首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Sun JJ  Kim HJ  Seo HG  Lee JH  Yun-Choi HS  Chang KC 《Life sciences》2008,82(11-12):600-607
Overexpression of the gene for heme oxygenase (HO)-1 leads to a reduction in pressor responsiveness to angiotensin II (Ang II) in experimental animals. Using rat vascular smooth muscle cells (VSMCs), we tested whether YS 49 [1-(alpha-naphtylmethyl)-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline] inhibits Ang II-stimulated proliferation of VSMCs via induction of HO-1. YS 49 induced HO-1 protein production in a dose-and time-dependent manner in VSMCs. Treatment with YS 49 significantly and dose-dependently inhibited Ang II-induced VSMC proliferation, ROS production, and phosphorylation of JNK, but not P38 MAP kinase or ERK1/2. The antiproliferation effect of YS 49 was reversed by pretreatment with the HO-1 inhibitor zinc protoporphyrin IX (ZnPPIX), or with hemoglobin, a carbon monoxide (CO) scavenger. Similarly, VSMC proliferation, ROS production and phosphorylation of JNK by Ang II were significantly inhibited in VSMCs transfected with the HO-1 gene. Thus, HO-1 and the HO-1 product CO play, at least in part, a crucial role in Ang II-stimulated VSMC proliferation through the regulation of ROS production and JNK phosphorylation. Therefore, YS 49 has potential as a therapeutic strategy for the pathogenesis of Ang II-related vascular diseases such as hypertension and atherosclerosis, via the induction of HO-1 gene activity.  相似文献   

2.
Ou HS  Yan LM  Fu MG  Wang XH  Pang YZ  Su JY  Tang CS 《生理学报》1999,51(3):315-320
血红素加氧酶(heme oxygenase,HO)是血红素分解代谢过程中的限速酶,它能使细胞内的血红素降解成胆绿素和一氧化碳(carbonmonoxide,CO),近来资料表明内源性一氧化碳对生理和病理状态下的血管张力有重要的调节作用,目前尚不不禁内源性HO/CO刘否参与平滑肌细胞增殖过程的调节,本实验在体内培养的大鼠主动脉平滑肌细胞模型上,用血色素加氧酶抑制剂卟啉锌-9(zinc protopo  相似文献   

3.
In this study, we evaluated the possibility that the anti-proliferative effects of paclitaxel on vascular smooth muscle cells (VSMCs) of the rat might be due to the induction of HO-1 gene expression. Treatment of the cells with paclitaxel resulted in marked time- and dose-dependent inductions of HO-1 mRNA, followed by corresponding increases in HO-1 protein expression and HO enzymatic activities. Furthermore, paclitaxel rapidly activated the JNK, ERK, and p38 mitogen-activated protein kinase pathways. A specific inhibitor of JNK, SP600125, abolished paclitaxel-induced HO-1 mRNA expression, whereas PD98059, a specific inhibitor of ERK, and SB203580, a specific inhibitor of p38, had no significant effect. Finally, the suppression of platelet-derived growth factor induced VSMC proliferation was abolished by the HO inhibitor, ZnPP, as well as by the CO scavenger, hemoglobin. These results demonstrated that paclitaxel induces the expression of HO-1 via the JNK pathway in VSMC and that HO-1 expression might be responsible for the anti-proliferative effect of paclitaxel on VSMC.  相似文献   

4.
Nitric oxide (NO) limits formation of neointimal hyperplasia in animal models of arterial injury in large part by inhibiting vascular smooth muscle cell (VSMC) proliferation through cell cycle arrest. The ubiquitin-conjugating enzyme UbcH10 is responsible for ubiquitinating cell cycle proteins for proper exit from mitosis. We hypothesize that NO prevents VSMC proliferation, and hence neointimal hyperplasia, by decreasing levels of UbcH10. Western blotting and immunofluorescent staining showed that NO reduced UbcH10 levels in a concentration-dependent manner in VSMC harvested from the abdominal aortas of Sprague-Dawley rats. Treatment with NO or siRNA to UbcH10 decreased both UbcH10 levels and VSMC proliferation (P<0.001), while increasing UbcH10 levels by plasmid transfection or angiotensin II stimulation increased VSMC proliferation to 150% (P=0.008) and 212% (P=0.002) of control, respectively. Immunofluorescent staining of balloon-injured rat carotid arteries showed a ~4-fold increase in UbcH10 levels, which was profoundly decreased following treatment with NO. Western blotting of carotid artery lysates showed no UbcH10 in uninjured vessels, a substantial increase in the injury alone group, and a significant decrease in the injury+NO group (~3-fold reduction versus injury alone). Importantly, in vitro and in vivo, a marked increase in polyubiquitinated UbcH10 was observed in the NO-treated VSMC and carotid arteries, respectively, indicating that NO may be decreasing unmodified UbcH10 levels by increasing its ubiquitination. Central to our hypothesis, we report that NO decreases UbcH10 levels in VSMC in vitro and following arterial injury in vivo in association with increasing polyubiquitinated-UbcH10 levels. These changes in UbcH10 levels correlate with VSMC proliferation and neointimal hyperplasia, making UbcH10 a promising therapeutic target for inhibiting this proliferative disease.  相似文献   

5.
It has been shown that antioxidant agents act inhibitorily against neointimal formation after balloon injury, suggesting the role of oxidative stress as a promotor of intimal cell proliferation. Heme oxygenase-1 (HO-1) is an inducible form of heme catabolizing enzyme that is induced by and acts against oxidative tissue injury. In this set of experiments, we showed that HO-1 was present in newly formed neointima; however, arterial HO-1 expression did not increase in response to balloon injury in rat carotid artery. Intraperitoneal administration of hemin, a HO-1 inducer, for 5 consecutive days resulted in about a 4-fold increase of serum bilirubin concentration. In addition, hemin injection increased HO-1 protein expression in the carotid artery, the heart, the kidney, and the liver. In this condition, balloon injury-induced neointimal formation was markedly inhibited. Local application of tin protoporphyrin, a HO inhibitor, blocked this effect, suggesting that induced HO-1 in the carotid artery was responsible for the inhibition of neointimal formation after balloon injury. This study suggests that induction of the endogenous antioxidant gene can suppress neointimal formation after balloon injury.  相似文献   

6.
We investigated whether NS-398, a selective inhibitor of COX-2, induces HO-1 in IL-1β-stimulated vascular smooth muscle cells (VSMC). NS-398 reduced the production of PGE2 without modulation of expression of COX-2 in IL-1β-stimulated VSMC. NS-398 increased HO-1 mRNA and protein in a dose-dependent manner, but inhibited proliferation of IL-1β-stimulated VSMC. Furthermore, SnPPIX, a HO-1 inhibitor, reversed the effects of NS-398 on PGE2 production, suggesting that COX-2 activity can be affected by HO-1. Hemin, a HO-1 inducer, also reduced the production of PGE2 and proliferation of IL-1β-stimulated VSMC. CORM-2, a CO-releasing molecule, but not bilirubin inhibited proliferation of IL-1β-stimulated VSMC. NS-398 inhibited proliferation of IL-1β-stimulated VSMC in a HbO2-sensitive manner. In conclusion, NS-398 inhibits proliferation of IL-1β-stimulated VSMC by HO-1-derived CO. Thus, NS-398 may facilitate the healing process of vessels in vascular inflammatory disorders such as atherosclerosis.  相似文献   

7.
Abnormal proliferation of vascular smooth muscle cells (VSMCs) contributes to intima formation after stenting and balloon angioplasty. Pin1, a peptidyl prolyl isomerase recognizing phosphorylated Ser/Thr–Pro, isomerizes the peptide bond. Because Pin1 overexpression is associated with transformation and the uncontrolled cell growth of tumors, we hypothesized that Pin1 functions as a chronic stimulator of VSMC proliferation. Pin1-positive smooth muscle cells were seen in the neointimal region of the femoral artery after guidewire injury. Exposure of VSMCS to platelet-derived growth factor (PDGF) increased Pin1 expression in a concentration-dependent manner. Basal cell growth rate and cyclin D1 expression were enhanced in Pin1-overexpressing VSMCs (Pin1-VSMCs). Moreover, PDGF-induced production of reactive oxygen species (ROS) in Pin1-VSMCs was higher than in control VSMCs. In Pin1-VSMCs, heme oxygenase-1 (HO-1) induction in response to nitric oxide donor was suppressed compared to control VSMCs. Nuclear translocation of nuclear factor E2-related factor-2 (Nrf2) was also diminished in Pin1-VSMCs. In contrast, the activity of the inducible minimal antioxidant response element (ARE) was potentiated in Pin1-null mouse embryonic fibroblasts (MEFs), compared to Pin1-wild-type MEFs. Moreover, Nrf2 ubiquitination was stimulated by Pin1 overexpression. Intraperitoneal injection of juglone (a Pin1 inhibitor) for 3 weeks (1 mg/kg, two times a week) significantly suppressed neointimal formation induced by wire injury. In conclusion, Pin1 induction during neointimal formation may be associated with ROS-mediated VSMC proliferation via down-regulation of Nrf2/ARE-dependent HO-1 expression. Pin1 may be a novel therapeutic target for several vascular diseases including atherosclerosis and stenosis.  相似文献   

8.
In injured blood vessels activated vascular smooth muscle cells (VSMCs) migrate from the media to the intima, proliferate and synthesize matrix proteins. This results in occlusion of the lumen and detrimental clinical manifestations. We have identified a novel isoform of the periostin family of proteins referred to as periostin-like factor (PLF). PLF expression in VSMCs was increased following treatment with mitogenic compounds, suggesting that PLF plays a role in VSMC activation. Correspondingly, proliferation of the cells was significantly reduced with anti-PLF antibody treatment. PLF expression increased VSMC migration, an essential cellular process leading to vascular restenosis after injury. PLF protein was localized to neointimal VSMC of rat and swine balloon angioplasty injured arteries, as well as in human arteries with transplant restenosis, supporting the hypothesis that PLF is involved in VSMC activation and vascular proliferative diseases. Taken together, these data suggest a role for PLF in the regulation of vascular proliferative disease. migration; proliferation  相似文献   

9.

Background

Hyaluronan (HA) is a primary component of the extracellular matrix of cells, and it is involved in the pathogenesis of atherosclerosis. The purpose of this study was to investigate the role of HA in neointimal formation after vascular injury and determine its tissue-specific role in vascular smooth muscle cells (VSMCs) by using a cre-lox conditional transgenic (cTg) strategy.

Methods and Results

HA was found to be expressed in neointimal lesions in humans with atherosclerosis and after wire-mediated vascular injury in mice. Inhibition of HA synthesis using 4-methylumbelliferone markedly inhibited neointimal formation after injury. In vitro experiments revealed that low-molecular-weight HA (LMW-HA) induced VSMC activation, including migration, proliferation, and production of inflammatory cytokines, and reactive oxygen species (ROS). The migration and proliferation of VSMCs were mediated by the CD44/RhoA and CD44/ERK1/2 pathways, respectively. Because HA synthase 2 (HAS2) is predominantly expressed in injured arteries, we generated cTg mice that overexpress the murine HAS2 gene specifically in VSMCs (cHAS2/CreSM22α mice) and showed that HA overexpression markedly enhanced neointimal formation after cuff-mediated vascular injury. Further, HA-overexpressing VSMCs isolated from cHAS2/CreSM22α mice showed augmented migration, proliferation, and production of inflammatory cytokines and ROS.

Conclusion

VSMC-derived HA promotes neointimal formation after vascular injury, and HA may be a potential therapeutic target for cardiovascular disease.  相似文献   

10.
D‐4F, an apolipoprotein A‐I (apoA‐I) mimetic peptide, possesses distinctly anti‐atherogenic effects. However, the biological functions and mechanisms of D‐4F on the hyperplasia of vascular smooth muscle cells (VSMCs) remain unclear. This study aimed to determine its roles in the proliferation and migration of VSMCs. In vitro, D‐4F inhibited VSMC proliferation and migration induced by ox‐LDL in a dose‐dependent manner. D‐4F up‐regulated heme oxygenase‐1 (HO‐1) expression in VSMCs, and the PI3K/Akt/AMP‐activated protein kinase (AMPK) pathway was involved in these processes. HO‐1 down‐regulation with siRNA or inhibition with zinc protoporphyrin (Znpp) impaired the protective effects of D‐4F on the oxidative stress and the proliferation and migration of VSMCs. Moreover, down‐regulation of ATP‐binding cassette transporter A1 (ABCA1) abolished the activation of Akt and AMPK, the up‐regulation of HO‐1 and the anti‐oxidative effects of D‐4F. In vivo, D‐4F restrained neointimal formation and oxidative stress of carotid arteries in balloon‐injured Sprague Dawley rats. And inhibition of HO‐1 with Znpp decreased the inhibitory effects of D‐4F on neointimal formation and ROS production in arteries. In conclusion, D‐4F inhibited VSMC proliferation and migration in vitro and neointimal formation in vivo through HO‐1 up‐regulation, which provided a novel prophylactic and therapeutic strategy for anti‐restenosis of arteries.  相似文献   

11.
We investigated the effects of TH-142177 (N-n-butyl-N-[2'-(1-H-tetrazole-5-yl) biphenyl-4-yl]-methyl-(N-carboxy methyl-benzylamino)-acetamide), a novel selective antagonist of angiotensin II type 1-receptor (AT1-R) on angiotensin II (AII)-induced proliferation and migration of vascular smooth muscle cells (VSMC), and on neointimal formation in the rat carotid artery after balloon injury, and on the intracellular signaling by the stimulation of AT1-R. High affinity AII receptor sites were detected in rat VSMC by the use of [125I]Sar1,Ile8-AII. TH-142177 and losartan competed with [125I]Sar1,Ile8-AII for the binding sites in VSMC in a monophasic manner, although PD123177, a selective antagonist of angiotensin II type 2-receptor (AT2-R), had little inhibitory effect, demonstrating the predominant existence of AT1-R in rat VSMC. TH-142177 prevented AII-induced DNA synthesis and migration, with a significant inhibition of 74 and 55%, respectively, at the concentration of 100 nM. AII-induced activation of p21ras, mitogen-activated protein kinase (p42MAPK and p44MAPK), and protein kinase C was significantly (50-78%) inhibited by TH-142177 (100 nM), suggesting that the activation of these enzymes is mediated through the stimulation of AT1-R. Balloon-injured left carotid arteries in rats showed extensive neointimal thickening, and TH-142177 (3 mg/kg) brought out a marked decrease in the neointimal thickening after balloon injury. In conclusion, TH-142177 inhibited AII-induced proliferation and migration of rat VSMC and neointimal formation in the carotid artery after balloon injury, and these effects may be related, in part, to the suppression of ras, p42MAPK and p44MAPK, and protein kinase C activities through the blockade of AT1-R. Thus, TH-142177 may have therapeutic potential for the treatment of vascular diseases such as atherosclerosis and restenosis.  相似文献   

12.
Kim TJ  Kang YJ  Lim Y  Lee HW  Bae K  Lee YS  Yoo JM  Yoo HS  Yun YP 《Experimental cell research》2011,317(14):2041-2051
Ceramide 1-phosphate (C1P) is a novel bioactive sphingolipid formed by ceramide kinase (CERK)-catalyzed phosphorylation of ceramide. It has been implicated in the regulation of such vital pathophysiological functions as phagocytosis and inflammation, but there have been no reports ascribing a biological function to CERK in vascular disorders. Here the potential role of CERK/C1P in neointimal formation was investigated using rat aortic vascular smooth muscle cells (VSMCs) in primary culture and a rat carotid injury model. Exogenous C8-C1P stimulated cell proliferation, DNA synthesis, and cell cycle progression of rat aortic VSMCs in primary culture. In addition, wild-type CERK-transfected rat aortic VSMCs induced a marked increase in rat aortic VSMC proliferation and [3H]-thymidine incorporation when compared to empty vector transfectant. C8-C1P markedly activated extracellular signal-regulated kinase 1 and 2 (ERK1/2) within 5 min, and the activation could be prevented by U0126, a MEK inhibitor. Also, K1, a CERK inhibitor, decreased the ERK1/2 phosphorylation and cell proliferation on platelet-derived growth factor (PDGF)-stimulated rat aortic VSMCs. CERK expression and C1P levels were found to be potently increased during neointimal formation using a rat carotid injury model. However, ceramide levels decreased during the neointimal formation process. These findings suggest that C1P can induce neointimal formation via cell proliferation through the regulation of the ERK1/2 protein in rat aortic VSMCs and that CERK/C1P may regulate VSMC proliferation as an important pathogenic marker in the development of cardiovascular disorders.  相似文献   

13.
Aberrant growth of vascular smooth muscle cells (VSMCs) is a major cellular event in the pathogenesis of many proliferative vascular diseases. Recently, microRNA-31 (miR-31) has been found to play a critical role in cancer cell proliferation. However, the biological role of miR-31 in VSMC growth and the mechanisms involved are currently unknown. In the present study, the expression of rat mature miR-31 (rno-miR-31) was determined in cultured VSMCs and in rat carotid arteries. We identified that rno-miR-31 is an abundant miRNA in VSMCs, and its expression was significantly increased in proliferative VSMCs and in vascular walls with neointimal growth. The up-regulation of rno-miR-31 in proliferative VSMCs was inhibited by the inhibitor of mitogen-activated protein kinase/extracellular regulated kinase (MAPK/ERK). By both gain-of-function and loss-of-function approaches, we demonstrated that rno-miR-31 had a proproliferative effect on VSMCs. We further identified that LATS2 (large tumor suppressor homolog 2) is a downstream target gene product of rno-miR-31 that is involved in rno-miR-31-mediated effect on VSMC proliferation. The LATS2 as a target gene protein of rno-miR-31 is verified in vivo in balloon-injured rat carotid arteries. The results suggest that MAPK/ERK/miR-31/LATS2 may represent a novel signaling pathway in VSMC growth. miR-31 is able to enhance VSMC proliferation via its downstream target gene product, LATS2.  相似文献   

14.
Hemin, an oxidized form of heme, is an essential regulator of gene expression and cell cycle progression. Our laboratory previously reported (34) that chronic hemin treatment of spontaneously hypertensive rats reversed the eutrophic inward remodeling of small peripheral arteries. Whether long-term treatment of cultured vascular smooth muscle cells (VSMCs) with hemin alters the proliferation status of these cells has been unknown. In the present study, hemin treatment at 5 muM for 4, 7, 14, and 21 days significantly inhibited the proliferation of cultured rat aortic VSMCs (A-10 cells) by arresting cells at G0/G1 phases so as to decelerate cell cycle progression. Heme oxygenase (HO) activity and inducible HO-1 protein expression were significantly increased by hemin treatment. HO inhibitor tin protoporphyrin IX (SnPP) abolished the effects of hemin on cell proliferation and HO activity. Interestingly, hemin-induced HO-1 expression was further increased in the presence of SnPP. Hemin treatment had no significant effect on the expression of constitutive HO-2. Expression of p21 protein and the level of reactive oxygen species (ROS) were decreased by hemin treatment, which was reversed by application of SnPP. After removal of hemin from culture medium, inhibited cell proliferation and increased HO-1 expression in VSMCs were returned to control level within 1 wk. Transfection with HO-1 small interfering RNA significantly knocked down HO-1 expression and decreased HO activity, but had no effect on HO-2 expression, in cells treated with or without hemin for 7 days. The inhibitory effect of hemin on cell proliferation was abolished in HO-1 silenced cells. It is concluded that induction of HO-1 and, consequently, increased HO activity are responsible for the chronic inhibitory effect of hemin on VSMC proliferation. Changes in the levels of p21 and ROS might also participate in the cellular effects of hemin.  相似文献   

15.
During restenosis following arterial injury, vascular smooth muscle cells (VSMCs) form a neointimal layer in arteries by changing from a differentiated, contractile phenotype to a dedifferentiated, migratory, and proliferative phenotype. Several growth factors, cytokines, and extracellular matrix components released following injury have been implicated in these phenotypic changes. We have recently detected the expression of laminin-5, an ECM protein found predominantly in epithelial tissues, in the arterial vasculature. Here we report that ln-5 expression by VSMC is upregulated by platelet-derived growth factor (PDGF-BB), epidermal growth factor, basic fibroblast growth factor, and transforming growth factor-beta1. Adhesion to ln-5 specifically enhances PDGF-BB-stimulated VSMC proliferation and migration. PD98059, a specific inhibitor of the ERK1/2 members of the Mitogen Activated Protein kinase family, increases both VSMC adhesion to ln-5 and blocks PDGF-BB-stimulated VSMC migration on ln-5. These results suggest that adhesion to ln-5 mediates a PDGF-BB-stimulated VSMC response to vascular injury via an ERK1/2 signaling pathway.  相似文献   

16.
Sinomenine, a pure alkaloid extract from Sinomenium acutum, has anti-inflammatory and immunoregulatory functions. This study investigated the efficiency and the signalling pathways involved in the effect of sinomenine on vascular smooth muscle cell (VSMC) dedifferentiation in response to platelet-derived growth factor (PDGF)-BB stimulation and vascular injury. VSMCs were isolated from rat aorta and preincubated with sinomenine before being stimulated with PDGF-BB. WST and BrdU incorporation assays were used to evaluate VSMC proliferation. Flow cytometric analysis was performed for testing the cell cycle progression. The cell migration of VSMCs were analysed using a Transwell system. The expression of VSMC specific genes and signalling proteins were tested by Western blot. For the animal study, C57/BL6 mice were fed either normal rodent chow diets or sinomenine chow diets that supplemented with 0.09 % sinomenine (w/w) in the normal chows for 14 days before carotid artery wire injury. PDGF-BB activated the dedifferentiation of VSMCs characterised by decreased expression of SMA, Smoothelin and SM22α. However, sinomenine treatment preserved the dedifferentiation in response to PDGF-BB. The activations of mitogen-activated protein kinase extracellular signal-regulated kinases, Akt, GSK3β and STAT3 induced by PDGF-BB were also inhibited in sinomenine-treated VSMCs. In vivo evidence with wire-injured mice exhibited a reduction in neointimal area and an increase in smooth muscle-specific gene expression in the sinomenine-treated group. In this study, we found that sinomenine-suppressed VSMC phenotype switching induced by PDGF-BB in vitro and neointimal formation in vivo. Therefore, sinomenine is a potential candidate to be used in the treatment of vascular proliferative disease.  相似文献   

17.
Nitric oxide (NO)-based therapies decrease neointimal hyperplasia; however, studies have been performed only in male animal models. Thus, we sought to evaluate the effect of NO on vascular smooth muscle cells (VSMC) in vitro and neointimal hyperplasia in vivo based on sex and hormone status. In hormone-replete medium, male VSMC proliferated at greater rates than female VSMC. In hormone-depleted medium, female VSMC proliferated at greater rates than male VSMC. However, in both hormone environments, NO inhibited proliferation and migration to a greater extent in male compared to female VSMC. These findings correlated with greater G0/G1 cell cycle arrest and changes in cell cycle protein expression in male compared to female VSMC after exposure to NO. Next, the rat carotid artery injury model was used to assess the effect of NO on neointimal hyperplasia in vivo. Consistent with the in vitro data, NO was significantly more effective at inhibiting neointimal hyperplasia in hormonally intact males compared to females using weight-based dosing. An increased weight-based dose of NO in females was able to achieve efficacy equal to that in males. Surprisingly, NO was less effective at inhibiting neointimal hyperplasia in castrated animals of both sexes. In conclusion, these data suggest that NO inhibits neointimal hyperplasia more effectively in males compared to females and in hormonally intact compared to castrated rats, indicating that the effects of NO in the vasculature may be sex- and hormone-dependent.  相似文献   

18.
Intercellular communication between mesenchymal stem cells (MSCs) and their target cells in the perivascular environment is modulated by exosomes derived from MSCs. However, the potential role of exosome‐mediated microRNA transfer in neointimal hyperplasia remains to be investigated. To evaluate the effects of MSC‐derived exosomes (MSC‐Exo) on neointimal hyperplasia, their effects upon vascular smooth muscle cell (VSMC) growth in vitro and neointimal hyperplasia in vivo were assessed in a model of balloon‐induced vascular injury. Our results showed that MSC‐Exo were internalised by VSMCs and inhibited proliferation and migration in vitro. Further analysis revealed that miR‐125b was enriched in MSC‐Exo, and repressed the expression of myosin 1E (Myo1e) by targeting its 3? untranslated region. Additionally, MSC‐Exo and exosomally transferred miR‐125b repressed Myo1e expression and suppressed VSMC proliferation and migration and neointimal hyperplasia in vivo. In summary, our findings revealed that MSC‐Exo can transfer miR‐125b to VSMCs and inhibit VSMC proliferation and migration in vitro and neointimal hyperplasia in vivo by repressing Myo1e, indicating that miR‐125b may be a therapeutic target in the treatment of vascular diseases.  相似文献   

19.
20.
Superoxide anion is elevated during neointima development and is essential for neointimal vascular smooth muscle cell (VSMC) proliferation. However, little is known about the role of manganese superoxide dismutase (MnSOD, SOD2) in the neointima formation following vascular injury. SOD2 in the mitochondria plays an important role in cellular defense against oxidative damage. Because of its subcellular localization, SOD2 is considered the first line of defense against oxidative stress and plays a central role in metabolizing superoxide. Because mitochondria are the most important sources of superoxide anion, we speculated that SOD2 may have therapeutic benefits in preventing vascular remodeling. In this study, we used a rat carotid artery balloon-injury model and an adenoviral gene delivery approach to test the hypothesis that SOD2 suppresses vascular lesion formation. SOD2 was activated along with the progression of neointima formation in balloon-injured rat carotid arteries. Depletion of SOD2 by RNA interference markedly promoted the lesion formation, whereas SOD2 overexpression suppressed the injury-induced neointima formation via attenuation of migration and proliferation of VSMCs. SOD2 exerts its inhibitory effect on VSMC migration induced by angiotensin II by scavenging superoxide anion and suppressing the phosphorylation of Akt. Our data indicate that SOD2 is a negative modulator of vascular lesion formation after injury. Therefore, SOD2 augmentation may be a promising therapeutic strategy for the prevention of lesion formation in proliferative vascular diseases such as restenosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号