首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bacillus species carrying subC gene encoding serine alkaline protease (SAP) enzyme were developed in order to increase the yield and selectivity in the bioprocess for SAP production. For this aim, subC gene was cloned into pHV1431 Escherichia coliBacillus shuttle vector, and transferred into nine host Bacillus species, i.e. B. alvei, B. amyloliquefaciens, B. badius, B. cereus, B. coagulans, B. firmus, B. licheniformis, B. sphaericus and B. subtilis. The influence of the host Bacillus species on SAP production on a defined medium with glucose was investigated in bioreactor systems. For each of the recombinant (r-) Bacillus species, effects of initial glucose concentration on cell growth and SAP production were investigated; and, physiological differences and similarities between the wild-type and r-Bacillus species are discussed. The highest biomass concentration was obtained with r-B. coagulans as 3.8 kg m−3 at the initial glucose concentration of CGo=20 kg m−3 and the highest volumetric SAP activity was obtained with r-B. amyloliquefaciens as 1650 U cm−3 at CGo=20 kg m−3. Overall SAP activity per amount of substrate consumed was the highest for r-B. sphaericus (137 U g−1 cm−3) and r-B. licheniformis (130 U g−1 cm−3). Among the r-Bacillus species the highest activity increase compared to the wild types was obtained with r-B. sphaericus while the lowest increase was obtained with r-B. amyloliquefaciens and r-B. licheniformis due to high SAP production potential of the wild-type strains. During storage of the host microorganisms, r-B. alvei and r-B. amyloliquefaciens were not able to bear the recombinant plasmid, probably, due to the restriction enzymes synthesized. Due to the highest stable volumetric activities r-B. licheniformis (950 U cm−3) and r-B. sphaericus (820 U cm−3) appear to be the favorable hosts for the production of SAP. All the r-Bacillus species excreted organic acids oxaloacetic and succinic acids, but, none excreted the amino acid valine. The variations in by-product distributions with each recombinant organism were also discussed.  相似文献   

2.
The effects of oxygen transfer on serine alkaline protease (SAP) production by Bacillus licheniformis on a defined medium with Cc = 9.0 kg m−3 citric acid as sole carbon source were investigated in 3.5 dm3 batch bioreactor systems. The concentrations of the product (SAP) and by-products, i.e., neutral protease, amylase, amino acids, and organic acids were determined in addition to SAP activities. At Qo/V = 1 vvm air flow rate, the effect of agitation rate on DO concentration, pH, product, and by-product concentrations and SAP activity were investigated at N = 150, 500, and 750 min−1; these are named as low-(LOT), medium-(MOT), and high oxygen transfer (HOT) conditions. LOT conditions favor biomass concentration; however, substrate consumption was highest at HOT conditions. MOT was optimum for maximum SAP activity which was 441 U cm−3 at t = 37 h. The total amino acid concentration was maximum in LOT and minimum in MOT conditions; lysine had the highest concentration under all oxygen transfer conditions. Among organic acids, acetic acid had the highest concentration and its concentration increased with oxygen transfer rate. The oxygen transfer coefficient increases with the agitation rate and the oxygen consumption rate increased almost linearly with the biomass concentration.  相似文献   

3.
The photosynthetic capacity of Myriophyllum salsugineum A.E. Orchard was measured, using plants collected from Lake Wendouree, Ballarat, Victoria and grown subsequently in a glasshouse pond at Griffith, New South Wales. At pH 7.00, under conditions of constant total alkalinity of 1.0 meq dm−3 and saturating photon irradiance, the temperature optimum was found to be 30–35°C with rates of 140 μmol mg−1 chlorophyll a h−1 for oxygen production and 149 μmol mg−1 chlorophyll a h−1 for consumption of CO2. These rates are generally higher than those measured by other workers for the noxious Eurasian water milfoil, Myriophyllum spicatum L., of which Myriophyllum salsugineum is a close relative. The light-compensation point and the photon irradiance required to saturate photosynthetic oxygen production were exponentially dependent on water temperature. Over the temperature range 15–35°C the light-compensation point increased from 2.4 to 16.9 μmol (PAR) m−2 s−1 for oxygen production while saturation photon irradiance increased from 41.5 to 138 μmol (PAR) m−2 s−1 for oxygen production and from 42.0 to 174 μmol (PAR) m−2 s−1 for CO2 consumption. Respiration rates increased from 27.1 to 112.3 μmol (oxygen consumed) g−1 dry weight h−1 as temperature was increased from 15 to 35°C. The optimum temperature for productivity is 30°C.  相似文献   

4.
The ability of the yeast Issatchenkia orientalis CECT 10688 to secrete lipolytic activity in submerged culture was investigated. The yeast was grown in a complex medium supplemented with a fixed concentration of several lipidic compounds (triglycerides, fatty acids). Maximum enzyme activity around 70–80 U cm−3 was produced in cultures supplemented with tributyrin. An optimum tributyrin concentration of 10 g dm−3 was selected. Several surfactants were added to the cultures, but no significant increase in activity was detected. Finally, the effect of the type of carbon source on lipolytic enzyme production was studied. The best results were obtained with glucose and fructose (60–80 U cm−3), while rather low enzyme activity was found in cultures grown on lactose and maltose (about 20 U cm−3).  相似文献   

5.
This work reports on the significance of UV-B absorbing compounds and DNA photorepair in protecting bean plants from UV-B radiation under nitrogen restriction. Bean plants grown in sterile vermiculite and irrigated periodically with a nutrient solution containing 12 or 1 mM of nitrate were irradiated with 22 μW cm−2 of UV-B, 4 h daily during 10 days after the first trifoliate leaf was developed. This intensity was equivalent to 3.2 kJ m−2 per day, approximately. PAR fluence rate was 350 ± 50 μmol quanta m−2 s−1. Control plants did not receive UV-B irradiation. Leaf expansion was negatively affected by both nitrate restriction and UV-B irradiation. This decrease was paralleled by a significant increase in starch, which was exacerbated by the combined action of both factors. Combined action of low nitrogen and UV-B also negatively affected the CO2 assimilation rate and the stomatal conductance. Formation of UV-B absorbing compounds was significantly increased by both UV-B irradiation and nitrogen restriction and this increase was exacerbated by the combination of both factors. No significant increase in dimer formation was detected in irradiated plants at the UV-B dose used. Significant dimer formation was only obtained by using very high UV-B intensities. This suggests that under an irradiation level of 22 μW cm−2 of UV-B, which is close to natural conditions, protective mechanisms such as pigment screening and DNA photorepair were probably sufficient to prevent any dimer formation in leaves.  相似文献   

6.
Mesophilic anaerobic digestion of slaughterhouse waste (SHW) and its co-digestion with the organic fraction of municipal solid waste (OFMSW) have been evaluated. These processes were carried out in a laboratory plant semi-continuously operated and two set-ups were run. The first set-up, with a hydraulic retention time (HRT) of 25 days and organic loading rate (OLR) of 1.70 kg VS m−3 day−1 for digestion, and 3.70 kg VS m−3 day−1 for co-digestion, was not successful. The second set-up was initiated with an HRT of 50 days and an OLR of 0.9 kg VS m−3 day−1 for digestion and 1.85 kg VS m−3 day−1 for co-digestion. Under these conditions, once the sludge had been acclimated to a medium with a high fat and ammonia content, it was possible to decrease the HRT while progressively increasing the OLR to the values used in the first set-up until an HRT of 25 days and OLRs of 1.70 and 3.70 kg VS m−3 day−1, for digestion and co-digestion, respectively (the same conditions of the digesters failures previously). These digesters showed a highly stable performance, volatile fatty acids (VFAs) were not detected and long chain fatty acids (LCFAs) were undetected or only trace levels were measured in the analyzed effluent. Fat removal reached values of up to 83%. Anaerobic digestion was thus found to be a suitable technology for efficiently treating lipid and protein waste.  相似文献   

7.
We measured eddy covariance fluxes of CO2 and H2O over a flat irrigated olive orchard during growth, in different periods from Leaf Area Index (LAI) of 0.3–1.9; measurements of soil respiration were also collected. The daily net ecosystem exchange flux (FNEE) was practically zero at LAI around 0.4 or when the orchard intercepted 11% of the incoming daily radiation; at the end of the experiment, with LAI of 1.9 (and the fraction of intercepted daily radiation close to 0.5), FNEE was around 10 g CO2 m−2 day−1. The night-time ecosystem respiration (Reco), calculated from eddy fluxes in well-mixed night conditions, show a clear but non-linear dependence with LAI; it ranged from 0.05 to 0.15 mg CO2 m−2 s−1 (in average), being the lower limit ideally close to the heterotrophic soil respiration at the site. The gross primary production flux (FGPP) was linearly related to LAI within the LAI range of this experiment (with 11 g CO2 m−2 day−1 increments per unit of LAI) and to the fraction of intercepted radiation. The maximum rates of FGPP (0.75 mg CO2 m−2 s−1) were obtained in the summer mornings of 2002, at LAI close to 1.9. FGPP was strongly modulated by vapour pressure deficit (VPD) through the canopy conductance, even in absence of water stress. Hence, especially in the summer, the maximum rates of carbon assimilation are reached always before noon. The daily course of FGPP shows a two-phase pattern, first related to irradiance and then to canopy conductance. The water use efficiency (WUE) was, in average, 3.8, 6.3 and 7 g CO2 L−1 in 1999, 2001 and 2002, respectively, with maxima always in the early morning. Hourly WUE was strongly related to VPD (WUE = −10.25 + 22.52 × VPD−0.34). Our results suggest that drip irrigated orchards in general, and olive in particular, deserve specific carbon exchange and carbon budget studies and cannot be easily included in other biomes.  相似文献   

8.
Impatiens capensis 《Flora》2004,199(6):524-530
Leaf transpiration rates of Impatiens capensis were measured beneath a broadleaved deciduous forest canopy over successive growing seasons using a steady-state porometer. The transpiration measurements, which continued into early autumn, provided a framework for assessing whether I. capensis exhibits stomatal opening in response to the autumnal increase in available direct-beam radiation reaching the forest floor. The deciduous canopy LAI (leaf area index) decreased from a growing season maximum of 3.94 m2 m−2, while the understory I. capensis population located along a stream channel maintained LAI values ranging from 0.58 to 1.05 m2 m−2 late into the growing season. Late morning and early afternoon leaf transpiration rates during the months of June and July averaged about 8 μg cm−2 s−1, with a mean stomatal conductance of 0.5 cm s−1. In August, leaf transpiration averaged almost 12 μg cm−2 s−1, with stomatal conductance exceeding 1.5 cm s−1. However, beginning in early to mid-September, before canopy leaf-fall, the persistent green leaves of I. capensis exhibited a sharp decline in transpiration, possibly a result of decreasing vapor pressure deficits or non-lethal physiological damage induced by cold stress. This physiological decline offsets any advantage that could have been gained by the increased exposure to direct-beam radiation after canopy leaf-fall in mid-October. Although green leaf area and seed-bearing capsules may persist until the first frost in October or early November, there is no evidence of stomatal opening suggestive of carbon assimilation for enhanced seed development during this early autumn period. We conclude that the persistent green leaf area of I. capensis fails to exploit the increase in available direct-beam radiation in the final stage of its life cycle.  相似文献   

9.
Combined effects of UVB radiation and CO2 concentration on plant reproductive parts have received little attention. We studied morphological and physiological responses of siliquas and seeds of canola (Brassica napus L. cv. 46A65) to UVB and CO2 under four controlled experimental conditions: UVB radiation (4.2 kJ m−2 d−1) with ambient level of CO2 (370 μmol mol−1) (control); UVB radiation (4.2 kJ m−2 d−1) with elevated level of CO2 (740 μmol mol−1); no UVB radiation (0 kJ m−2 d−1) with ambient level of CO2 (370 μmol mol−1); and no UVB radiation (0 kJ m−2 d−1) with elevated level of CO2 (740 μmol mol−1). UVB radiation affected the outer appearance of siliquas, such as colour, as well as their anatomical structures. At both CO2 levels, the UVB radiation of 4.2 kJ m−2 d−1 reduced the size of seeds, which had different surface patterns than those from no UVB radiation. At both CO2 levels, 4.2 kJ m−2 d−1 of UVB decreased net CO2 assimilation (AN) and water use efficiency (WUE), but had no effect on transpiration (E). Elevated CO2 increased AN and WUE, but decreased E, under both UVB conditions. At both CO2 levels, the UVB radiation of 4.2 kJ m−2 d−1 decreased chlorophyll fluorescence, total chlorophyll (Chl), Chl a and Chl b, but had no effect on the ratio of Chl a/b and the concentration of UV-screening pigments. Elevated CO2 increased total Chl and the concentration of UV-screening pigments under 4.2 kJ m−2 d−1 of UVB radiation. Neither UVB nor CO2 affected wax content of siliqua surface. Many significant relationships were found between the above-mentioned parameters. This study revealed that UVB radiation exerts an adverse effect on canola siliquas and seeds, and some of the detrimental effects of UVB on these reproductive parts can partially be mitigated by CO2.  相似文献   

10.
Andreas Hussner  Rainer Lsch 《Flora》2007,202(8):653-660
Floating Pennywort (Hydrocotyle ranunculoides L. fil.) is a worldwide distributed aquatic plant. The species is native to North America and quite common also in Central and South America. In Europe, Japan and Australia it is known as an alien plant, sometimes causing serious problems for affected ecosystems and human use of water bodies. Starting from Western Europe with an eastwards directed spread, Floating Pennywort was recorded in Germany in 2004 for the first time. Since then, the species spread out and got established in western parts of Central Europe. For a definite prediction of the potential of a further spread, data about biology, in particular growth and photosynthesis are needed. Here, regeneration capacity, growth at different nutrient availabilities and photosynthesis of H. ranunculoides were investigated. In addition biomass samples were taken in the field. Results show an enormous regeneration capacity (e.g., by forming new shoots from small shoot fragments), increasing growth rates under increasing nutrient availability and a maximum increase of biomass reaching 0.132±0.008 g g−1 dw d−1. Dense populations of H. ranunculoides growing in ponds and oxbows were found at high nutrient content of the substrate, the biomass reaching there up to 532.4±14.2 g dw m−2. Gas exchange analysis showed a physiological optimum of H. ranunculoides CO2 uptake at temperatures between 25 and 35 °C and high photon flux densities (PPFD) above 800 μmol photons m−2 s−1. In comparison, native Hydrocotyle vulgaris showed an optimum of net photosynthesis at 20–30 °C and a light saturation of CO2 gas exchange at 350 μmol photons m−2 s−1.  相似文献   

11.
Relatively large (0.19 m column diameter, 2 m tall, 0.06 m3 working volume) outdoor bubble column and airlift bioreactors (a split-cylinder and a draft-tube airlift device) were compared for monoseptic fed-batch culture of the microalga Phaeodactylum tricornutum. The three photobioreactors produced similar biomass versus time profiles and final biomass concentration (4 kg m−3). The maximum specific growth rate observed within a daily illuminated period in the exponential growth phase, had a value of 0.08 h−1 on the third day of culture. Because of night-time losses of biomass, the specific growth rate averaged over the 4-days of exponential phase was 0.021 h−1 for the three reactors.

The biomass in the vertical column reactors did not experience photoinhibition under conditions (photosynthetically active daily averaged irradiance value of 1150±52 μE m−2 s−1) that are known to cause photoinhibition in conventional thin-tube horizontal loop reactors. Because of good gas-liquid mass transfer, the dissolved oxygen concentration in the reactors at peak photosynthesis remained <120% of air saturation; thus, oxygen inhibition of photosynthesis and photo-oxidation of the biomass did not occur. Carbohydrate accumulation (up to 13% w/w) by the biomass was favored during light-limited linear growth. A declining light intensity caused a more than five-fold increase in cellular carotenoids but the chlorophylls increased only by about 2.5-fold during the course of the culture. In the stationary phase, up to 2% of the biomass was chlorophylls and carotenoids constituted up to 0.5% of the biomass dry weight.  相似文献   


12.
The complex Pt(bph) (CO)2 crystallizes in the space group Cmcm with a = 18.647(6), B = 9.566(2) and C = 6.4060(5) Å. The geometry of the molecule is slightly distorted from square planar with a Pt---C(CO) bond distance of 1.98(2) Å and a Pt---C(bph) bond distance of 2.04(2) Å. The Pt(bph)(CO)2 complex serves as a precursor for the preparation of a wide variety of Pt(bph)X2 complexes, where X = monodentate ligands such as acetonitrile, pyridine, etc., and X2 = bidentate ligands such as bypyridine, 1,10-phenanthroline, etc. In the solid state, the complex exhibits a green color, but when ground with an alkali metal salt turns deep blue to purple. In CH2Cl2, the color disappears but optical transitions are observed at 271 nm (2.7 × 104 M−1 cm−1), 303 nm (1.1 × 104 M−1 cm−1) and 330 nm (5.5 × 103 M−1 cm−1). The complex is a weak emitter exhibiting a structured spectrum in CH2Cl2 at r.t. with maxima located at 562 and 594 nm and an emission lifetime of 3.1 μs when excited at 337 nm.  相似文献   

13.
Reaction of LaCl3·7H2O containing small amounts of La(NO3)3·7H2O as an impurity with 12-crown-4 or 18-crown-6 in 3:1 CH3CN:CH3OH resulted in the isolation of the mixed anion complexes [LaCl2(NO3)(12-crown-4)]2, [La(NO3)(OH2)4(12-crown-4)]Cl2·CH3CN and [LaCl2(NO3)(18-crown-6)]. The nine-coordinate dimer, [LaCl2(NO3)(12-crown-4)]2, has all of the anions in the inner coordination sphere and La3+ has a capped square antiprismatic geometry. It crystallizes in the orthorhombic space group Pbca with (at −150 °C) a = 12.938(6), B = 15.704(3), C = 13.962(2) Å, and Dcalc = 2.08 g cm−3 for Z = 4. The second complex isolated from the same reaction, [La(NO3)(OH2)4(12-crown-4)]Cl2·CH3CN, has the bidentate nitrate anion in the inner coordination sphere but the two chloride anions are in a hydrogen bonded outer sphere. This complex is ten-coordinate 4A,6B-expanded dodecahedral and crystallizes in the monoclinic space group P21 with (at 20 °C) A = 7.651(2), B = 11.704(7), C = 11.608(4) Å, β = 95.11(2)°, and Dcalc = 1.80 g cm−3 for Z = 2. The 18-crown-6 complex, [LaCl2(NO3)(18-crown-6)], has all inner sphere anions and has ten-coordinate 4A,6B-expanded dodecahedral La3+ centers. It crystallizes in the orthorhombic space group Pbca with (at 20 °C) a = 14.122(7), B = 13.563(5), C = 19.311(9) Å, and Dcalc = 1.89 g cm−3 for Z = 8.  相似文献   

14.
Cuaq+ forms stable complexes with carbon monoxide in aqueous solutions. Furthermore it reacts very fast with aliphatic radicals. The reaction of Cu(CO)maq+ with methyl radicals, CH3 was studied using the pulse-radiolysis technique. The results point out that methyl radicals react with Cu(CO)aq+ to form an unstable intermediate with a CuII-C σ bond identified as (CO)CuII-CH3+, k = (1.1±0.2) × 109 M−1 s−1. This intermediate has a strong LMCT charge transfer band (λmax = 385 nm, max = 2500 M−1 cm−1) which is similar to the absorption bands of other transient complexes with CuII-alkyl σ bonds. The coordinated carbon monoxide in (CO)CuII-CH3+ inserts into the copper—carbon bond (or rather the coordinated methyl migrates to the coordinated carbon monoxide ligand) at a rate of (3.0±0.8) × 102 s−1 to form the copperacetyl complex (CO)mCuII-C(CH3)=O+max = 480 nm, max = 2100 M−1 cm−1). The rate of formation of (CO)CuII-CH3+ and of the insertion reaction are pH independent. The complex (CO)mCuII-C(CH3)=O+ is also unstable and decomposes heterolytically to yield acetaldehyde and Cuaq2+ as the final stable products. This reaction is slightly pH dependent. The same reactivity pattern has been observed for the Cu(COnaq+ complexes (n = 2 or 3). The results clearly point out that CO remains coordinated to transient complexes of the type CuII-alkyl.  相似文献   

15.
The ligand N, N′-bis[2,2-dimethyl-4-(2-hydroxyphenyl)-3-aza-3-buten] oxamide with two identical coordination sites reacts with copper ions in its tetradeprotonated form to yield the dinuclear complex [Cu2(C24H26N4O4)]·H2O. The structure of this compound has been determined by the X-ray diffraction method. The crystals are orthorhombic with a = 11.744(1), B = 16.369(2), C = 26.340(3) Å, V = 5064(1) Å3, Z = 8, space group Pbca. The oxamide is in a trans conformation with two different environments for the copper centres, a (4 + 1) coordination mode for the first one and a square planar environment for the other one. The water molecule is not directly bound to a copper centre, but involved in hydrogen bonding with the two oxygen atoms of an N2O2 coordination site. Indeed, extra coordination comes from a phenolic oxygen atom belonging to an adjacent dinuclear unit. Static susceptibility measurements point to a strong intrapair antiferromagnetic exchange interaction of 2J = −520(±4) cm−1 and possibly an interpair ferromagnetic exchange interaction of 10(±5) cm−1.  相似文献   

16.
The raw chess whey (CW) treatment capacity of a jet loop membrane bioreactor (JLMBR) was evaluated. Raw CW was first characterized for carbonaceous, nitrogenous and phosphorus compounds. The total COD range of the raw CW was between 73 and 86 kg m−3 and 82% of the total COD was found to be soluble. The JLMBR system, of 32 l capacity was operated continuously for 3 months with a sludge age of 1.1–2.8 days and COD loads of 3.5–33.5 kg-COD m−3 per day. A treatment efficiency of 97% was obtained for 1.6 days of sludge age and COD loads of 22.2 kg-COD m−3 per day. The sludge flocks observed in the system were highly motile, dispersed and had poor settling properties. The membrane filtration characteristics of this sludge were investigated and increasing MLSS concentration decreased membrane flux values.  相似文献   

17.
The reactions of complex (C5Me5)Ir(Cl) (CO) (Me) (1a) with cyclohexylisocyanide and phosphines (L=CyNC, PHPh2, PMePh2, PMe2Ph) give the products of alkyl migratory insertion (C5Me5Ir(Cl) (COMe) (L), in toluence or tetrahydrofuran at 323 K or higher temperature. The phenyl analogue (C5Me5)Ir(Cl)(CO)(Ph) or the iodide complexes (C5Me5)Ir(I) (CO) (R) (R=Me, Ph_are not reactive under the same conditions. The reaction of (C5Me5)Ir(Cl)(CO)(Me) with PMePh2 and PMe2Ph in acetonitrile yields the chloride substitution product [(C5Me5)Ir(CO)(L)(Me)]+Cl. Kinetic measurements for the reactions of (C5Me5)Ir(Cl)(CO)(Me) in toluene are first order in the iridium complex and exhibit a saturation dependence on the incoming donors L. Analysis of the data suggests a two-step process involving (i) rapid formation of a molecular complex [(C5Me5)Ir(Cl)(CO)(Me), (L)], in which the structure of 1a is unperturbed within the limits of spectroscopic analysis, and (ii) rate determining methyl migration. The reaction parameters are K for the pre-equilibrium step (K = 1.5 (CyNC), 7.3 (PHPh2), 7.1 (PMePh2) dm3 mol−1 at 323 K) and k2 for the slow carbon---carbon bond formation (k2 (105) = 6.9 (CyNC), 1.2 (PHPh2), 1.0 (PMePh2) s−1 at 323 K). The activation parameters for the methyl migration step in the reaction with PMePh2 obtained between 308 and 338 K, are ΔH = 106±16 kJ mol−1 and ΔS = − 14±5 J K−1 mol−1. The reaction of 1a with PMePh2 proceeds at similar rates in tetrahydrofuran (K = 3.7 dm3 mol−1, k2 (105) = 1.2 s−1, 323 K). The crystal structure of (C5Me5)Ir(Cl)(COMe) (PMe2Ph) has been determined by X-ray diffraction. C20H29ClOPIr: Mr = 544.1, monoclinic, P21/n, A = 8.084 (2), B = 9.030(2), C = 28.715 (3) Å, β = 91.41 (3)°, Z = 4, Dc = 1.71 g cm−3, V = 2095.5 Å3, room temperatyre, Mo K, γ = 0.71069, μ = 65.55 cm−1, F(000) = 1044, R = 0.037 for 2453 independent observed reflections. The complex shows a deformed tetrahedral coordination assuming the η5-C5Me5 molecular fragment as a single coordination site. The iridium-chlorine bond is staggered with respect to two adjacent C(ring)-methyl bonds, while the Ir---P and the Ir---COMe bonds are eclipsed with respect to C(ring)-methyl bonds.  相似文献   

18.
We report extensive density functional theory studies of the structures and vibrational frequencies of Tp3,5-MeRhH2(H2) in its ground and various transition states as well as the first direct comparison of observed and calculated inelastic neutron scattering (INS) vibrational spectra on this type of compound. Geometry optimizations produced canted η2-dihydrogen dihydride local minima of C1 symmetry; with HH distances for the C1 minimum energy structure of 0.842 and 0.898 Å and barriers to rotation of 0.34 and 0.50 kcal mol−1, respectively for B3LYP/BS1 and BP86/BS1 calculations of Tp3,5-MeRhH2(H2). The latter results from one transition state rotated approximately 60° away (a second lower energy transition state which is a few hundreds of a kcal mol−1 above the C1 MIN is rotated approximately 30° away). With these calculated d(HH) values for the C1 MIN the previously reported experimental data on the rotation of the dihydrogen ligand yields an experimental barrier to rotation of 1 kcal mol−1 and places the torsional transition at 200 cm−1 in the INS spectrum. Optimization of the Rh structure, that is analogous to the related Ir(V) Cs minimum found for TpIrH4, generates a high-energy (>4 cal mol−1) Cs transition state TpRhIIIH4 structure with an η3-H3 − ligand. This transition state (Cs TSE) exchanges the hydrogen in the mirror plane between two chiral C1 MIN structures. Comparisons between observed and computed INS spectra suggests that the experimental INS spectrum be viewed as resulting from a quantum-averaged ground state encompassing at least two of the low energy structures found in our calculations.  相似文献   

19.
When using pulse-amplitude modulated (PAM) fluorometry to measure landscape-scale photosynthetic characteristics, diurnal variations in fluorescence during sampling may confound the assessment of the physiological condition. In this study, two photophysiological assessment techniques: Diurnal Yield and Diurnal Rapid Light Curve (RLC) were investigated in an attempt to incorporate the temporal and spatial scales of sampling into a physiological assessment of Thalassia testudinum in Florida Bay. Photosynthesis–irradiance (P–E) curves were calculated using both methods and the ability of each to predict the relationship between relative electron transport rates and irradiance was assessed. Both methods had limitations in providing consistent estimates of photosynthetic efficiency or capacity. The Diurnal Yield method produced unrealistically high predictions of photosynthetic capacity (relative electron transport rate (rETRmax), 417–1715) and saturation irradiance (Ik, 1045–4681 μmol photons m−2 s−1). In contrast, the Diurnal RLC method generally produced predictions of rETRmax (100–200) and Ik (300–500 μmol photons m−2 s−1) which were similar to average values calculated from each day's RLCs. The Diurnal RLC method was unable to predict photosynthetic efficiency () only when ambient irradiances were continuously >Ik during the sampling period. We believe that with sampling modifications in high-light or shallow environments, such as starting sampling earlier in the morning, extending sampling later in the day, or using the average from each day's RLCs, that the Diurnal RLC method can produce representative estimates of rETRmax, , and Ik, providing a method to characterize seagrass photosynthesis at the landscape-level. The Diurnal RLC method does not negate Diurnal variation but it produces a curve that incorporates the changing ambient light environment into the assessment of seagrass physiological status.  相似文献   

20.
《FEBS letters》1994,350(2-3):195-198
The H+-ATPase from chloroplasts, CF0F1, was isolated, purified and reconstituted into asolectin liposomes. The enzyme was brought either into the oxidized state or into the reduced state, and the rate of ATP synthesis was measured after energisation of the proteoliposomes with an acid—base transition ΔpH (pHin = 5.0, pHout = 8.5) and a K+/valinomycin diffusion potential, Δφ (K+in = 0.6 mM, K+out = 60 mM). A rate of 250 s−1 was observed with the reduced enzyme (85 s−1 in the absence of Δφ). A rate of 50 s−1 was observed with the oxidized enzyme under the same conditions (15 s−1 in the absence of Δφ). The reconstituted enzyme contained 2 ATPbound per CF0F1 and 1 ADPbound per CF0F1. Upon energisation the enzyme was activated and 0.9 ADP per CF0F1, was released. Binding of ADP to the active reduced enzyme was observed under different conditions. In the absence of phosphate the rate constant for ADP binding was 105 M−1·s−1 under energized and de-energized conditions. In the presence of phosphate the rate of ADP binding drastically increased under energized conditions, and strongly decreased under de-energized conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号