninvaded plots. Although these results are only correlative, they suggest that unpalatable exotic plants may play an important ecological role as refugia for maintenance of native plant diversity in intensely grazed ecosystems.  相似文献   

17.
Batrachochytrium dendrobatidis (Bd), an amphibian fungal pathogen, has infected >500 species and caused extinctions or declines in >200 species worldwide. Despite over a decade of research, little is known about its invasion biology. To better understand this, we conducted a museum specimen survey (1910–1997) of Bd in amphibians on 11 California islands and found a pattern consistent with the emergence of Bd epizootics on the mainland, suggesting that geographic isolation did not prevent Bd invasion. We propose that suitable habitat, host diversity, and human visitation overcome isolation from the mainland and play a role in Bd invasion.  相似文献   

18.
Methane production by methanogens in wetland is recognized as a significant contributor to global warming. Spartina alterniflora (S. alterniflora), which is an invasion plant in China’s wetland, was reported to have enormous effects on methane production. But studies on shifts in the methanogen community in response to S. alterniflora invasion at temporal and spatial scales in the initial invasion years are rare. Sediments derived from the invasive species S. alterniflora and the native species Phragmites australis (P. australis) in pairwise sites and an invasion chronosequence patch (4 years) were analyzed to investigate the abundance and community structure of methanogens using quantitative real-time PCR (qPCR) and Denaturing gradient gel electrophoresis (DGGE) cloning of the methyl-coenzyme M reductase A (mcrA) gene. For the pairwise sites, the abundance of methanogens in S. alterniflora soils was lower than that of P. australis soils. For the chronosequence patch, the abundance and diversity of methanogens was highest in the soil subjected to two years invasion, in which we detected some rare groups including Methanocellales and Methanococcales. These results indicated a priming effect at the initial invasion stages of S. alterniflora for microorganisms in the soil, which was also supported by the diverse root exudates. The shifts of methanogen communities after S. alterniflora invasion were due to changes in pH, salinity and sulfate. The results indicate that root exudates from S. alterniflora have a priming effect on methanogens in the initial years after invasion, and the predominate methylotrophic groups (Methanosarcinales) may adapt to the availability of diverse substrates and reflects the potential for high methane production after invasion by S. alterniflora.  相似文献   

19.
The tropics are known for their high diversity of plants, animals, and biotic interactions, but the role of the speciose endophytic fungi in these interactions has been mostly neglected. We report a unique interaction among plant sex, bees, and endophytes on the dioecious shrub, Baccharis dracunculifolia (Asteraceae). We assessed whether there was an association between resin collection by bees and fungal endophytes considering the host plant sex. We hypothesized that resin collection by the Africanized honey bee, Apis mellifera L. (Apidae) could favor the entry of endophytes in B. dracunculifolia. Specifically, we tested the hypotheses that (1) bees damage the leaf buds of female and male plant at different proportions; (2) damage on leaf buds increases the richness of endophytic fungi; (3) endophyte richness differs between female and male plants; and (4) in vitro growth of endophytes depends on the sex of the plant individual from which the resin was extracted. Endophyte richness and proportion of leaf bud damage did not vary between the plant sexes. However, species similarity of endophytes between female and male plants was 0.33. Undamaged leaf buds did not show culturable endophytes, with all fungi exclusively found in damaged leaf buds. Endophyte composition changed with the plant sex. The endophytes exclusively found in female plants did not develop in the presence of male resin extract. These findings highlight that resin collection by A. mellifera for propolis production favors the entry of endophytic fungi in B. dracunculifolia. Additionally, endophyte composition and growth are influenced by plant sex.  相似文献   

20.
Arbuscular mycorrhizal (AM) fungi are known to promote plant growth and nutrient uptake, but their role in nitrogen (N) uptake still remains unclear. Therefore, a pot experiment was set up to evaluate the impacts of N addition and AM inoculation (Diversispora eburnea, Claroideoglomus etunicatum, Paraglomus occultum, and their mixture) on AM root colonization, plant biomass, N and P nutrition in Elymus nutans. Our results showed that AM root colonization was unaffected by N addition but was significantly affected by different AM fungal species. D. eburnea and C. etunicatum showed significant higher root colonization than P. occultum. The E. nutans exhibited the highest biomass when inoculated with D. eburnea and significantly higher than non-mycorrhizal (the control) regardless of N addition. Under N addition treatment, D. eburnea significantly enhanced P content of roots, N content of shoots and roots, while AM mixture significantly enhanced shoot P content compared with non-mycorrhizal. However, N and P content in shoots and roots did not significantly vary among treatments when no N was added. In addition, inoculation with C. etunicatum and P. occultum showed no significant effect on plant biomass, N and P content regardless of N addition. In conclusion, this study revealed that the plant response to N addition depends on AM fungal species and also confirmed that significant functional diversity exists among AM fungal species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号