首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Neuropeptide Y (NPY) injected into the hypothalamic paraventricular nucleus (PVN) stimulates feeding and decreases uncoupling protein (UCP)-1 mRNA in brown adipose tissue (BAT). The present studies were undertaken to determine whether UCP-2 in white adipose tissue (WAT) and UCP-3 in muscle are regulated by NPY in the PVN. PVN-cannulated male Sprague-Dawley rats were injected with either saline or NPY (PVN, 117 pmol, 0.5 microl) every 6 h for 24 h. NPY in the PVN stimulated feeding and decreased UCP-1 mRNA in BAT independent of NPY-induced feeding. UCP-2 mRNA in WAT was unchanged by NPY. In acromiotrapezius muscle, NPY decreased UCP-3 mRNA, but this was reversed by restricting food intake to control levels. In biceps femoris muscle, NPY alone had no effect on UCP-3 mRNA, but UCP-3 mRNA was significantly increased in the NPY-treated rats that were restricted to control levels of intake. These results suggest that UCP-2 in WAT and UCP-3 in muscle are not subject to specific regulation by NPY in the PVN.  相似文献   

2.
Ventricular administration of urocortin (UCN) inhibits feeding, but specific site(s) of UCN action are unknown. In the current studies we examined the effect of UCN in the hypothalamic paraventricular nucleus (PVN) on feeding. We tested UCN administered into the PVN in several paradigms: deprivation-induced, nocturnal, and neuropeptide Y (NPY)-induced feeding. We compared the effect of equimolar doses of UCN and corticotrophin releasing hormone (CRH) on NPY-induced and nocturnal feeding, determined whether UCN in the PVN produced a conditioned taste aversion (CTA) and induced changes in c-Fos immunoreactivity (c-Fos-ir) after UCN and NPY administration in the PVN. UCN in the PVN significantly decreased NPY and nocturnal and deprivation-induced feeding at doses of 1, 10, and 100 pmol, respectively. UCN anorectic effects lasted longer than those attributed to CRH. Ten and thirty picomoles UCN did not induce a CTA, whereas 100 pmol UCN produced a CTA. UCN (100 pmol) in the PVN neither increased c-Fos-ir in any brain region assayed nor altered c-Fos-ir patterns resulting from PVN NPY administration. These data suggest the hypothalamic PVN as a site of UCN action.  相似文献   

3.
Controls of the independent ingestion of food in the preweanling rat emerge in the second postnatal week. We investigated the effects of CCK-8 (0, 1, 5, or 10 microg/kg IP) on intake and c-Fos-like immunoreactive (CFLI) cells in hindbrain and forebrain on postnatal days 10 and 11. Five micrograms per kilogram decreased intake and increased the number of CFLI cells in four subnuclei of the nucleus tractus solitarius (NTS), in arcuate nucleus (ARC), and in central nucleus of the amygdala (CeA). Ten micrograms per kilogram decreased intake and increased CFLI in three NTS subnuclei as much as 5 microg/kg did, but was more potent than 5 microg/kg in the medial NTS subnucleus. Ten micrograms per kilogram increased CFLI in paraventricular (PVN) and supraoptic (SON) nuclei, but 5 microg/kg did not. Thus, reduction of intake by CCK-8 on days 10 and 11 is associated with increased hindbrain and forebrain CFLI.  相似文献   

4.
Neuropeptide Y (NPY) is a key factor in the neurochemical control of food intake, and obstructive cholestasis can be associated with disturbances in food intake. Our aim in this study was to determine whether obstructive cholestasis in the rat is associated with defective central responsiveness to NPY. Cholestasis was induced in rats by surgical bile duct resection. Rats with obstructive cholestasis exhibited a 20% reduction in food intake 2 days after laparotomy (compared with sham-resected controls) that had resolved by 4 days after surgery. Responsiveness to the orexigenic action of NPY was tested by measuring food intake after intracerebroventricular injection of NPY. In sham-resected rats, NPY infusion strikingly increased food intake, whereas bile duct-resected (BDR) rats showed a consistent significantly impaired feeding response to NPY at postlaparotomy days 2, 4, and 7. Separate experiments measured specific binding of [(3)H]NPY to hypothalamic receptors. Fos protein expression was measured in the hypothalamic paraventricular nucleus (PVN) as a marker of NPY-induced neuronal activation. The decreased orexigenic responsiveness to NPY was not caused by altered NPY binding at hypothalamic receptors or its ability to activate neurons in the PVN. Therefore, cholestatic rats demonstrate an attenuated NPY-induced orexigenic drive that occurs early after biliary obstruction, when cholestatic rats exhibit reduced food intake, and persists despite the return of food intake to normal levels and the presence of intact central NPY-related neuronal pathways.  相似文献   

5.
Exogenous galanin stimulates feeding when injected into forebrain and hindbrain sites, including the third and fourth ventricles (3V and 4V), amygdala, paraventricular nucleus of the hypothalamus (PVN), and nucleus of the solitary tract (NTS). Because the PVN and NTS border the ventricular space, it is possible that feeding stimulated by injection of galanin at these sites may be caused by the transport of galanin through the ventricular system to a remote site of action. The role of ventricular transport of galanin between the 3V and 4V in galanin-induced feeding was examined in this study. Rats were implanted with two guide cannula assemblies: one dorsal to the mesencephalic aqueduct and the other in the 3V or 4V. Feeding in response to 3V or 4V galanin injection was first measured after sham-occlusion of the aqueduct. Subsequently, flow of cerebrospinal fluid between the forebrain and hindbrain ventricles was acutely interrupted by injection of a silicone grease plug into the mesencephalic aqueduct just before assessment of the feeding response to 4V or 3V galanin injection. Aqueduct occlusion did not alter the feeding induced by either 3V or 4V galanin injection, indicating that galanin terminals in both the diencephalon and hindbrain are involved in control of food intake.  相似文献   

6.
Recent studies show that brain-derived neurotrophic factor (BDNF) decreases feeding and body weight after peripheral and ventricular administration. BDNF mRNA and protein, and its receptor tyrosine kinase B (TrkB) are widely distributed in the hypothalamus and other brain regions. However, there are few reports on specific brain sites of actions for BDNF. We evaluated the effect of BDNF in the hypothalamic paraventricular nucleus (PVN) on feeding. BDNF injected unilaterally or bilaterally into the PVN of food-deprived and nondeprived rats significantly decreased feeding and body weight gain within the 0- to 24-h and 24- to 48-h postinjection intervals. Effective doses producing inhibition of feeding behavior did not establish a conditioned taste aversion. PVN BDNF significantly decreased PVN neuropeptide Y (NPY)-induced feeding at 1, 2, and 4 h following injection. BDNF administration in the PVN abolished food-restriction-induced NPY gene expression in the hypothalamic arcuate nucleus. In conclusion, BDNF in the PVN significantly decreases food intake and body weight gain, suggesting that the PVN is an important site of action for BDNF in its effects on energy metabolism. Furthermore, BDNF appears to interact with NPY in its anorectic actions, although a direct effect on NPY remains to be established.  相似文献   

7.
Kelley SP  Nannini MA  Bratt AM  Hodge CW 《Peptides》2001,22(3):515-522
The paraventricular nucleus (PVN) of the hypothalamus is known to modulate feeding, obesity, and ethanol intake. Neuropeptide-Y (NPY), which is released endogenously by neurons projecting from the arcuate nucleus to the PVN, is one of the most potent stimulants of feeding behavior known. The role of NPY in the PVN on ethanol self-administration is unknown. To address this issue, rats were trained to self-administer ethanol via a sucrose fading procedure and injector guide cannulae aimed at the PVN were surgically implanted. Microinjections of NPY and NPY antagonists in the PVN were conducted prior to ethanol self-administration sessions. All doses of NPY significantly increased ethanol self-administration and preference, and decreased water intake. The NPY antagonist D-NPY partially reduced ethanol self-administration and completely blocked the effects of an intermediate dose of NPY (10 fmol) on ethanol intake, preference, and water intake. The competitive non-peptide Y1 receptor antagonist BIBP 3226 did not significantly alter ethanol self-administration or water intake when administered alone in the PVN but it completely blocked the effect of NPY (10 fmol) on ethanol intake. NPY infused in the PVN had no effect on ethanol self-administration when tested in rats that did not have a long history of ethanol self-administration. The doses of NPY tested produced no effect on food intake or body weight measured during the 24-h period after infusion in either ethanol-experienced or ethanol-inexperienced rats. These results indicate that elevation of NPY levels in the PVN potently increases ethanol self-administration and that this effect is mediated through NPY Y1 receptors.  相似文献   

8.
N E Rowland 《Peptides》1988,9(5):989-992
In the first study, injection of NPY into the hypothalamic paraventricular nucleus (PVN) caused a robust feeding effect that was attenuated by intravenous infusions of glucose, but not fructose. It is suggested that increased blood glucose has a direct central effect on NPY feeding mechanisms. In a second study, and contrary to a previous report, peripheral administration of CCK-8 had a marked satiety effect in NPY-treated rats. Thus, NPY-induced feeding is, at least for a short time, possibly subject to the satiating action of prandially-released CCK. In a final study, NPY was shown to be without effect on gastric emptying of a solid test meal.  相似文献   

9.
The present study evaluated the effect of the neuropeptide Y (NPY) Y1 receptor antagonists BIBO 3304 and SR 120562A and of the Y5 receptor antagonists JCF 104, JCF 109, and CGP 71683A on feeding induced either by NPY or food deprivation. In a preliminary experiment, NPY was injected into the third cerebroventricle (3V) at doses of 0.07, 0.15, 0.3, or 0.6 nmol/rat. The dose of 0.3 nmol/rat, which produced a cumulative 2-h food intake of 11.2 +/- 1.9 g/kg body weight, was chosen for the following experiments. The antagonists were injected in the 3V 1 min before NPY. The Y1 receptor antagonist BIBO 3304 significantly inhibited NPY-induced feeding at doses of 1 or 10 nmol/rat. The Y1 receptor antagonist SR 120562A, at the dose of 10 but not of 1 nmol/rat, significantly reduced the hyperphagic effect of NPY, 0.3 nmol/rat. The Y5 receptor antagonists JCF 104 and JCF 109 (1 or 10 nmol/rat) and CGP 71683A (10 or 100 nmol/rat) did not significantly modify the effect of NPY, 0.3 nmol/rat. However, JCF 104 (10 nmol/rat) and CGP 71683A (100 nmol/rat), but not JCF 109 (10 nmol/rat), significantly reduced food intake during the interval from 2 to 4 h after injection of a higher dose, 0.6 nmol/rat, of NPY. Feeding induced by 16 h of food deprivation was significantly reduced by the Y1 receptor antagonist BIBO 3304 (10 nmol/rat), but it was not significantly modified by the same dose of SR 120562A or JCF 104. These findings support the idea that the hyperphagic effect of NPY is mainly mediated by Y1 receptors. The results obtained with JCF 104 and CGP 71683A suggest that Y5 receptors may have a modulatory role in the maintenance of feeding induced by rather high doses of NPY after the main initial feeding response.  相似文献   

10.
To examine the neural mechanism by which hypothalamic neuropeptide Y (NPY) regulates energy homeostasis and feeding behavior in commercial broilers, we measured NPY content in several hypothalamic regions of birds that were fasted and then refed. After fasting for 48 and 72 h, body weight significantly decreased, and food intake significantly increased during the subsequent refeeding. The lost body weight was not restored to ad libitum feeding levels even after 3 days of refeeding. Plasma glucose concentration and body fat content significantly decreased and plasma non-esterified fatty acid (NEFA) concentration significantly increased after 48- and 72-h fasting. Refeeding for 24 h restored plasma metabolites and body fat content to pre-fasting levels. NPY content in the paraventricular nucleus (PVN) and infundibular nucleus significantly increased during fasting, and NPY content of the PVN was restored to pre-fasting levels after 24-h refeeding. However, there was no significant change in the NPY content of the lateral hypothalamic area during fasting or refeeding. The present results of changes in the hypothalamic NPY content during fasting and refeeding support the hypothesis that NPY plays a central role in regulation of energy homeostasis, with especially important effect on feeding behavior and body weight in broiler chickens.  相似文献   

11.
Evidence suggests that the peptides galanin (GAL) and neuropeptide Y (NPY) interact with the amine norepinephrine (NE) in the hypothalamic paraventricular nucleus (PVN) to stimulate feeding behavior. To directly investigate the nature of these interactions, extracellular levels of PVN NE were monitored in freely-moving rats using the microdialysis/HPLC technique. Following PVN administration of GAL (0.3 nmol), NPY (78 pmol) or Ringer's solution, local NE levels were measured at 20-min intervals for 2 hrs postinjection, under two feeding conditions, namely, in the presence or absence of food. The results demonstrate different effects of these peptides on endogenous NE levels. Following GAL administration, PVN NE levels were enhanced by 80 to 90%, up to 40 min postinjection, independent of food availability. In contrast, following NPY injection, NE levels were significantly reduced 20 min postinjection with food absent, and when food was available, NE levels tended to be enhanced. These results, consistent with pharmacological and biochemical studies, reveal different patterns of peptide-amine interactions in the PVN.  相似文献   

12.
In anesthetized, spontaneously breathing rats, microinjections of selective agonists of neuropeptide Y (NPY) receptor subtypes were made into the medial region of the caudal nucleus of the solitary tract (NTS) at the level of the area postrema. This region of the rat NTS exhibits very high densities of NPY binding sites. Microinjections of the long C-terminal NPY fragment, NPY(13-36), a selective agonist at Y2 receptors, into the caudal NTS elicited pronounced, dose-related reductions in blood pressure and respiratory minute volume. Moreover, the specific pattern of cardiorespiratory responses elicited by NPY(13-36) was remarkably similar, over approximately the same dosage range, with the cardiorespiratory response pattern elicited by intact NPY. In contrast to the potent NTS-mediated responses evoked by NPY(13-36), similar microinjections conducted with either NPY(26-36), an inactive C-terminal NPY fragment, or [Leu31,Pro34]NPY, a NPY analog with specific agonist properties at Y1 receptors, into the same caudal NTS sites did not appreciably affect cardiorespiratory parameters even at 10-20-fold higher dosages. The present results with selective agonists for NPY receptor subtypes suggest that the depressor responses and reductions in minute volume elicited by microinjections of intact NPY and NPY(13-36) were mediated by Y2 receptors in the caudal NTS, likely distributed at presynaptic sites in the medial region of the subpostremal NTS.  相似文献   

13.
A Sahu  P S Kalra  S P Kalra 《Peptides》1988,9(1):83-86
We have studied the effects on neuropeptide Y (NPY) concentration in six hypothalamic nuclei, viz. medial preoptic area (MPOA), paraventricular nucleus (PVN), median eminence (ME), arcuate nucleus (ARC), ventromedial nucleus (VMN) and dorsomedial nucleus (DMN) of food deprivation (FD) for 2, 3, or 4 days or FD for 4 days followed by one day ad lib food intake (FI) in male rats. Hypothalamic nuclei were microdissected by the technique of Palkovits and processed for measurement of NPY immunoreactivity by RIA. NPY-like immunoreactivity in the ME, VMN and DMN was unaffected by FD or FI, but the remaining three nuclei--the ARC, MPOA and NPY--displayed a different pattern of changes in NPY levels in response to either FD or FD followed by FI. In the ARC, NPY levels rose significantly at day 3 and 4 after FD and remained elevated even after one day of FI. In the MPOA, while FD for 4 days had no effect, NPY concentration increased significantly in response to FI. In contrast, in the PVN, a site implicated in the control of feeding behavior, the NPY response to FD and FI was markedly different. FD elicited a gradual, time-related increase in NPY levels to reach highest concentration on day 4 and thereafter, following one day of FI, NPY levels fell dramatically to the range found in control satiated rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
15.
J N Crawley  J Z Kiss 《Peptides》1985,6(5):927-935
Peripherally administered cholecystokinin (CCK) initiates a behavioral syndrome which includes reduced food consumption and reduced exploratory behaviors. Previous studies suggest that CCK stimulates receptors in the gut, activating the vagus nerve, which relays sensory information to the nucleus tractus solitarius (NTS) and its ascending pathways. Terminal regions of ascending NTS projections include the paraventricular nucleus of the hypothalamus (PVN), the central nucleus of the amygdala (CNA), and the bed nucleus of the stria terminalis (BNST). Lesions of these three target sites were performed in rats to test the hypothesis that structures postsynaptic to the NTS mediate the behavioral syndrome induced by CCK. Knife cut lesions of the PVN abolished the reductions in feeding induced by CCK (5 and 10 micrograms/kg IP), as compared to sham lesioned control rats. PVN lesions only partially attenuated the reductions in exploration induced by CCK (2.5, 5, and 10 micrograms/kg IP), as compared to sham lesioned control rats. Electrolytic lesions of the CNA partially attenuated the reductions in exploratory behavior induced by CCK (2.5, 5, and 10 micrograms/kg IP), and had no effect on the reductions in feeding induced by CCK (5 and 10 micrograms/kg IP). Electrolytic lesions of the BNST had no effect on either the reductions in feeding or the reductions in exploration induced by CCK. The PVN appears to be one critical forebrain target site for mediating the actions of CCK on feeding. The CNA appears to facilitate the actions of CCK on exploration. Individual components of the behavioral syndrome induced by CCK may be mediated by anatomically distinct forebrain loci.  相似文献   

16.
Neuropeptide Y (NPY) produced in the arcuate nucleus (ARC) of the hypothalamus stimulates feeding both directly by activating NPY receptors and indirectly through release of the orexigenic peptides, galanin and beta-endorphin (beta-END), in the paraventricular nucleus (PVN) and surrounding neural sites. Orexin A and orexin B, produced outside the ARC in the lateral hypothalamic area (LH), have recently been shown to stimulate feeding. In the present studies we tested the hypothesis that NPYergic signaling may mediate feeding stimulated by orexins. In adult male rats injected intracerebroventricularly (i.c.v.) with orexin A (3, 10, 15 nmol) or orexin B (3, 10, 30 nmol) feeding was stimulated in a dose-dependent manner; maximal feeding was seen after 15 nmol orexin A and 30 nmol orexin B. To determine whether NPY may mediate this orexin stimulated feeding, we used 1229U91, a selective NPY Y1 receptor antagonist (NPY-A). Whereas NPY-A on its own was ineffective, it suppressed NPY-induced feeding. Furthermore, NPY-A completely blocked the feeding evoked by either orexin A (15 nmol) or orexin B (30 nmol). These results show that orexin A and B stimulate feeding and further suggest that these excitatory effects may be mediated by NPYergic signaling through Y1 receptors. These findings are in accord with the view that the orexin-NPY pathway may comprise a functional link upstream from NPY within the hypothalamic appetite regulating network.  相似文献   

17.
Does neuropeptide Y contribute to the anorectic action of amylin?   总被引:2,自引:0,他引:2  
Morris MJ  Nguyen T 《Peptides》2001,22(3):541-546
Neuropeptide Y (NPY) is a potent feeding stimulant acting at the level of the hypothalamus. Amylin, a peptide co-released with insulin from pancreatic beta cells, inhibits feeding following peripheral or central administration. However, the mechanism by which amylin exerts its anorectic effect is controversial. This study investigated the acute effect of amylin on food intake induced by NPY, and the effect of chronic amylin administration on food intake and body weight in male Sprague Dawley rats previously implanted with intracerebroventricular (icv) cannulae. Rats received 1 nmol NPY, followed by amylin (0.05, 0.1, 0.5 nmol) or 2 microl saline. Increasing doses of amylin resulted in a dose-dependent inhibition of NPY-induced feeding by 31%, 74% and 99%, respectively (P < 0.05). To determine the chronic effects of i.c.v. amylin administration on feeding, rats received 0.5 nmol amylin or saline daily, 30 min before dark phase, over 6 days. Amylin significantly reduced food intake at 1, 4, 16 and 24 hours; after 6 days, amylin-treated rats showed a significant reduction in body weight, having lost 17.3 +/- 6.1 g, while control animals gained 7.7 +/- 5.1 g (P < 0.05). Brain NPY concentrations were not elevated, despite the reduced food intake, suggesting amylin may regulate NPY production or release. Thus, amylin potently inhibits NPY-induced feeding and attenuates normal 24 hour food intake, leading to weight loss.  相似文献   

18.
Galanin has been shown to stimulate feeding when injected intracranially in rats. Lesion and Fos studies have shown that the neural pathway for feeding stimulated by mercaptoacetate (MA) -induced blockade of fatty acid oxidation includes several structures rich in galanin cell bodies or terminals. In the present experiment, we examined the role of hindbrain galanin in feeding stimulated by MA. We found that galanin (1 nmol) stimulates feeding when injected into the nucleus of the solitary tract (NTS), a site that is crucial for MA-induced feeding, or into the fourth ventricle (4V, 1 or 5 nmol) and that NTS or 4V injections of the galanin receptor antagonist, M40 (1.5 or 5 nmol), completely blocked feeding induced by MA (68 mg/kg). The effect of the M40 appeared to be specific for MA-induced feeding, since M40 did not significantly attenuate either feeding induced by the antimetabolic glucose analog, 2-deoxy-D-glucose (2DG, 100 or 200 mg/kg), or deprivation-induced water intake. Results suggest that feeding induced by decreased fatty acid oxidation relies upon galaniner-gic terminals in the hindbrain. Furthermore, results indicate that hindbrain neurons involved in MA-induced feeding differ neurochemically from those important for 2DG-induced feeding.  相似文献   

19.
The ovarian hormone estradiol reduces meal size and food intake in female rats, at least in part by increasing the satiating potency of CCK. Here we used c-Fos immunohistochemistry to determine whether estradiol increases CCK-induced neuronal activation in several brain regions implicated in the control of feeding. Because the adiposity signals leptin and insulin appear to control feeding in part by increasing the satiating potency of CCK, we also examined whether increased adiposity after ovariectomy influences estradiol's effects on CCK-induced c-Fos expression. Ovariectomized rats were injected subcutaneously with 10 microg 17beta-estradiol benzoate (estradiol) or vehicle once each on Monday and Tuesday for 1 wk (experiment 1) or for 5 wk (experiment 2). Two days after the final injection of estradiol or vehicle, rats were injected intraperitoneally with 4 microg/kg CCK in 1 ml/kg 0.9 M NaCl or with vehicle alone. Rats were perfused 60 min later, and brain tissue was collected and processed for c-Fos immunoreactivity. CCK induced c-Fos expression in the nucleus of the solitary tract (NTS), area postrema (AP), paraventricular nucleus of the hypothalamus (PVN), and central nucleus of the amygdala (CeA) in vehicle- and estradiol-treated ovariectomized rats. Estradiol treatment further increased this response in the caudal, subpostremal, and intermediate NTS, the PVN, and the CeA, but not in the rostral NTS or AP. This action of estradiol was very similar in rats tested before (experiment 1) and after (experiment 2) significant body weight gain, suggesting that adiposity does not modulate CCK-induced c-Fos expression or interact with estradiol's ability to modulate CCK-induced c-Fos expression. These findings suggest that estradiol inhibits meal size and food intake by increasing the central processing of the vagal CCK satiation signal.  相似文献   

20.
Many mammals experience spontaneous declines in their food intake and body weight near the end of life, a stage we refer to as senescence. We have previously demonstrated that senescent rats have blunted food intake responses to intracerebroventricular injections of neuropeptide Y (NPY). In the present study, we tested the hypothesis that responsiveness to GABA, a putative potentiator of NPY's effect, is also diminished. Young and old male F344 rats received injections of NPY, muscimol, (MUS, a GABA-A receptor agonist), combinations of these two agents, and vehicle [artificial cerebrospinal fluid (aCSF)] into the hypothalamic paraventricular nucleus (PVN). Both young and old presenescent rats increased their food intake in response to NPY, MUS, and the combination of the two (in comparison to injections of aCSF). The combination treatment was generally more effective than either NPY or MUS alone. These data are consistent with suggestions that both NPY and GABA play a role in the regulation of feeding behavior. Senescent rats exhibited an attenuated NPY-induced food intake, no increase in response to MUS, and a response to NPY + MUS that was no larger than that of NPY alone. We conclude that PVN injections of GABA, as well as NPY, are less effective in stimulating feeding in senescent rats and suggest that alterations in their signaling pathways play a role in the involuntary feeding decrease seen near the end of life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号