首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular phylogeny of the family of apes and humans   总被引:5,自引:0,他引:5  
The morphological picture of primate phylogeny has not unambiguously identified the nearest outgroup of Anthropoidea and has not resolved the branching pattern within Hominoidea. The molecular picture provides more resolution and clarifies the systematics of Hominoidea. Protein and DNA evidence divides Hominoidea into Hylobatidae (gibbons) and Hominidae, family Hominidae into Ponginae (orangutan) and Homininae, and subfamily Homininae into two tribes, one for Gorilla, and the other for Pan (chimpanzee) and Homo. Parsimony and maximum likelihood analyses, carried out on orthologous noncoding nucleotide sequences from primate beta-globin gene clusters, provide significant evidence for the human-chimpanzee tribe and overwhelming evidence for the human-chimpanzee-gorilla clade. These analyses also indicate that the rate of molecular evolution became slower in hominoids than in other primates and mammals.  相似文献   

2.
Summary The genetic distances among primate lineages estimated from orthologous noncoding nucleotide sequences of -type globin loci and their flanking and intergenic DNA agree closely with the distances (delta T50H values) estimated by cross hybridization of total genomic single-copy DNAs. These DNA distances and the maximum parsimony tree constructed for the nucleotide sequence orthologues depict a branching pattern of primate lineages that is essentially congruent with the picture from phylogenetic analyses of morphological characters. The molecular evidence, however, resolves ambiguities in the morphological picture and provides an objective view of the cladistic position of humans among the primates. The molecular data group humans with chimpanzees in subtribe Hominina, with gorillas in tribe Hominini, orangutans in subfamily Homininae, gibbons in family Hominidae, Old World monkeys in infraorder Catarrhini, New World monkeys in semisuborder Anthropoidea, tarsiers in suborder Haplorhini, and strepsirhines (lemuriforms and lorisiforms) in order Primates. A seeming incongruency between organismal and molecular levels of evolution, namely that morphological evolution appears to have speeded up in higher primates, especially in the lineage to humans, while molecular evolution has slowed down, may have the trivial explanation that relatively small genetic changes may sometimes result in marked phenotypic changes.  相似文献   

3.
A dispersed middle repetitive DNA sequence isolated originally from human chromosome 12 did not show homology with rodent DNA under standard conditions of Southern DNA blot analysis. The evolutionary relationship of this human repetitive DNA to that of other primates was investigated using three hybridization methods: DNA dot blot, Southern DNA blot analysis, and chromosome in situ hybridization. Homology with the human repetitive DNA was found throughout the suborder Anthropoidea, in fourteen ape and New and Old World monkey species. In addition, the human pattern of hybridization to noncentromeric regions of all chromosomes was seen. No hybridization by any of the three techniques was found in five species of the suborder Prosimii. The phenomenon of marked differences in sequence homology and copy number of dispersed repetitive DNA from closely related species has been observed in protozoans (Plasmodia), Drosophila, sea urchins, mice and the great apes (Hominoidea). We report here a similar phenomenon that may have occurred at an early stage in primate evolution.  相似文献   

4.
Evidence from DNA sequences on the phylogenetic systematics of primates is congruent with the evidence from morphology in grouping Cercopithecoidea (Old World monkeys) and Hominoidea (apes and humans) into Catarrhini, Catarrhini and Platyrrhini (ceboids or New World monkeys) into Anthropoidea, Lemuriformes and Lorisiformes into Strepsirhini, and Anthropoidea, Tarsioidea, and Strepsirhini into Primates. With regard to the problematic relationships of Tarsioidea, DNA sequences group it with Anthropoidea into Haplorhini. In addition, the DNA evidence favors retaining Cheirogaleidae within Lemuriformes in contrast to some morphological studies that favor placing Cheirogaleids in Lorisiformes. While parsimony analysis of the present DNA sequence data provides only modest support for Haplorhini as a monophyletic taxon, it provides very strong support for Hominoidea, Catarrhini, Anthropoidea, and Strepsirhini as monophyletic taxa. The parsimony DNA evidence also rejects the hypothesis that megabats are the sister group of either Primates or Dermoptera (flying lemur) or a Primate-Dermoptera clade and instead strongly supports the monophyly of Chiroptera, with megabats grouping with microbats at considerable distance from Primates. In contrast to the confused morphological picture of sister group relationships within Hominoidea, orthologous noncoding DNA sequences (spanning alignments involving as many as 20,000 base positions) now provide by the parsimony criterion highly significant evidence for the sister group relationships defined by a cladistic classification that groups the lineages to all extant hominoids into family Hominidae, divides this ape family into subfamilies Hylobatinae (gibbons) and Homininae, divides Homininae into tribes Pongini (orangutans) and Hominini, and divides Hominini into subtribes Gorillina (gorillas) and Hominina (humans and chimpanzees). A likelihood analysis of the largest body of these noncoding orthologues and counts of putative synapomorphies using the full range of sequence data from mitochondrial and nuclear genomes also find that humans and chimpanzees share the longest common ancestry. © 1994 Wiley-Liss, Inc.  相似文献   

5.
The phylogenetic and geographic origins of the primate suborder Anthropoidea have long been major focal points in the study of primate evolution. Field work in Africa and Asia over the past forty years has produced a bewildering array of fossil primates, many having been linked in one way or another with the early origins of anthropoids. Asia recently has become fashionable in some circles as the ultimate geographic source of anthropoids, while Africa remains a viable alternative for others. In this paper we discuss the history of discovery of the Eocene primates of Myanmar and then offer our views on the current status of these Myanmar primates in the ongoing debate over anthropoid origins.  相似文献   

6.
A problem in deciphering primate phylogeny, morphological convergence between different evolutionary lines, can be overcome by species comparisons of proteins, macromolecules with specificities closely linked to the genetic code in DNA. Various chemical, electrophoretic, and immunological data on serum and tissue proteins in primates are reviewed with respect to their phylogenetic significance. Much of this data deals with protein specificities in the Hominoidea and depicts a particularly close genetic relationship between man and the African apes. Hominoidea, Cercopithecoidea, Ceboidea, and Lorisoidea are characterized by their proteins as monophyletic or natural taxa, even though the conventional subdivisions within several of these superfamilies are not in complete accord with the protein analyses. The protein evidence supports the conventional grouping of Cercopithecoidea with Hominoidea in the infraorder Catarrhini and the grouping of Catarrhini and Platyrrhini (Ceboidea) in the suborder Anthropoidea. Lemuroidea and Lorisoidea appear to be closer to one another than to either Tupaioidea or Anthropoidea and closer to the Anthropoidea than to the Tupaioidea. Comparisons of primate DNA's by Hoyer and coworkers are demonstrating genetic affinities among primates which agree with those deduced from the comparison of protein specificities. Species differences and similarities in the relative amounts of different protein macromolecules reflect the grade relationships of primates, but, unlike the comparisons of amino-acid sequences or antigenic specificities, are not reliable indicators of phyletic affinities. Data on the ratios of M(uscle) to H(eart) type lactate dehydrogenase in a series of primate brains provides a biochemical example of the concept that there are “lower” (primitive) and “higher” (advanced) grades of evolutionary development among the extant primates.  相似文献   

7.
A chemokine receptor from the seven-transmembrane-domain G-protein-coupled receptor superfamily is an essential coreceptor for the cellular entry of human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) strains. To investigate nonhuman primate CC-chemokine receptor 5 (CCR5) homologue structure and function, we amplified CCR5 DNA sequences from peripheral blood cells obtained from 24 representative species and subspecies of the primate suborders Prosimii (family Lemuridae) and Anthropoidea (families Cebidae, Callitrichidae, Cercopithecidae, Hylobatidae, and Pongidae) by PCR with primers flanking the coding region of the gene. Full-length CCR5 was inserted into pCDNA3.1, and multiple clones were sequenced to permit discrimination of both alleles. Compared to the human CCR5 sequence, the CCR5 sequences of the Lemuridae, Cebidae, and Cercopithecidae shared 87, 91 to 92, and 96 to 99% amino acid sequence homology, respectively. Amino acid substitutions tended to cluster in the amino and carboxy termini, the first transmembrane domain, and the second extracellular loop, with a pattern of species-specific changes that characterized CCR5 homologues from primates within a given family. At variance with humans, all primate species examined from the suborder Anthropoidea had amino acid substitutions at positions 13 (N to D) and 129 (V to I); the former change is critical for CD4-independent binding of SIV to CCR5. Within the Cebidae, Cercopithecidae, and Pongidae (including humans), CCR5 nucleotide similarities were 95.2 to 97.4, 98.0 to 99.5, and 98.3 to 99.3%, respectively. Despite this low genetic diversity, the phylogeny of the selected primate CCR5 homologue sequences agrees with present primate systematics, apart from some intermingling of species of the Cebidae and Cercopithecidae. Constructed HOS.CD4 cell lines expressing the entire CCR5 homologue protein from each of the Anthropoidea species and subspecies were tested for their ability to support HIV-1 and SIV entry and membrane fusion. Other than that of Cercopithecus pygerythrus, all CCR5 homologues tested were able to support both SIV and HIV-1 entry. Our results suggest that the shared structure and function of primate CCR5 homologue proteins would not impede the movement of primate immunodeficiency viruses between species.  相似文献   

8.
A highly resolved primate cladogram based on DNA evidence is congruent with extant and fossil osteological evidence. A provisional primate classification based on this cladogram and the time scale provided by fossils and the model of local molecular clocks has all named taxa represent clades and assigns the same taxonomic rank to those clades of roughly equivalent age. Order Primates divides into Strepsirhini and Haplorhini. Strepsirhines divide into Lemuriformes and Loriformes, whereas haplorhines divide into Tarsiiformes and Anthropoidea. Within Anthropoidea when equivalent ranks are used for divisions within Platyrrhini and Catarrhini, Homininae divides into Hylobatini (common and siamang gibbon) and Hominini, and the latter divides into Pongina forPongo(orangutans) and Hominina forGorillaandHomo. Homoitself divides into the subgeneraH.(Homo) for humans andH.(Pan) for chimpanzees and bonobos. The differences between this provisional age related phylogenetic classification and current primate taxonomies are discussed.  相似文献   

9.
Primate evolution of a human chromosome 1 hypervariable repetitive element   总被引:2,自引:0,他引:2  
Summary The clone designated hMF #1 represents a clustered DNA family, located on chromosome 1, consisting of tandem arrays displaying a monomeric length of 40 bp and a repetition frequency of approximately 7×103 copies per haploid genome. The sequence hMF #1 reveals multiple restriction fragment length polymorphisms (RFLPs) when human genomic DNA is digested with a variety of 4–6-bp recognition sequence restriction enzymes (i.e., Taq I, Eco RI, Pst I, etc.). When hamster and mouse genomic DNA was digested and analyzed, no cross-species homology could be observed. Further investigation revealed considerable hybridization in the higher primates (chimpanzee, gorilla, and orangutan) as well as some monkey species.The evolutionary relationship of this repetitive DNA sequence, found in humans, to that of other primates was explored using two hybridization methods: DNA dot blot to establish copy number and Southern DNA analysis to examine the complexity of the RFLPs. Homology to the hMF #1 sequence was found throughout the suborder Anthropoidea in 14 ape and New and Old World monkey species. However the sequence was absent in one species of the suborder Prosimii. Several discrepancies between established evolutionary relationships and those predicted by hMF #1 exist, which suggests that repetitive elements of this type are not reliable indicators of phylogenetic branching patterns. The phenomenon of marked diversity between sequence homologies and copy numbers of dispersed repetitive DNA of closely related species has been observed inDrosophila mice,Galago, and higher primates. We report here a similar phenomenon for a clustered repeat that may have originated at an early stage of primate evolution.  相似文献   

10.
We have identified two types of structural elements in genomic DNA for annexin I that provide physical evidence of genetic events leading to conserved changes in gene structure. The sequence upstream of the transcribed region in human annexin I contained a rare, Alu-like repetitive element with flanking direct repeats, probably derived from the active BC200 gene via germline retroposition. Nucleotide substitutions in this BC200 insert relative to the 7SL gene and its absence in rodent annexins I identified it as a recent primate pseudogene. Phylogenetic analysis showed that the BC200 gene represents a new clade of primate Alu evolution that branched near the time of appearance of the progenitor to the free left Alu monomer, FLAM-C. Separate analysis identified a Z-DNA motif in pigeon annexin I intron 7 that may represent the vestigial recombination site involved in primordial assembly of the annexin tetrad. These distinct structural features in annexin I genes provide insight into the evolution of Alu repeats and the mechanism of annexin tetrad formation.  相似文献   

11.
The first third (ca. 1200 bp) of exon 1 of the nuclear gene encoding the interstitial retinoid-binding protein (IRBP) has been sequenced for 12 representative primates belonging to Lemuriformes, Lorisiformes, Tarsiiformes, Platyrrhini, and Catarrhini, and combined with available data (13 other primates, 11 nonprimate placentals, and 2 marsupials). Phylogenetic analyses using maximum likelihood on nucleotides and amino acids robustly support the monophyly of primates, Strepsirrhini, Lemuriformes, Lorisiformes, Anthropoidea, Catarrhini, and Platyrrhini. It is interesting to note that 1) Tarsiidae grouped with Anthropoidea, and the support for this node depends on the molecular characters considered; 2) Cheirogaleidae grouped within Lemuriformes; and 3) Daubentonia was the sister group of all other Lemuriformes. Study of the IRBP evolutionary rate shows a high heterogeneity within placentals and also within primates. Maximum likelihood local molecular clocks were assigned to three clades displaying significantly contrasted evolutionary rates. Paenungulata were shown to evolve 2.5-3 times faster than Perissodactyla and Lemuriformes. Six independent calibration points were used to estimate splitting ages of the main primate clades, and their compatibility was evaluated. Divergence ages were obtained for the following crown groups: 13.8-14.2 MY for Lorisiformes, 26.5-27.2 MY for Lemuroidea, 39.6-40.7 MY for Lemuriformes, 45.4-46.7 MY for Strepsirrhini, and 56.7-58.4 MY for Haplorrhini. The incompatibility between some paleontological and molecular estimates may reflect the incompleteness of the placental fossil record, and/or indicate that the variable IRBP evolutionary rates are not fully accommodated by local molecular clocks.  相似文献   

12.
Phylogenetic analyses carried out on cytochrome c oxidase (COX) subunit I mitochondrial genes from 14 primates representing the major branches of the order and four outgroup nonprimate eutherians revealed that transversions and amino acid replacements (i.e., the more slowly occurring sequence changes) contained lower levels of homoplasy and thus provided more accurate information on cladistic relationships than transitions (i.e., the more rapidly occurring sequence changes). Several amino acids, each with a high likelihood of functionality involving the binding of cytochrome c or interaction with COX VIII, have changed in Anthropoidea, the primate suborder grouping New World monkey, Old World monkey, ape, and human lineages. They are conserved in other mammalian lineages and in nonanthropoid primates. Maximum-likelihood ancestral COX I nucleotide sequences were determined utilizing a near most parsimonious branching arrangement for the primate sequences that was consistent with previously hypothesized primate cladistic relationships based on larger and more diverse data sets. Relative rate tests of COX I mitochondrial sequences showed an elevated nonsynonymous (N) substitution rate for anthropoid-nonanthropoid comparisons. This finding for the largest mitochondrial (mt) DNA-encoded subunit is consistent with previous observations of elevated nonsynonymous substitution/synonymous substitution (S) rates in primates for mt-encoded COX II and for the nuclear-encoded COX IV and COX VIIa-H. Other COX-related proteins, including cytochrome c and cytochrome b, also show elevated amino acid replacement rates or N/S during similar time frames, suggesting that this group of interacting genes is likely to have coevolved during primate evolution.  相似文献   

13.
Some recent analyses of three mitochondrial DNA regions suggest that sperm whales are the sister group to baleen whales and, therefore, the suborder Odontoceti (toothed whales) constitutes a paraphyletic group. I cladistically analyzed the available morphological data, including that from relevant fossil taxa, for all families of extant cetaceans to test this hypothesis. The results of this analysis unambiguously support a monophyletic Odontoceti including the sperm whales. All synapomorphies that support the Odontoceti node are decisive, not related to the evolution of highly correlated characters, and provide the same result regardless of what order of mammals is used as an outgroup. These numerous, anatomically diverse, and unambiguous characters make this clade one of the best-supported higher-level groupings among mammals. In addition, the fossil evidence refutes a sperm whale/baleen whale clade. Both the molecular and morphological data produce the same unrooted tree. The improper rooting of the molecular tree appears to be producing these seemingly incongruent phylogenies.  相似文献   

14.
The suborder Anthropoidea, also called simians or simiiforms, contains New and Old World monkeys, apes, and humans. The recent discovery of early primate remains has led to the production of an enormous literature on these fossils and an increased interest in the study of anthropoid origins. Research on these early anthropoids allows a better understanding of the early evolutionary history of the group of mammals from which we evolved. © 1998 Wiley-Liss, Inc.  相似文献   

15.
Schmitz J  Ohme M  Zischler H 《Genetics》2001,157(2):777-784
Transpositions of Alu sequences, representing the most abundant primate short interspersed elements (SINE), were evaluated as molecular cladistic markers to analyze the phylogenetic affiliations among the primate infraorders. Altogether 118 human loci, containing intronic Alu elements, were PCR analyzed for the presence of Alu sequences at orthologous sites in each of two strepsirhine, New World and Old World monkey species, Tarsius bancanus, and a nonprimate outgroup. Fourteen size-polymorphic amplification patterns exhibited longer fragments for the anthropoids (New World and Old World monkeys) and T. bancanus whereas shorter fragments were detected for the strepsirhines and the outgroup. From these, subsequent sequence analyses revealed three Alu transpositions, which can be regarded as shared derived molecular characters linking tarsiers and anthropoid primates. Concerning the other loci, scenarios are represented in which different SINE transpositions occurred independently in the same intron on the lineages leading both to the common ancestor of anthropoids and to T. bancanus, albeit at different nucleotide positions. Our results demonstrate the efficiency and possible pitfalls of SINE transpositions used as molecular cladistic markers in tracing back a divergence point in primate evolution over 40 million years old. The three Alu insertions characterized underpin the monophyly of haplorhine primates (Anthropoidea and Tarsioidea) from a novel perspective.  相似文献   

16.
The phylogenetic relationships of 39 species of Eneopterinae crickets are reconstructed using four molecular markers (16S rRNA, 12S rRNA, cytochrome b, 18S rRNA) and a large morphological data set. Phylogenetic analysis via direct optimisation of DNA sequence data using parsimony as optimality criterion is done for six combinations of weighting parameter sets in a sensitivity analysis. The results are discussed in a twofold purpose: first, in term of significance of the molecular markers for phylogeny reconstruction in Ensifera, as our study represents the first molecular phylogeny performed for this insect suborder at this level of diversity; second, in term of corroboration of a previous phylogeny of Eneopterinae, built on morphological data alone. The four molecular markers all convey phylogenetic signal, although variously distributed on the tree. The monophyly of the subfamily, that of three over five tribes, and of 10 over 13 genera, are recovered. Finally, previous hypotheses on the evolution of acoustic devices and signals in the Eneopterinae clade are briefly tested, and supported, by our new data set.  相似文献   

17.
The suborder Anthropoidea of the primates has traditionally been divided in three superfamilies: the Hominoidea (apes and humans) and the Cercopithecoidea (Old World monkeys), together comprising the infraorder Catarrhini, and the Ceboidea (New World monkeys) belonging to the infraorder Platyrrhini.We have sequenced an approximately 390-base-pair part of the mitochondrial 12S rRNA gene for 26 species of the major groups of African monkeys and apes and constructed an extensive phylogeny based upon DNA evidence. Not only is this phylogeny of great importance in classification of African guenons, but it also suggests rearrangements in traditional monkey taxonomy and evolution. Baboons and mandrills were found to be not directly related, while we could confirm that the known four superspecies of mangabeys do not form a monophyletic group, but should be separated into two genera, one clustering with baboons and the other with mandrills. Patas monkeys are clearly related to members of the genus Cercopithecus despite their divergence in build and habitat, while the talapoin falls outside the Cercopithecus clade (including the patas monkey). Correspondence to: A.C. van der Kuyl  相似文献   

18.
Neotropical primates, traditionally grouped in the infraorder Platyrrhini, comprise 16 extant genera. Cladistic analyses based on morphological characteristics and molecular data resulted in topologic arrangements depicting disparate phylogenetic relationships, indicating that the evolution of gross morphological characteristics and molecular traits is not necessarily congruent. Here we present a phylogenetic arrangement for all neotropical primate genera obtained from DNA sequence analyses of the beta2-microglobulin gene. Parsimony, distance, and maximum likelihood analyses favored two families, Atelidae and Cebidae, each containing 8 genera. Atelids were resolved into atelines and pitheciines. The well-supported ateline clade branched into alouattine (Alouatta) and ateline (Ateles, Lagothrix, Brachyteles) clades. In turn, within the Ateline clade, Lagothrix and Brachyteles were well-supported sister groups. The pitheciines branched into well-supported callicebine (Callicebus) and pitheciine (Pithecia, Cacajao, Chiropotes) clades. In turn, within the pitheciine clade, Cacajao and Chiropotes were well-supported sister groups. The cebids branched into callitrichine (Saguinus, Leontopithecus, Callimico, Callithrix-Cebuella), cebine (Cebus, Saimiri), and aotine (Aotus) clades. While the callitrichine clade and the groupings of species and genera within this clade were all well supported, the cebine clade received only modest support, and the position of Aotus could not be clearly established. Cladistic analyses favored the proposition of 15 rather than 16 extant genera by including Cebuella pygmaea in the genus Callithrix as the sister group of the Callithrix argentata species group. These analyses also favored the sister grouping of Callimico with Callithrix and then of Leontopithecus with the Callithrix-Callimico clade.  相似文献   

19.
Repetitious DNA sequences have been isolated from a number of the primates in both Suborders Anthropoidea and Prosimii by hydroxyapatite chromatography at a C0t of 10. In addition to finding previously unreported possible AT-rich satellite DNAs in Orangutan, Gibbon, Rhesus and Slow Loris a clear similarity to human DNA was found in the non-satellite repetitious DNA sequence properties of the primates in the Suborder Anthropoidea. This is based on the presence of the hydroxyapatite isolated 1.703 and 1.714 g/cm3 DNA families in CsCl gradients in the analytical ultracentrifuge following renaturation and extensive DNA hyperpolymer network formation. Within the superfamily Hominoidea the amount of the 1.714 g/cm3 DNA family was greater than that of the 1.703 g/cm3 DNA family while the reverse situation was true within the Superfamily Cercopithecoidea. The orangutan 1.703 and 1.714 g/cm3 DNA families were shown to exhibit the same differential reassociation behavior demonstrated previously in human DNA (Marx et al., 1976a). These data are interpreted as preliminary evidence for a similar sequence organization in the Order Primates Suborder Anthropoidea.  相似文献   

20.
The CMT1A-REP repeat consists of two copies of a 24-kb sequence on human chromosome 17p11.2-12 that flank a 1.5-Mb region containing a dosage-sensitive gene, peripheral nerve protein-22 (PMP22). Unequal meiotic crossover mediated by misalignment of proximal and distal copies of the CMT1A-REP in humans leads to a 1.5-Mb duplication or deletion associated with two common peripheral nerve diseases, Charcot-Marie-Tooth disease type 1A (CMT1A) and hereditary neuropathy with liability to pressure palsies (HNPP). Previous molecular hybridization studies with CMT1A-REP sequences suggested that two copies of the repeat are also found in the chimpanzee, raising the possibility that this unique repeat arose during primate evolution. To further characterize the structure and evolutionary synthesis of the CMT1A-REP repeat, fluorescent in situ hybridization (FISH) analysis and heterologous PCR-based assays were carried out for a series of primates. Genomic DNA was analyzed with primers selected to differentially amplify the centromeric and telomeric ends of the human proximal and distal CMT1A-REP elements and an associated mariner (MLE) sequence. All primate species examined (common chimpanzee, pygmy chimpanzee, gorilla, orangutan, gibbon, baboon, rhesus monkey, green monkey, owl monkey, and galago) tested positive for a copy of the distal element. In addition to humans, only the chimpanzee was found to have a copy of the proximal CMT1A-REP element. All but one primate species (galago) tested positive for the MLE located within the CMT1A-REP sequence. These observations confirm the hypothesis that the distal CMT1A-REP element is the ancestral sequence which was duplicated during primate evolution, provide support for a human-chimpanzee clade, and suggest that insertion of the MLE into the CMT1A-REP sequence occurred in the ancestor of anthropoid primates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号