首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 957 毫秒
1.
2.
Maternal starvation inhibits fetal brain development during late gestation in the rat. To determine whether intrinsic or extrinsic factors might be the principal contributor to altered growth, brain cells from 20 day fetuses were cultured in a 96 well plate with MEM and 10% adult rat serum. Tissue growth was monitored by spectrophotometric measurement of the mitochondrial reduction of a chromagen 3-(4,5 dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide (MTT). After 1, 4 or 6 days incubation, MTT activity in non confluent cultures was shown to be directly related to tissue mass. When fetal brain cell cultures were incubated with 1% and 10% concentrations of adult rat serum, an 11-fold increase in MTT activity paralleled a 15-fold increase in tritiated thymidine incorporation. The impact of maternal starvation on fetal brain cell growth was examined by measuring MTT activity in fetal brain cells from fed and starved mothers. When cultures were incubated for 6 days with graded concentrations of fed adult serum (1.25–10%), the MTT response was slightly but consistently lower in cells from starved when compared with cells from fed mothers. By contrast, a marked difference in MTT activity which was paralleled by a lower DNA content became apparent when fetal rat brain cells were incubated with starved adult serum. Fetal serum and adult male serum were found to support growth equally well, while incubation of fetal brain cells with maternal sera resulted in lower MIT values than with the corresponding fetal sera. When cells were incubated with fetal sera pooled from starved mothers, MTT activity was decreased by 42 to 45%. A relative decrease in MTT activity was also apparent when cells were exposed to sera from starved mothers. Graded concentrations of starved fetal serum (2.5–10%) produced an increase in MTT activity that was consistently lower than similar concentrations of fed fetal serum, a finding suggesting a decrease in growth factors. Mixing fasted with fed serum did not correct the diminished growth, and indicated that an inhibitor might also be functioning to restrict growth. These findings therefore suggest that the principal determinants of diminished fetal brain growth during maternal starvation are not only intrinsic to the cells but are importantly related to the altered extrinsic factors in the fetal circulation.  相似文献   

3.
During development of the nervous system, molecular signals mediating cell–cell interactions play critical roles in the guidance of axonal growth and establishment of synaptic functions. The Eph family of tyrosine kinase receptors and their ephrin ligands has been shown to mediate neuronal interactions in the development of topographic axon projection maps in several brain regions, and the loss of Eph activities result in defects in select axonal pathways. However, effects of deficiencies of the Eph signals on animal behavior have not been well documented. In this study, we showed that inactivation of a ligand of the Eph receptors, ephrin‐A5, resulted in defects in maternal behavior and alterations in anxiety. Female ephrin‐A5 ?/? mice show significant defects in nest building and pup retrieval. In addition, lower levels of anxiety were observed in both male and female null mice. These changes were not due to deficiencies in estradiol, progesterone or corticosterone levels. Our observations suggest that ephrin‐A5 plays a key role in the development and/or function of neural pathways mediating mouse maternal care and anxiety.  相似文献   

4.
This study compares the density and tissue-specific distribution of 5-methyl cytosine (5mC) in genomic DNA from human fetuses with or without neural tube defects (NTD) and examines whether low maternal serum folate is a possible correlate and/or risk factor for NTD. The results demonstrate significant hypomethylation of brain genomic DNA in NTD fetuses relative to controls (P<.01), as well as relative hypermethylation of skin and heart in NTD fetuses. In normal fetuses, the level of 5mC in liver genomic DNA decreased from fetal week 18 to 28 and increased over the same developmental period in kidney genomic DNA, but these trends were absent in genomic DNA from NTD fetuses. Mean maternal serum folate was significantly lower in NTD fetuses than in controls (P<.01), and maternal serum folate correlated with density of 5mC in genomic brain DNA from NTD fetuses (r=0.610). The results indicate that aberrant DNA methylation in NTD may be due to maternal folate deficiency and may be involved in the pathogenesis of NTD in humans.  相似文献   

5.
Maternal diabetes mellitus is associated with increased teratogenesis, which can occur in pregestational type 1 and type 2 diabetes. Cardiac defects and with neural tube defects are the most common malformations observed in fetuses of pregestational diabetic mothers. The exact mechanism by which diabetes exerts its teratogenic effects and induces embryonic malformations is unclear. Whereas the sequelae of maternal pregestational diabetes, such as modulating insulin levels, altered fat levels, and increased reactive oxygen species, may play a role in fetal damage during diabetic pregnancy, hyperglycemia is thought to be the primary teratogen, causing particularly adverse effects on cardiovascular development. Fetal cardiac defects are associated with raised maternal glycosylated hemoglobin levels and are up to five times more likely in infants of mothers with pregestational diabetes compared with those without diabetes. The resulting anomalies are varied and include transposition of the great arteries, mitral and pulmonary atresia, double outlet of the right ventricle, tetralogy of Fallot, and fetal cardiomyopathy. A wide variety of rodent models have been used to study diabetic teratogenesis. Both genetic and chemically induced models of type 1 and 2 diabetes have been used to examine the effects of hyperglycemia on fetal development. Factors such as genetic background as well as confounding variables such as obesity appear to influence the severity of fetal abnormalities in mice. In this review, we will summarize recent data on fetal cardiac effects from human pregestational diabetic mothers, as well as the most relevant findings in rodent models of diabetic cardiac teratogenesis. Birth Defects Research (Part A), 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Mao C  Lv J  Zhu H  Zhou Y  Chen R  Feng X  Cui Y  Wang C  Hui P  Xu F  Xu Z 《Peptides》2007,28(6):1178-1184
Although a number of studies have shown neural, hormonal, and behavioral capabilities in the control of body fluid regulation under conditions of dehydration in adults, limited information is available on the development of fetal functional abilities in response to osmotic challenge in rats. This study was performed to investigate the influence of maternal hypertonicity on fetal osmoregulatory capabilities at late gestational time in rats. Maternal and fetal plasma osmolality and blood sodium levels were determined and compared at continuous time points from 0.5 to 9h following maternal injection of hypertonic NaCl. Subcutaneous administration of hypertonic saline evoked a rise in plasma osmolality and sodium concentrations in maternal rats and fetuses associated with an up-regulation in angiotensinogen gene mRNA in the fetal liver and down-regulation of the same gene in the fetal brain. The increased levels of fetal blood osmolality and sodium were less than that in their mothers, and the fetus took less time to balance the enhanced osmolality and sodium concentrations. The results suggest that there may exist additional mechanisms in utero at near-term in protecting fetuses from hypertonic challenge. In addition, molecular results in the present study provide new data on fetal angiotensinogen gene expressed differently in the liver and brain under the same condition of prenatal salt loading, indicating osmotic signals of intracellular dehydration related to an acute increase in angiotensinogen mRNA in the fetal liver, and subsequent decrease in angiotensinogen mRNA levels in the fetal brain.  相似文献   

7.
We utilized a vitamin D receptor (VDR) gene knockout model to study the effects of maternal and fetal absence of VDR on maternal fertility, fetal-placental calcium transfer, and fetal mineral homoeostasis. Vdr null mice were profoundly hypocalcemic, conceived infrequently, and had significantly fewer viable fetuses in utero that were also of lower body weight. Supplementation of a calcium-enriched diet increased the rate of conception in Vdr nulls but did not normalize the number or weight of viable fetuses. Among offspring of heterozygous (Vdr(+/-)) mothers (wild type, Vdr(+/-), and Vdr null fetuses), there was no alteration in serum Ca, P, or Mg, parathyroid hormone, placental (45)Ca transfer, Ca and Mg content of the fetal skeleton, and morphology and gene expression in the fetal growth plates. Vdr null fetuses did have threefold increased 1,25-dihydroxyvitamin D levels accompanied by increased 1alpha-hydroxylase mRNA in kidney but not placenta; a small increase was also noted in placental expression of parathyroid hormone-related protein (PTHrP). Among offspring of Vdr null mothers, Vdr(+/-) and Vdr null fetuses had normal ionized calcium levels and a skeletal ash weight that was appropriate to the lower body weight. Thus our findings indicate that VDR is not required by fetal mice to regulate placental calcium transfer, circulating mineral levels, and skeletal mineralization. Absence of maternal VDR has global effects on fetal growth that were partly dependent on maternal calcium intake, but absence of maternal VDR did not specifically affect fetal mineral homeostasis.  相似文献   

8.
We used the calcitonin/calcitonin gene-related peptide (CGRP)-alpha gene knockout model (Ct/Cgrp null) to determine whether calcitonin and CGRPalpha are required for normal fetal mineral homeostasis and placental calcium transfer. Heterozygous (Ct/Cgrp(+/-)) and Ct/Cgrp null females were mated to Ct/Cgrp(+/-) males. One or two days before term, blood was collected from mothers and fetuses and analyzed for ionized Ca, Mg, P, parathyroid hormone (PTH), and calcitonin. Amniotic fluid was collected for Ca, Mg, and P. To quantify skeletal mineral content, fetuses were reduced to ash, dissolved in nitric acid, and analyzed by atomic absorption spectroscopy for total Ca and Mg. Placental transfer of (45)Ca at 5 min was assessed. Ct/Cgrp null mothers had significantly fewer viable fetuses in utero compared with Ct/Cgrp(+/-) and wild-type mothers. Fetal serum Ca, P, and PTH did not differ by genotype, but serum Mg was significantly reduced in null fetuses. Placental transfer of (45)Ca at 5 min was normal. The calcium content of the fetal skeleton was normal; however, total Mg content was reduced in Ct/Cgrp null skeletons obtained from Ct/Cgrp null mothers. In summary, maternal absence of calcitonin and CGRPalpha reduced the number of viable fetuses. Fetal absence of calcitonin and CGRPalpha selectively reduced serum and skeletal magnesium content but did not alter ionized calcium, placental calcium transfer, and skeletal calcium content. These findings indicate that calcitonin and CGRPalpha are not needed for normal fetal calcium metabolism but may regulate aspects of fetal Mg metabolism.  相似文献   

9.
The adrenal glands of rat fetuses with activated or inhibited pituitary adrenocorticotropic activity between the 15th and 22nd day of intrauterine development were incubated with 4-14C-progesterone for 3hr. Fetuses of intact mothers were used as controls. Conversion of progesterone into adrenal steroids was found increased on the 18th day of intrauterine development, i.e., at the time when fetal adrenocorticotropic activity begins. In comparison to controls, conversion of progesterone into fetal adrenal corticosteroids was the smallest in the fetuses of mothers with inhibited pituitary ACTH and the greatest in the adrenals of fetuses of mothers with activated pituitary adrenocorticotropic activity.  相似文献   

10.
11.
Maternal malnutrition adversely affects fetal body and brain growth during late gestation. We utilized a fetal brain cell culture model to examine whether alternations in circulating factors may contribute to reduce brain growth during maternal starvation; we then used specific immunoassay and western blotting techniques, and purified peptides to investigate the potential role that altered levels of insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs) may play in impaired growth during maternal nutritional restriction.Fetal, body, liver, and brain weight were reduced after 72 hr maternal starvation, and plasma from starved fetuses were less potent than fed fetal plasma in stimulating brain cell growth. Circulating levels of IGF-I were reduced in starved compared to fed fetuses, while levels of IGF-II were similar in both groups. In contrast, [125I]-IGF-I binding assay demonstrated an increase in the availability of plasma IGFBPs following starvation. Western ligand blotting and densitometry indicated that levels of 32 Kd IGFBPs were 2-fold higher in starved compared to fed fetal plasma. Immunoblotting and immunoprecipitation with antiserum against rat IGFBP-1 confirmed that heightened levels of immunoreactive IGFBP-1 accounted for the increase in 32 Kd IGFBPs in starved plasma. Levels of 34 Kd BPs, representing IGFBP-2, were unaffected by starvation. Reconstitution experiments in cell culture showed that IGF-I promoted fetal brain cell growth, and that when they were supplemented with IGF-I, the growth promoting activity of starved fetal plasma was restored to fed levels. These changes were measured using MTT to assess mitochondrial reductase activity. Conversely, addition of physiological amounts of rat IGFBP-1 inhibited the effects of fed fetal plasma on brain cell growth, and bioactivity was reduced even further with higher concentrations of IGFBP-1. Based on these results, we conclude that reciprocal changes in circulating levels of IGFBP-1 (increased) and IGF-I (decreased) may combine to reduce the availability of IGF-I to this tissue and limit fetal brain cell growth when maternal nutrition is impaired.  相似文献   

12.
Progesterone and oestrogen play essential roles in the maintenance of pregnancy in eutherian mammals and are thought to exert their effects on the developing conceptus indirectly, via the endometrium. In some species, early embryos have themselves been shown to express steroid receptors, thereby suggesting that reproductive steroids may also influence embryonic development directly. The aim of this study was to determine whether early intrauterine equine conceptuses express either the classical intracellular progesterone (PR) and oestrogen receptors (ERalpha and ERbeta) or the more recently characterised membrane-bound progesterone receptors (PGRMC1 and mPR). Horse conceptuses recovered on days 7, 10 and 14 after ovulation (n=8 at each stage) were examined for steroid receptor mRNA expression using quantitative rtPCR. Where commercial antibodies were available (PR, ERbeta), receptor localisation was examined immunohistochemically in day 10, 12, 14, 15 and 16 conceptuses (n=2 at each stage). mRNA for PR, PGRMC1 and mPR was detected at all stages examined, but while PGRMC1 and mPR expression increased during the day 7-14 period, PR expression decreased. ERalpha mRNA was not detected at any stage examined, whereas ERbeta mRNA was detected in all day 14, some day 10 and no day 7 conceptuses. Immunoreactive ERbeta receptors were localised to the trophectoderm of day 14-16 conceptuses; PR were not detected immunohistochemically in conceptus tissue. In summary, this study demonstrates that equine conceptuses express mRNA and, in the case of ERbeta, protein for steroid hormone receptors during the period encompassing rapid conceptus growth, differentiation and maternal pregnancy recognition.  相似文献   

13.
Maternal hypothyroidism induced by surgical thyroidectomy (Tx) of the rat resulted in significantly higher fetal serum levels of thyroid stimulating hormone (TSH) and thyroxine (T4) on day 22 of gestation. Surprisingly, administration of growth hormone (GH) to hypothyroid mothers increased further the fetal serum T4 and TSH. The in vitro uptake of 131I-T4 by erythrocytes was elevated significantly when incubated with serum from fetuses of both hypothyroid and hypothyroid GH-treated mothers. Although the plasma protein levels of hypothyroid mothers and their fetuses are decreased significantly as compared to controls this is not true of hypothyroid GH-treated mothers and their fetuses. The T4 levels of both groups of Tx mothers were significantly below that of controls. However, as in the case of their fetuses, the serum T4 of GH-treated hypothyroid mothers was elevated from that of Tx only animals. It is concluded that the pituitary-thyroid system of fetuses of hypothyroid mothers is activated excessively during late gestation, that considerable T4 can be transported from the fetus to the mother during this period and that these fetuses are in fact born in a hyperthyroid state which is aggravated by maternal treatment with GH.  相似文献   

14.
15.
The estrogen and progesterone receptors of several organs of the prenatal cynomolgus macaque and the fetal mouse were studied using a combination of the dextran-coated charcoal technique and high-performance liquid chromatography. This procedure permitted the concurrent measurement of both receptors in minute amounts of tissue. Estrogen receptors, but not progesterone receptors, were found in the fetal monkey and mouse uteri. No estrogen or progesterone receptors were detected in the lungs, liver, kidney, heart, brain, adrenal gland, or limbs of mouse or monkey fetuses. The nonspecific binding of radioactive ORG-2058 was not displaced by unlabeled progesterone, 17 alpha-hydroxyprogesterone caproate, or ORG-2058. Because the steroid receptors that are indispensable mediators of steroid hormone action were absent from the nonreproductive tissues, prenatal development of these organs and tissues cannot be adversely influenced by exposure to estradiol, progesterone, or their synthetic analogues.  相似文献   

16.
The aim of the present study was to determine whether the fetal lamb brain has the capacity to aromatize androgens to estrogens during the critical period for sexual differentiation. We also determined whether administration of the aromatase-inhibitor 1,4,6-androstatriene-3,17-dione (ATD) could cross the placenta and inhibit aromatase activity (AA) in fetal brain. Eight pregnant ewes were utilized. On Day 50 of pregnancy, four ewes were given ATD-filled Silastic implants, and the other four ewes received sham surgeries. The fetuses were surgically delivered 2 wk later (Day 64 of gestation). High levels of AA (0.8-1.4 pmol/h/mg protein) were present in the hypothalamus and amygdala. Lower levels (0.02-0.1 pmol/h/mg protein) were measured in brain stem regions, cortex, and olfactory bulbs. The Michaelis-Menten dissociation constant (K(m)) for aromatase in the fetal sheep brain was 3-4 nM. No significant sex differences in AA were observed in brain. Treatment with ATD produced significant inhibition of AA in most brain areas but did not significantly alter serum profiles of the major sex steroids in maternal and fetal serum. Concentrations of testosterone in serum from the umbilical artery and vein were significantly greater in male than in female fetuses. No other sex differences in serum steroids were observed. These data demonstrate that high levels of AA are found in the fetal sheep hypothalamus and amygdala during the critical period for sexual differentiation. They also demonstrate that AA can be inhibited in the fetal lamb brain by treating the mother with ATD, without harming fetal development.  相似文献   

17.
Around the time of birth, male rats express higher levels of progesterone receptors in the medial preoptic nucleus (MPN) than female rats, suggesting that the MPN may be differentially sensitive to maternal hormones in developing males and females. Preliminary evidence suggests that this sex difference depends on the activation of estrogen receptors around birth. To test whether estrogen receptor alpha (ER alpha) is involved, we compared progesterone receptor immunoreactivity (PRir) in the brains of male and female neonatal mice that lacked a functional ER alpha gene or were wild type for the disrupted gene. We demonstrate that males express much higher levels of PRir in the MPN and the ventromedial nucleus of the neonatal mouse brain than females, and that PRir expression is dependent on the expression of ER alpha in these regions. In contrast, PRir levels in neocortex are not altered by ER alpha gene disruption. The results of this study suggest that the induction of PR via ER alpha may render specific regions of the developing male brain more sensitive to progesterone than the developing female brain, and may thereby underlie sexual differentiation of these regions.  相似文献   

18.
Twenty-one pregnant ewe lambs (nine superovulated and 12 non-superovulated) were used to study the effects of superovulation (injecting 700 IU PMSG at the end of diestrus) on maternal serum progesterone concentrations, uterine and fetal weights at weeks 7 and 15 of pregnancy. In the ewes sacrificed at week 7 of pregnancy, superovulation increased the mean number of corpora lutea (P<0.01), fetuses (P<0.01), maternal mean serum progesterone concentration (P<0.01), mean uterine weight (P<0.05), total fetal weight (P<0.01), and average fetal weight (P<0.01) by 133%, 69%, 354%, 66%, 150% and 40%, respectively, when compared to non-superovulated ewes. In the ewes sacrificed at week 15 of pregnancy, superovulation increased the number of corpora lutea (P<0.01), fetuses (P<0.05), maternal serum progesterone concentration (P<0.01), uterine weight (P<0.05), total fetal weight (P>0.05), and average fetal weight (P<0.05) by 207%, 20%, 84%, 37%, 29% and 24%, respectively, compared to those non-superovulated ewes. It was concluded that the increased number of corpora lutea and, therefore, their hormonal secretions by superovulation could increase uterine and fetal growth and development.  相似文献   

19.
Effects of streptozotocin-induced maternal diabetes on fetal hepatic carbohydrate-metabolizing enzyme development and hormonal status has been explored in the rat. Hepatic glycogen synthase a activity of the normal fetus rose to a maximum at 20 days of gestation, then fell prior to parturition. In fetuses of diabetic mothers, this prepartum decline was curtailed, resulting in enhanced synthase a activity and increased glycogen content in fetal livers at term. Elevation in hepatic synthase a in fetuses of diabetic mothers was due, not to altered interconversion between existing synthase a and b, but to equivalent increases in both forms of the enzyme. Both hepatic and free plasma corticosterone levels were elevated in fetuses of diabetic mothers and may be responsible for the enhanced development of total glycogen synthase observed in these fetuses. In normal fetuses hepatic phosphofructokinase and pyruvate kinase activities also rose to maxima at 20 days, then declined prior to term. In fetuses of diabetic mothers pyruvate kinase activity attained higher than normal maximal levels and phosphofructokinase activity fell more gradually, thus resulting in elevations in both enzyme activities at term. Augmentations in these glycolytic enzymes are compatible with hyperinsulinemia observed in fetuses of diabetic mothers. The following conclusions may be drawn from these findings. During late fetal life developmental patterns of rate-limiting hepatic glycogen-synthesizing and glycolytic enzymes are adapted to glucose utilization. In the normal fetus these patterns reverse at term, thereby promoting glucose mobilization, which prepares the fetus for abrupt deprivation of maternal glucose at birth. Maternal diabetes results in retardation of these reversal processes, presumably due to elevations in fetal glucocorticoid and insulin levels. Glycogenolytic and glucogenic capacities are thereby impaired in these fetuses.  相似文献   

20.
Pregnant hamsters were ovariectomized on Day 7 and daily supplements of progesterone or progesterone plus oestradiol benzoate were given. Fetal development and survival was 14% and 62% respectively. Histological examination indicated that failure of labyrinthine development in the placenta resulted in failure to form an adequate number of maternal arterial spaces communicating with the base of the trophospongium to allow trophoblast migration in the related maternal spiral arteries. Progesterone was essential at all stages of gestation to sustain decidualized tissues and allow survival of a minority of fetuses. Oestradiol supplementation significantly increased fetal survival, but not to normal levels, suggesting that other oestrogens may be essential for the maintenance of normal hamster pregnancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号