首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
3.
4.
The highly conserved amino acids of rat Na,K-ATPase, Thr-774 in the transmembrane helices M5, Val-920 and Gln-923 in M8, and Glu-953 and Glu-954 in M9, the side chains of which appear to be in close proximity, were mutated, and the resulting proteins, T774A, E953A/K, and E954A/K, V920E and Q923N/E/D/L, were expressed in HeLa cells. Ouabain-resistant cell lines were obtained from T774A, V920E, E953A, and E954A, whereas Q923N/E/D/L, E953K, and E954K could only be transiently expressed as fusion proteins with an enhanced green fluorescent protein. The apparent K0.5 values for Na+, as estimated by the Na+-dependent phosphoenzyme formation (K0.5(Na,EP)) or Na,K-ATPase activity (K(0.5)(Na,ATPase)), were increased by around 2 approximately 8-fold in the case of T774A, V920E, and E954A. The apparent K0.5 values for K+, as estimated by the Na,K-ATPase (K0.5(K,ATPase)) or p-nitrophenylphosphatase activity (K0.5(K,pNPPase)), were affected only slightly by the 3 mutations, except that V920E showed a 1.7-fold increase in the K0.5(K,ATPase). The apparent K0.5 values for ATP (K0.5(EP)), as estimated by phosphorylation (a high affinity ATP effect), were increased by 1.6 approximately 2.6-fold in the case of T774A, V920E, and E954A. Those estimated by Na,K-ATPase activity (K0.5(ATPase)) and ATP-induced inhibition (K(i,0.5)(pNPPase)) of K-pNPPase activity (low affinity ATP effects) were, respectively, increased by 1.8-fold and unchanged in the case of T774A but decreased by 2- and 4.8-fold in the case of V920E and were slightly changed and increased by 1.7-fold in the case of E954A. The E953A showed little significant change in the apparent affinities. These results suggest that Gln-923 in M8 is crucial for the active transport of Na+ and/or K+ across membranes and that the side chain oxygen atom of Thr-774 in M5, the methyl group(s) of Val-920 in M8, and the carboxyl oxygen(s) of Glu-954 in M9 mainly play some role in the transport of Na+ and also in the high and low affinity ATP effects rather than the transport of K+.  相似文献   

5.
6.
The androgen receptor (AR) ligand-binding domain (LBD) binds FXXLF motifs, present in the AR N-terminal domain and AR-specific cofactors, and some LXXLL motifs of nuclear receptor coactivators. We demonstrated that in the context of the AR FXXLF motif many different amino acid residues at positions +2 and +3 are compatible with strong AR LBD interaction, although a preference for E at +2 and K or R at +3 was found. Pairwise systematic analysis of F/L swaps at +1 and +5 in FXXLF and LXXLL motifs showed: 1) F to L substitutions in natural FXXLF motifs abolished AR LBD interaction; 2) binding of interacting LXXLL motifs was unchanged or increased upon L to F substitutions; 3) certain noninteracting LXXLL motifs became strongly AR-interacting FXXLF motifs; whereas 4) other nonbinders remained unaffected by L to F substitutions. All FXXLF motifs, but not the corresponding LXXLL motifs, displayed a strong preference for AR LBD. Progesterone receptor LBD interacted with some FXXLF motifs, albeit always less efficiently than corresponding LXXLL motifs. AR LBD interaction of most FXXLF and LXXLL peptides depended on classical charge clamp residue K720, whereas E897 was less important. Other charged residues lining the AR coactivator-binding groove, K717 and R726, modulated optimal peptide binding. Interestingly, these four charged residues affected binding of individual peptides independent of an F or L at +1 and +5 in swap experiments. In conclusion, F residues determine strong and selective peptide interactions with AR. Sequences flanking the core motif determine the specific mode of FXXLF and LXXLL interactions.  相似文献   

7.
8.
9.
The chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) is a G protein-coupled receptor that mediates the pro-inflammatory effects of prostaglandin D(2) (PGD(2)) generated in allergic inflammation. The CRTH2 receptor shares greatest sequence similarity with chemoattractant receptors compared with prostanoid receptors. To investigate the structural determinants of CRTH2 ligand binding, we performed site-directed mutagenesis of putative mCRTH2 ligand-binding residues, and we evaluated mutant receptor ligand binding and functional properties. Substitution of alanine at each of three residues in the transmembrane (TM) helical domains (His-106, TM III; Lys-209, TM V; and Glu-268, TM VI) and one in extracellular loop II (Arg-178) decreased PGD(2) binding affinity, suggesting that these residues play a role in binding PGD(2). In contrast, the H106A and E268A mutants bound indomethacin, a nonsteroidal anti-inflammatory drug, with an affinity similar to the wild-type receptor. HEK293 cells expressing the H106A, K209A, and E268A mutants displayed reduced inhibition of intracellular cAMP and chemotaxis in response to PGD(2), whereas the H106A and E268A mutants had functional responses to indomethacin similar to the wild-type receptor. Binding of PGE(2) by the E268A mutant was enhanced compared with the wild-type receptor, suggesting that Glu-268 plays a role in determining prostanoid ligand selectivity. Replacement of Tyr-261 with phenylalanine did not affect PGD(2) binding but decreased the binding affinity for indomethacin. These results provided the first details of the ligand binding pocket of an eicosanoid-binding chemoattractant receptor.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
Hepatocyte nuclear factor 4alpha (HNF4alpha) (NR2A1), an orphan member of the nuclear receptor superfamily, binds DNA exclusively as a homodimer even though it is very similar in amino acid sequence to retinoid X receptor alpha (RXRalpha), which heterodimerizes readily with other receptors. Here, experimental analysis of residues involved in protein dimerization and studies on a reported ligand for HNF4alpha are combined with a structural model of the HNF4alpha ligand-binding domain (LBD) (residues 137 to 384). When K300 (in helix 9) and E327 (in helix 10) of HNF4alpha1 were converted to the analogous residues in RXRalpha (E390 and K417, respectively) the resulting construct did not heterodimerize with the wild-type HNF4alpha, although it was still able to form homodimers and bind DNA. Furthermore, the double mutant did not heterodimerize with RXR or RAR but was still able to dimerize in solution with an HNF4alpha construct truncated at amino acid residue 268. This suggests that the charge compatibility between helices 9 and 10 is necessary, but not sufficient, to determine dimerization partners, and that additional residues in the HNF4alpha LBD are also important in dimerization. The structural model of the HNF4alpha LBD and an amino acid sequence alignment of helices 9 and 10 in various HNF4 and other receptor genes indicates that a K(X)(26)E motif can be used to identify HNF4 genes from other organisms and that a (E/D(X)(26-29)K/R) motif can be used to predict heterodimerization of many, but not all, receptors with RXR. In vitro analysis of another HNF4alpha mutant construct indicates that helix 10 also plays a structural role in the conformational integrity of HNF4alpha. The structural model and experimental analysis indicate that fatty acyl CoA thioesters, the proposed HNF4alpha ligands, are not good candidates for a traditional ligand for HNF4alpha. Finally, these results provide insight into the mechanism of action of naturally occurring mutations in the human HNF4alpha gene found in patients with maturity onset diabetes of the young 1 (MODY1).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号