首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Summary A whole-mount fluorescence technique using rhodamine-labeled phalloidin was used to demonstrate for the first time the whole muscle system of a free-living plathelminth, Macrostomum hystricinum marinum. As expected, the body-wall musculature consisted of circular, longitudinal, and diagonal fibers over the trunk. Also distinct were the musculature of the gut and of the mouth and pharynx (circular, longitudinal, and radial). Dorsoventral fibers where restricted in this species to the head and tail regions. Circular muscle fibers in the body wall were often grouped into bands of up to four parallel strands. Surprisingly, diagonal fibers formed two distinct sets, one dorsal and one ventral. Certain diagonal muscle fibers entered the wall of the mouth and were continuous with some longitudinal muscles of the pharynx. Dorsoventral fibers in the rostrum occurred partly in regularly spaced pairs, a fact not known for free-living Plathelminthes. All muscle fibers appeared to be mononucleated. During postembryonic development, the number of circular muscle fibers can be estimated to increase by a factor of 3.5 and that of longitudinal muscles by a factor of 2. Apparently as many as 700–800 circular muscle cells must be added in the region of the gut alone during postembryonic development. Stem cells (neoblasts), identified by TEM in the caudalmost region of the gut, lie along the lateral nerve cords. In the same body region most perikarya of circular muscle cells occurred in a similar position. This suggests that the nucleus-containing part of the cell remains in the position where differentiation starts.  相似文献   

2.
The muscular system of the marine interstitial gastrotrich Draculiciteria tessalata (Chaetonotida, Paucitubulatina) was analyzed with fluorescent phalloidin. Muscles in circular, longitudinal, helicoidal and dorsoventral orientations were found. Circular muscles were present as discreet rings on the pharynx only. Five pairs of longitudinal muscles were found in dorsal, lateral and ventral positions. One of the two pairs of lateral muscles is newly described for the species. Helicoidal muscles, external to the circular muscles and some longitudinal bands, spiraled around the pharynx and anterior portion of the intestine. Two pairs of segmentally-arranged dorsoventral muscles were also present. Lateral dorsoventral muscles extended from the base of the pharynx to the anterior part of the caudal furca. Medial dorsoventral muscles extended from the pharyngeal-intestinal junction into each ramus of the caudal furca. A hypothesis on the evolution of dorsoventral muscles in D. tessalata is proposed which includes a splitting of circular muscles into separate somatic and splanchnic components with a further displacement of both muscle sets into a dorsoventral orientation.  相似文献   

3.
Abstract. The relationship of the polychaete taxa Syllidae and Sphaerodoridae within Phyllodocida is still unresolved: phylogenetic analyses either show them as sister groups or more widely separated. The present article aims to provide information about the structure of the muscular system that could be essential for understanding their relationship. A crucial point is whether the body wall contains circular muscles, which has recently been shown to be absent in more taxa than previously known. The F-actin filaments in members of Myrianida prolifera (Syllidae) and Sphaerodoropsis sp. (Sphaerodoridae) were labeled with phalloidin and their three-dimensional relationships reconstructed by means of confocal laser scanning microscopy. Among the noteworthy differences that emerged between the species are (1) members of M. prolifera possess four, those of Sphaerodoropsis sp. eight, longitudinal muscle strands; (2) the body wall in M. prolifera contains transverse fibers in a typical, supralongitudinal position, while in Sphaerodoropsis sp., corresponding fibers lie beneath the longitudinal strands; (3) pro- and peristomium in M. prolifera have no distinct F-actin fibers, while five longitudinal pairs and three single transverse muscular fibers shape the anterior end in Sphaerodoropsis sp.; (4) the proventricle of M. prolifera comprises primarily radial muscle fibers arranged in distinct rows, while in Sphaerodoropsis sp. the axial proboscis consists of longitudinal and circular fibers and radial fibers are lacking; (5) in M. prolifera, the proximal and distal sections of the two anteriormost pairs of dorsal cirri possess longitudinal myofilaments, which are separate from the body wall musculature; by contrast, all appendages in Sphaerodoropsis sp. do not; (6) both species have bracing muscles: in M. prolifera they are positioned above the longitudinal fibers, whereas in Sphaerodoropsis sp. they are uniquely positioned between longitudinal and sublongitudinal transverse fibers. These results do not support a sister-group relationship of Syllidae and Sphaerodoridae. In addition, Sphaerodoropsis sp. is yet another example in the list of polychaetes lacking typical circular muscles in the body wall.  相似文献   

4.
5.
Divergent morphologies among related species are often correlated with distinct behaviors and habitat uses. Considerable morphological and behavioral differences are found between two major clades within the polychaete family Opheliidae. For instance, Thoracophelia mucronata burrows by peristalsis, whereas Armandia brevis exhibits undulatory burrowing. We investigate the anatomical differences that allow for these distinct burrowing behaviors, then interpret these differences in an evolutionary context using broader phylogenetic (DNA‐based) and morphological analyses of Opheliidae and taxa, such as Scalibregmatidae and Polygordiidae. Histological three‐dimensional‐reconstruction of A. brevis reveals bilateral longitudinal muscle bands as the prominent musculature of the body. Circular muscles are absent; instead oblique muscles act with unilateral contraction of longitudinal muscles to bend the body during undulation. The angle of helical fibers in the cuticle is consistent with the fibers supporting turgidity of the body rather than resisting radial expansion from longitudinal muscle contraction. Circular muscles are present in the anterior of T. mucronata, and they branch away from the body wall to form oblique muscles. Helical fibers in the cuticle are more axially oriented than those in undulatory burrowers, facilitating radial expansion during peristalsis. A transition in musculature accompanies the change in external morphology from the thorax to the abdomen, which has oblique muscles similar to A. brevis. Muscles in the muscular septum, which extends posteriorly to form the injector organ, act in synchrony with the body wall musculature during peristalsis: they contract to push fluid anteriorly and expand the head region following a direct peristaltic wave of the body wall muscles. The septum of A. brevis is much thinner and is presumably used for eversion of a nonmuscular pharynx. Mapping of morphological characters onto the molecular‐based phylogeny shows close links between musculature and behavior, but less correlation with habitat. J. Morphol. 275:548–571, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

6.
S. Tyler  R. M. Rieger 《Zoomorphology》1999,119(3):127-142
Convoluta pulchra is a small worm living in the surface sediment of mud flats where it feeds on diatoms. It is roughly teardrop in shape with a ventral groove in which the mouth sits, and it can move in a variety of ways, readily distorting its body in bending, twisting, and turning motions. Fluorescently labeled probes for filamentous actin revealed the musculature in whole mounts of the worm. In the body wall, the musculature consisted of a grid of circular, longitudinal crossover (that is, with a longitudinal orientation in the anterior half of the body but arcing medially to cross over to the contralateral side of the body behind the level of the mouth), and a few diagonal fibers. Inside the body was a strong, irregular brush of muscles originating at the rostral tip of the body and anchoring laterally and posteriorly along the body wall, and strong dorsoventral muscles flanked the ventral groove. Two fans of muscles in the ventral and dorsal body wall reached posteriorly and laterally; that on the dorsal side originated at junctures of the dorsoventral muscles with the body wall and that on the ventral body wall originated from the mouth. By their positions, certain groups of muscles could be correlated with given movements: the crossover muscles with some turning motions and feeding, and the inner muscles with probing and retraction motions of the rostrum and with a tuck-and-turn motion the worm used to turn itself around. Electron microscopy showed numerous maculae adherentes junctions linking all muscle types and special junctions linking the musculature with the epidermis. The latter myoepidermal junctions were of dimensions larger than those of maculae adherentes and contained an interlaminar material which we believe represents islands of basal matrix comparable to basement membrane. Accepted: 12 July 1999  相似文献   

7.
A new species of the genus Sturisoma from the Madre de Dios River, upper Madeira, Peru, is described. The new species can be differentiated from its congeners by the following characteristics: dorsolateral stripe reaching to less than half, or only half length of caudal peduncle (v. absence of dorsolateral stripe or, if present, spanning more than half caudal‐peduncle length); premaxillary teeth longer than dentary teeth (v. dentary teeth longer); sexually mature adult males having well‐developed odontodes on the sides of the head and a broader snout (v. adult males lacking well‐developed hypertrophied odontodes or, if present, rostrum is same width as females' or immature males'); by having the ventral portion of the rostrum conspicuously darker than ventral surface of the body (v. rostrum light, with same colour as ventral portion of body, except in Sturisoma barbatum); by lacking the lateral process of the sphenotic (v. lateral process of sphenotic well‐developed, except in Sturisoma tenuirostre); a dark spot on the first three branched pectoral‐fin rays (v. brown spot absent, except in S. barbatum); and the frontal bone contributing less than half of dorsal border of the orbital ridge (v. extensive participation of the frontal, except in Sturisoma guentheri). Furthermore, the new species has 18–20 plates in the median series, which differentiates it from Sturisoma rostratum (21–22), and Sturisoma monopelte (21); and 14–15 coalescent plates, which differentiates it from S. tenuirostre (16–17). It is further differentiated from Sturisoma brevirostre by presence of an enlarged rostrum (v. rostrum not enlarged). A discussion regarding status of the type series and geographic distribution of Sturisoma rostratum is offered, and an identification key for all Sturisoma species is presented.  相似文献   

8.
9.
The metazoan phylum Cycliophora includes small cryptic epibionts that live attached to the mouthparts of clawed lobsters. The life cycle is complex, with alternating sexual and asexual generations, and involves several sessile and free‐living stages. So far, the morphological and genetic characterization of cycliophorans has been unable to clarify the phylogenetic position of the phylum. In this study, we add new details on the muscular anatomy of the feeding stage, the attached Prometheus larva, the dwarf male, and the female of one of the two hitherto described species, Symbion pandora. The musculature of the feeding stage is composed of myofibers that run longitudinally in the buccal funnel (two fibers) and in the trunk (variable number of fibers). The mouth opening is lined by a myoepithelial ring musculature. A complex myoepithelial sphincter is situated proximal to the anus. In the attached Prometheus larva, three longitudinal sets of myofilaments run dorsally, laterally, and ventrally along the entire anterior‐posterior body axis. The muscular architecture of the dwarf male is complex, especially close to the penis, in the posterior part of the body. An X‐shaped muscle structure is found on the dorsal side, whereas on the ventral side, longitudinal muscles and a V‐shaped muscle structure are present. These muscles are complemented by additional dorsoventral muscles. The mesodermal muscle fibers attach to the cuticle via the epidermis in all life cycle stages studied herein. The musculature of the female is similar to that of the Pandora larva of Symbion americanus and includes dorsoventral muscles and longitudinal muscles that run in the dorsal and ventral body region. Overall, our results reveal striking similarities in the muscular arrangement of the life cycle stages of both Symbion species. J. Morphol., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
We analyzed the adult musculature of two prolecithophoran species, Cylindrostoma monotrochum (von Graff, 1882) and Monoophorum striatum (von Graff, 1878) using a phalloidin-rhodamine technique. As in all rhabdithophoran flatworms, the body-wall musculature consisted of three muscle layers: on the outer side was a layer of circular muscle fibers and on the inner side was a layer of longitudinal muscle fibers; between them were two different types of diagonally orientated fibers, which is unusual for flatworms. The musculature of the pharynx consisted of a basket-shaped grid of thin longitudinal and circular fibers. Thick anchoring muscle fibers forming a petal-like shape connected the proximal parts of the pharynx with the body-wall musculature. Male genital organs consisted of paired seminal vesicles, a granular vesicle, and an invaginated penis. Peculiar ring-shaped muscles were only found in M. striatum, predominantly in the anterior body part. In the same species, seminal vesicles and penis only had circular musculature, while in C. monotrochum also longitudinal musculature was found in these organs. Female genital organs were only present in M. striatum, where we characterized a vagina interna, and a bursa seminalis. Transverse, crossover, and dorsoventral muscle fibers were lacking in the middle of the body and greatly varied in number and position in both species.  相似文献   

11.
By combining phalloidin‐TRITC staining with confocal scanning laser microscopy (CSLM), the pattern of the musculature in two species of Rotifera, Euchlanis dilatata unisetata and Brachionus quadridentatus is revealed. The same general muscle pattern prevails in both species. The major components of the body wall musculature are: 1. retractor muscles (5 pairs in E. dilatata unisetata and 3 pairs in B. quadridentatus); 2. Two pairs of dorso‐ventral muscles; 3. Two pairs of perpendicular muscles (in E. dilatata unisetata); 4. retractors of the corona (median, lateral and ventral); 5. Foot retractors. In addition, three pairs of cutaneo‐visceral muscles and visceral muscles (including mastax muscles) are described. The sphincter of the corona was found only in B. quadridentatus. The high degree of muscle differentiation points to a high level of development of rotifer muscular system.  相似文献   

12.
Functional morphology of muscles in Tetranchyroderma papii (Gastrotricha)   总被引:2,自引:0,他引:2  
Movement in gastrotrichs is powered by an interaction of ventral cilia and muscles. In interstitial gastrotrichs, movement among sand grains often requires the additional use of adhesive tubules that allow for behaviors such as escape responses and changes in body position. In this study, we describe orientations and possible mechanical actions of muscles during locomotion in the gastrotrich, Tetranchyroderma papii (Macrodasyida). Fluorescently labeled phalloidin was used to stain F-actin of muscles and visualize muscle patterns. Muscles are arranged in circular, longitudinal, and helicoidal orientations. Circular muscles were in the form of discreet rings around the pharynx and intestine, and contribute to the structure of the oral hood. Longitudinal muscles are largely concentrated on the ventral and ventrolateral sides of the body, where they aid in body flexion, including directional changes during ciliary swimming, body torsion, and escape responses. Helicoidal muscles, present as myocytes in left- and right-hand orientations, lie external of the circular bands and some of the longitudinal bands, and are hypothesized to counteract dilations of the pharynx and intestine during feeding. Extraordinary muscle orientations with undetermined functions include a pair of crossover muscles and a single semicircular muscle band at the caudal end. Accepted: 12 February 2001  相似文献   

13.
Recent investigations have suggested that a lack of circular muscle fibers may be a common situation rather than a rare exception in polychaetes. As part of a comparative survey of polychaete muscle systems, the F-actin musculature subset of Magelona cf. mirabilis and Prionospio cirrifera were labeled with phalloidin and three-dimensionally analyzed and reconstructed by means of cLSM. Obvious similarities are sublongitudinal lateral, circumbuccal, palp retractor, dominating dorsal longitudinal, perpendicular lateral and ventral transverse muscles. Differences between M. cf. mirabilis and P. cirrifera are: (1) two types of prostomial muscles (transversal and longitudinal) in M. cf. mirabilis versus one type (diagonal) in P. cirrifera; (2) one type of palp muscles (longitudinal) in M. cf. mirabilis versus three types (longitudinal, diagonal, circular) in P. cirrifera; (3) five ventral longitudinal muscles (ventromedian, paramedian, ventral) in M. cf. mirabilis versus four (two paramedian, two ventral) in P. cirrifera. Ventral and lateral transverse fibers are present in the thorax, but absent in the abdomen of M. cf. mirabilis. The triangular lumen of the pharynx in M. cf. mirabilis is surrounded by radial muscle fibers; three sets of pharynx diductors attach to its dorsal side. The unique features of P. cirrifera are one pair of brain muscles and segmentally arranged dorsal transverse muscles, the latter located outside the longitudinal muscles. The transverse lateral muscles are restricted to the sides and lie beneath the longitudinal muscles, a pattern described here for the first time. A true, outer layer of circular fibers is absent in both species of Spionida that were investigated.  相似文献   

14.
Studies of rare genomic marker systems suggest that Myzostomida are a subgroup of Annelida and phylogenomic analyses indicate an early divergence of this taxon within annelids. However, adult myzostomids show a highly specialized body plan, which lacks typical annelid features, such as external body annulation, coelomic cavities with metanephridia, and segmental ganglia of the nervous system. The putative loss of these features might be due to the parasitic/symbiotic lifestyle of myzostomids associated with echinoderms. In contrast, the larval anatomy and adult locomotory system resemble those of annelids. To clarify whether the myoanatomy of myzostomids reflects their relationship to annelids, we analyzed the distribution of f‐actin, a common component of muscle fibers, in specimens of Myzostoma cirriferum using phalloidin‐rhodamine labeling in conjunction with confocal laser‐scanning microscopy. Our data reveal that the musculature of the myzostomid body comprises an outer circular layer, an inner longitudinal layer, numerous dorsoventral muscles, and prominent muscles of the parapodial complex. These features correspond well with the common organization of the muscular system in Annelida. In contrast to other annelids, however, several elements of the muscular system in M. cirriferum, including the musculature of the body wall, and the parapodial flexor muscles, exhibit radial symmetry overlaying a bilateral body plan. These findings are in line with the annelid affinity of myzostomids and suggest that the apparent partial radial symmetry of M. cirriferum arose secondarily in this species. Based on our data, we provide a scenario on the rearrangements of muscle fibers that might have taken place in the lineage leading to this species. J. Morphol., 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
Whole-mounts of Philodina sp., a bdelloid rotifer, were stained with fluorescent-labeled phalloidin to visualize the musculature. Several different muscle types were identified including incomplete circular bands, coronal retractors and foot retractors. Based on the position of the larger muscle bands in the body wall, their function during creeping locomotion and tun formation was inferred. Bdelloid creeping begins with the contraction of incomplete circular muscle bands against the hydrostatic pseudocoel, resulting in an anterior elongation of the body. One or more sets of ventral longitudinal muscles then contract bringing the rostrum into contact with the substrate, where it presumably attaches via adhesive glands. Different sets of ventral longitudinal muscles, foot and trunk retractors, function to pull the body forward. These same longitudinal muscle sets are also used in `tun' formation, in which the head and foot are withdrawn into the body. Three sets of longitudinal muscles supply the head region (anterior head segments) and function in withdrawal of the corona and rostrum. Two additional pairs of longitudinal muscles function to retract the anterior trunk segments immediately behind the head, and approximately five sets of longitudinal retractors are involved in the withdrawal of the foot and posterior toes. To achieve a greater understanding of rotifer behavior, it is important to elucidate the structural complexity of body wall muscles in rotifers. The utility of fluorescently-labeled phalloidin for the visualization of these muscles is discussed and placed in the context of rotifer functional morphology.  相似文献   

16.
17.
A ventral midline surgical approach for fish celiotomy is commonly performed in veterinary clinical medicine and research, although the relevant ventral body wall anatomy of many fish species is not well documented. Histological evaluation of tissue samples from the ventral body wall of 12 fish species was performed to provide a reference for surgical approach and closure decisions. The width between muscle bundles running parallel to the long axis and total thickness of tissue layers varied among species. An appreciable space between longitudinal muscles of the ventral body wall and a lack of muscle, vessels and nerves on midline in all species examined supports recommendations of ventral midline incisions to spare important structures. Dense connective tissue consistent with an aponeurosis between musculature along the ventral body wall was not observed in any species evaluated. Connective tissue was concentrated within the dermis of all species evaluated, with an additional layer of collagen along the coelomic membrane in Russian sturgeon Acipenser gueldenstaedtii, koi Cyprinus carpio, goldfish Carassius auratus, black drum Pogonias cromis, black seabass Centropristis striata, tomtate Haemulon aurolineatum and scup Stenotomus caprinus. A sufficiently wide space on ventral midline for practical targeting during the surgical approach is present in A. gueldenstaedtii, C. carpio, striped bass Morone saxatilis, H. aurolineatum, P. cromis, rainbow trout Oncorhynchus mykiss and brown trout Salmo trutta. Sand perch Diplectrum formosum, C. auratus, S. caprinus, grey triggerfish Balistes capriscus and black sea bass Centropristis striata have a negligible space between longitudinal muscles on midline. The variation in ventral body wall structure observed in this study helps inform surgical decision making for celiotomy incision and closure in these species.  相似文献   

18.
Larvae removed at one-day intervals from laboratory infected intermediate hosts provided material for a comparative study of presomal development in Prosthorhynchus formosus (Van Cleave, '18) Travassos, '26, Prosthenorchis elegans (Diesing, 1851) Travassos, '15, and Moniliformis dubius Meyer, '33. Acanthellae begin development soon after entering intermediate hosts' hemocoels, and by the 18th day all three species possess three nuclear masses representing primordia of the proboscis, proboscis receptacle and ganglion, and trunk musculature and genitalia. Presomal development of P. formosus and P. elegans results in structures concurring with morphology of other adult palaeacanthocephalans and archiacanthocephalans. Development of M. dubius, however, differs from that of other archiacanthocephalans in that the muscular receptacle wall lines the entire surface of the nonmuscular sheath, failing to form a ventral cleft characteristic of other archiacanthocephalans. Unlike receptacle protrusor muscles of other archiacanthocephalan species, those of M. dubius spiral around the receptacle as they extend posteriad to attach individually to a pouchlike, muscular thickening at the receptacle's base. These protrusor muscles are distinct from the receptacle wall, as attested by their development alongside neck retractor muscles, not from the receptacle primordium, and the manner in which they are left to trail behind the receptacle when it is drawn anteriorly into the proboscis during larval development. The proboscis receptacle of M. dubius should not be thought of as being double-walled, as envisioned by previous workers.  相似文献   

19.
In an effort to understand how the feeding motions of Urastoma cyprinae are generated, the arrangement of its musculature was studied using fluorescence microscopy of phalloidin‐linked fluorescent stains and conventional light histology and transmission electron microscopy. BODIPY 558/568 phalloidin and Alexa 488 phalloidin resolved a meshwork of ribbon‐shaped body‐wall muscles as well as inner‐body musculature associated with the pharynx and male copulatory organ. The general pattern of body‐wall muscles in U. cyprinae is similar to that of other rhabdocoel turbellarians in consisting only of circular, longitudinal, and diagonal fibers; the arrangement of these muscles readily correlates with the bending motions the animal undergoes as it feeds at the surface of gills in bivalves it parasitizes. The orogenital atrium of U. cyprinae lies at the posterior apex of the body, opening at a terminal pore. As evidenced by the arrangement of its epithelium and musculature, it appears to be an invagination of the body wall and comes closest of any such duct studied in turbellarians to satisfying the hypothetical model of a “pseudopharynx,” ostensibly adapted as an organ for swallowing and so supplementing the ingestive role of the animal's true pharynx. J. Morphol. 241:207–216, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

20.
《Journal of morphology》2017,278(9):1229-1240
Most suction‐feeding, aquatic vertebrates create suction by rapidly enlarging the oral cavity and pharynx. Forceful enlargement of the pharynx is powered by longitudinal muscles that retract skeletal elements of the hyoid, more caudal branchial arches, and, in many fish, the pectoral girdle. This arrangement was thought to characterize all suction‐feeding vertebrates. However, it does not exist in the permanently aquatic, tongueless Pipa pipa , an Amazonian frog that can catch fish. Correlating high‐speed (250 and 500 fps) video records with anatomical analysis and functional tests shows that fundamental features of tetrapod body design are altered to allow P. pipa to suction‐feed. In P. pipa , the hyoid apparatus is not connected to the skull and is enclosed by the pectoral girdle. The major retractor of the hyoid apparatus arises not from the pectoral girdle but from the femur, which lies largely within the soft tissue boundaries of the trunk. Retraction of the hyoid is coupled with expansion of the anterior trunk, which occurs when the hypertrophied ventral pectoral elements are depressed and the urostyle and sacral vertebra are protracted and slide forward on the pelvic girdle, thereby elongating the entire trunk. We suggest that a single, robust pair of muscles adduct the cleithra to depress the ventral pectoral elements with force, while modified tail muscles slide the axial skeleton cranially on the pelvic girdle. Combined hyoid retraction, axial protraction, and pectoral depression expand the buccopharyngeal cavity to a volume potentially equal to that of the entire resting body of the frog. Pipa may be the only tetrapod vertebrate clade that enlarges its entire trunk during suction‐feeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号