首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
2.
3.
4.
5.
6.
Since the discovery of the sex-determining gene, Sry, a number of genes have been identified which are involved in sex determination and gonadogenesis in mammals. Although Sry is known to be the testis-determining factor in mammals, this is not the case in non-mammalian vertebrates. Sox9 is another gene that has been shown to have a male-specific role in sex determination, but, unlike Sry, Sox9 has been shown to be involved in sex determination in mammals, birds, and reptiles. This is the first gene to be described that has a conserved role in sex determination in species with either chromosomal or environmental sex-determining mechanisms. Many reptiles do not have sex chromosomes but exhibit temperature-dependent sex determination (TSD). Sox9 has been shown to be expressed in both turtle and alligator during gonadogenesis. To determine if Sox9 also has a role in a gecko species with TSD, we studied gonadal expression of Sox9 during embryonic development of the Leopard gecko (Eublepharis macularius). Gecko Sox9 was found to be highly conserved at the nucleotide level when compared to other vertebrate species including human, chick, alligator, and turtle. Sox9 was found to be expressed in embryos incubated at the male-producing temperature (32.5 degrees C) as well as in embryos incubated at the female-producing temperatures (26 and 34 degrees C), Northern blot analysis showed that Sox9 was expressed at both temperatures from morphological stages 31 to 37. mRNA in situ hybridisation on isolated urogenital systems showed expression at both female- and male-producing temperatures up to stage 36. After this stage, no expression was seen in the female gonads but expression remained in the male. These data provide further evidence that Sox9 is an essential component of a testis-determining pathway that is conserved in species with differing sex-determining mechanisms.  相似文献   

7.
The formation of estrogens from androgens in all vertebrates is catalyzed by the "aromatase" complex, which consists of a membrane bound P(450) enzyme, P(450) aromatase (which binds the androgen substrate and inserts an oxygen into the molecule), and a flavoprotein (NADPH-cytochrome P450 reductase). Among vertebrates, the two major sites of aromatase expression are the brain and gonads. Given the importance of estrogen in reptile sex determination, we set out to examine whether P450arom was involved in the initiation and/or stabilization of sex determination in turtles. We examined the expression of aromatase activity in the brain and gonads of two turtle species exhibiting temperature dependent sex determination (TSD), the diamondback terrapin (Malaclemys terrapin), and the common snapping turtle (Chelydra serpentina). Estradiol when applied at stage 14 of the terrapin induces expression of aromatase in the gonad of embryos incubated at male temperatures (26.5 degrees C). The level of expression is similar to that of a normal embryonic ovary. When applied at stage 22, estradiol does not induce aromatase expression in the terrapin. The xenoestrogen, nonylphenol, sex reverses terrapin embryos at 26.5 degrees C. Letrazole, a nonsteroidal aromatase inhibitor, suppresses aromatase activity in the brain at either incubation temperature. Ovotestes are produced by letrazole administration in the terrapin when incubated at 30.5 degrees C. In the snapping turtle at stage 23, gonadal and brain aromatase activity in embryos incubated at female temperatures (30.5 degrees C) is nearly half that exhibited in terrapin embryos at the same temperature. Moreover, letrazole administration suppresses aromatase expression to nearly basal levels. At male incubation temperatures (26.5 degrees ), brain aromatase expression is nearly three times higher than at female temperatures, while gonadal expression levels are nearly one third lower. However, the gonadal expression levels at male temperatures in the snapping turtle are nearly 25 times higher than that found in the terrapin. Estradiol administration elevates this level nearly three fold. These data suggest that is not merely the expression of aromatase that is important for ovarian development, but that the level of expression may be more important.  相似文献   

8.
Gonadogenesis, the process of forming an ovary or a testis from a bipotential gonad, is critical to the development of sexually reproducing adults. Although the molecular pathway underlying vertebrate gonadogenesis is well characterized in organisms exhibiting genotypic sex determination, it is less well understood in vertebrates whose sex is determined by environmental factors. We examine the response of six candidate sex-determining genes to sex-reversing temperature shifts in a species with temperature-dependent sex determination (TSD). For the first time, we report the regulation of FoxL2, Wnt4, Dmrt1, and Mis by temperature, confirming their involvement in the molecular pathway underlying TSD and placing them downstream of the action of temperature. We find evidence that FoxL2 plays an ovarian-specific role in development, whereas Wnt4 appears to be involved in both testis and ovary formation. Dmrt1 expression shows rapid activation in response to a shift to male-producing temperature, whereas Mis up-regulation is delayed. Furthermore, early repression of Mis appears critical to ovarian development. We also investigate Dax1 and Sox9 and reveal that at the level of gene expression, response to temperature is comparatively later in gonadogenesis. By examining the role of these genes in TSD, we can begin to elucidate elements of conservation and divergence between sex-determining mechanisms.  相似文献   

9.
10.
11.
In many reptiles, sex is determined by the temperature at which the eggs are incubated (i.e., temperature-dependent sex determination, or TSD). Past studies have shown that exogenous steroid hormones can override the effects of temperature and induce female sex determination. However, past attempts to induce male sex determination have consistently failed. In the present study, sex determination was studied in a turtle with TSD. By utilizing an incubation temperature regimen that resulted in approximately a 1:1 sex ratio in the control group, sex determination was shown to be sensitive to both exogenous androgen and estrogen treatments: androgen induced the production of male hatchlings, whereas estrogen induced the production of female hatchlings. This is the first report of an amniotic vertebrate in which an exogenous steroid hormone induces male sex determination.  相似文献   

12.
Vertebrates employ varied strategies, both chromosomal and nonchromosomal, to determine the sex of the developing embryo. Among reptiles, temperature-dependent sex determination (TSD) is common. The temperature of incubation during a critical period preceding sexual differentiation determines the future sex of the embryo, presumably by altering the activity or expression of a temperature-dependent regulatory factor(s). Here we examine the expression of the Dmrt1 gene, a candidate regulator of mammalian and avian sexual development, in the turtle. During the sex-determining period, Dmrt1 mRNA is more abundant in genital ridge/mesonephros complexes at male-promoting than at female-promoting temperatures. Dmrt1 is the first gene found to show temperature-dependent expression prior to sexual differentiation, and may play a key role in sexual development in reptiles. genesis 26:174-178, 2000.  相似文献   

13.
14.
T Rhen  A Schroeder  J T Sakata  V Huang  D Crews 《Heredity》2011,106(4):649-660
Temperature-dependent sex determination (TSD) was first reported in 1966 in an African lizard. It has since been shown that TSD occurs in some fish, several lizards, tuataras, numerous turtles and all crocodilians. Extreme temperatures can also cause sex reversal in several amphibians and lizards with genotypic sex determination. Research in TSD species indicates that estrogen signaling is important for ovary development and that orthologs of mammalian genes have a function in gonad differentiation. Nevertheless, the mechanism that actually transduces temperature into a biological signal for ovary versus testis development is not known in any species. Classical genetics could be used to identify the loci underlying TSD, but only if there is segregating variation for TSD. Here, we use the ‘animal model'' to analyze inheritance of sexual phenotype in a 13-generation pedigree of captive leopard geckos, Eublepharis macularius, a TSD reptile. We directly show genetic variance and genotype-by-temperature interactions for sex determination. Additive genetic variation was significant at a temperature that produces a female-biased sex ratio (30 °C), but not at a temperature that produces a male-biased sex ratio (32.5 °C). Conversely, dominance variance was significant at the male-biased temperature (32.5 °C), but not at the female-biased temperature (30 °C). Non-genetic maternal effects on sex determination were negligible in comparison with additive genetic variance, dominance variance and the primary effect of temperature. These data show for the first time that there is segregating variation for TSD in a reptile and consequently that a quantitative trait locus analysis would be practicable for identifying the genes underlying TSD.  相似文献   

15.
It is hypothesized on the basis of sex determination theory that species exhibiting genetic sex determination (GSD) may undergo sexual differentiation earlier in development than species with environmental sex determination (ESD). Most turtle species exhibit a form of ESD known as temperature-dependent sex determination (TSD), and in such species the chronology of sex differentiation is well studied. Apalone spinifera is a species of softshell turtle (Trionychidae) that exhibits GSD. We studied sexual differentiation in this species in order to facilitate comparison to TSD species. Eggs were incubated at two different temperatures and embryos were harvested at various stages of mid to late development. Gonad length was measured with image analysis software, then prepared histologically. Indifferent gonads have differentiated in stage 19 embryos. Histological details of gonadogenesis follow the same pattern as described for other reptiles. Regression of the male paramesonephric duct closely follows testicular differentiation. Gonad lengths are longer at the warmer incubation temperature, and ovaries are generally longer than testes at each stage and for each temperature. Although sexual differentiation takes place at about the same stage as in other turtles with TSD (18-20), in A. spinifera this differentiation is irreversible at this stage, while in some of the TSD species sex is reversible until about stage 22. This immutable, definitive sexual differentiation may support the hypothesis of an accelerated chronology of sex differentiation for this species. We also note that sexual dichromatism at hatching is known in this species and may provide additional evidence of early differentiation. J. Exp. Zool. 290:190-200, 2001.  相似文献   

16.
17.
Climate change is expected to disrupt biological systems. Particularly susceptible are species with temperature-dependent sex determination (TSD), as in many reptiles. While the potentially devastating effect of rising mean temperatures on sex ratios in TSD species is appreciated, the consequences of increased thermal variance predicted to accompany climate change remain obscure. Surprisingly, no study has tested if the effect of thermal variance around high-temperatures (which are particularly relevant given climate change predictions) has the same or opposite effects as around lower temperatures. Here we show that sex ratios of the painted turtle (Chrysemys picta) were reversed as fluctuations increased around low and high unisexual mean-temperatures. Unexpectedly, the developmental and sexual responses around female-producing temperatures were decoupled in a more complex manner than around male-producing values. Our novel observations are not fully explained by existing ecological models of development and sex determination, and provide strong evidence that thermal fluctuations are critical for shaping the biological outcomes of climate change.  相似文献   

18.
Red-eared slider turtles are genetically bipotential for sex determination. In this species, as in many other reptiles, incubation temperature of the egg determines gonadal sex. At higher incubation temperatures females are produced and increasing temperature appears to increase estrogen production in the embryonic brain. Treatment of eggs incubating at a male-producing temperature with exogenous estrogen causes ovaries to form. At a female-biased incubation temperature, prevention of estrogen biosynthesis or administration of nonaromatizable androgens results in the development of testes. In mammals, steroidogenic factor 1 (SF-1) regulates most genes required for estrogen biosynthesis, including aromatase. In both mammals and red-eared sliders, SF-1 is differentially expressed in males and females during gonadogenesis. We have examined both SF-1 gene expression and aromatase activity in embryos incubating at different temperatures and after manipulation to change the course of gonadal development. Our findings indicate a central role for SF-1 in enacting the effect of estrogen. Estrogen treatment directly or indirectly downregulates SF-1 and, ultimately, causes development of females. The inhibition of estrogen results in upregulation of SF-1 and male hatchlings. Thus, SF-1 may lie at the center of one molecular crossroad in male versus female differentiation of the red-eared slider.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号