首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sorghum is a worldwide important cereal crop and widely cultivated for grain and forage production. Greenbug, Schizaphis graminum (Rondani) is one of the major insect pests of sorghum and can cause serious damage to sorghum plants, particularly in the US Great Plains. Identification of chromosomal regions responsible for greenbug resistance will facilitate both map-based cloning and marker-assisted breeding. Thus, a mapping experiment was conducted to dissect sorghum genetic resistance to greenbug biotype I into genomic regions. Two hundred and seventy-seven (277) F(2) progeny and their F(2:3) families from a cross between Westland A line (susceptible parent) and PI550610 (resistant parent) combined with 118 polymorphic simple sequence repeat (SSR) markers were used to map the greenbug resistance QTLs. Composite interval mapping (CIM) and multiple interval mapping (MIM) revealed two QTLs on sorghum chromosome nine (SBI-09) consistently conditioned the resistance of host plant to the greenbug. The two QTLs were designated as QSsgr-09-01 (major QTL) and QSsgr-09-02 (minor QTL), accounting for approximately 55-80%, and 1-6% of the phenotypic variation for the resistance to greenbug feeding, respectively. These resistance QTLs appeared to have additive and partially dominant effects. The markers Xtxp358, Xtxp289, Xtxp67 and Xtxp230 closely flanked the respective QTLs, and can be used in high-throughput marker-assisted selections (MAS) for breeding new resistant parents and producing commercial hybrids.  相似文献   

2.
Pectic substances extracted from different varieties of sorghum are hydrolyzed at differing rates by unfractionated polysaccharases isolated from two biotypes (C, GBC; and E, GBE) of the sorghum pest, Schizaphis graminum (the greenbug). A higher degree of susceptibility of a sorghum variety is associated with a greater rate of hydrolysis of sorghum pectic substances by a greenbug biotype. Increases in the specific activity of polysaccharases on the pectic substances from a resistant sorghum variety are dependent on the duration that a biotype is maintained as a colony on that variety. Polysaccharase activity of GBE on arabinogalactan was significantly greater than GBC. However, there were no differences between the biotypes on the depolymerization of a variety of other plant matrix polysaccharides and a synthetic polysaccharide. The sequence of substrates of increasing refractoriness to hydrolysis are: arabinogalactan < microcrystalline cellulose < xylan < pectin < 2,3-diacetyl pectin < α-1,4-galacturonan. Pectic substances from sorghum varieties resistant to GBC but susceptible to GBE are relatively lower in arabinogalactan with elevated levels of uronic acid (UA) compared to varieties susceptible to both biotypes. A sorghum variety resistant to both GBC and GBE was lowest in levels of arabinogalactan, highest in UA, and highest in fructan content, which in the other varieties occurred only in trace amounts. Pectic composition of rhamnose, xylose, and glucose showed no relationship to resistance. Bound phenolics (potential inhibitors of enzyme activity) were not detected in any of the sorghum pectic substances. The relationship of plant matrix polysaccharides to host-plant aphid biotype compatibility is discussed.  相似文献   

3.
Interactions between biotype E greenbug, Schizaphis graminum (Rondani), and wheat, Triticum aestivum L., were investigated using resistant and susceptible near isogenic lines of the greenbug resistance gene Gb3. In an antixenosis test, the greenbugs preferred susceptible plants to resistant ones when free choice of hosts was allowed. Aphid feeding resulted in quick and severe damage to susceptible plants, which seemed to follow a general pattern spatially and was affected by the position where the greenbugs were initially placed. Symptom of damage in resistant plants resembled senescence. Within-plant distribution of aphids after infestation was clearly different between the two genotypes. Significantly more greenbugs fed on the first (oldest) leaf than on the stem in resistant plants, but this preference was reversed in the susceptible one. After reaching its peak, aphid population on the susceptible plants dropped quickly. All susceptible plants were dead in 10-14 d after infestation due to greenbug feeding. Aphid population dynamics on resistant plants exhibited a multipeak curve. After the first peak, the greenbug population declined slowly. More than 70% of resistant plants were killed 47 d after infestation. Performance of both biotype E and I greenbugs on several Gb3-related wheat germplasm lines were also examined. It seems that the preference-on-stem that was characteristic of biotype E greenbugs on the susceptible plants was aphid biotype- and host genotype-dependent. Results from this study suggested that antixenosis, antibiosis, and tolerance in the resistant plants of wheat might all contribute to resistance against greenbug feeding.  相似文献   

4.
Chromosomal regions of sorghum, Sorghum bicolor (L.) Moench, conferring resistance to greenbug, Schizaphis graminum (Rondani), biotypes C, E, I, and K from four resistance sources were evaluated by restriction fragment-length polymorphism (RFLP) analysis. At least nine loci, dispersed on eight linkage groups, were implicated in affecting sorghum resistance to greenbug. The nine loci were named according to the genus of the host plant (Sorghum) and greenbug (Schizaphis graminum). Most resistance loci were additive or incompletely dominant. Several digenic interactions were identified, and in each case, these nonadditive interactions accounted for a greater portion of the resistance phenotype than did independently acting loci. One locus in three of the four sorghum crosses appeared responsible for a large portion of resistance to greenbug biotypes C and E. None of the loci identified were effective against all biotypes studied. Correspondingly, the RFLP results indicated resistance from disparate sorghums may be a consequence of allelic variation at particular loci. To prove this, it will be necessary to fine map and clone genes for resistance to greenbug from various sorghum sources.  相似文献   

5.
Sorghum, Sorghum bicolor (L.) Moench, is the fifth most important cereal crop grown worldwide and the fourth in the United States. Greenbug, Schizaphis graminum (Rondani), is a major insect pest of sorghum with several biotypes reported to date. Greenbug biotype I is currently the most prevalent and most virulent on sorghum plants. Breeding for resistance is an effective way to control greenbug damage. A successful breeding program relies in part upon a clear understanding of breeding materials. However, the genetic diversity and relatedness among the greenbug biotype I resistant accessions collected from different geographic origins have not been well characterized, although a rich germplasm collection is available. In this study, 26 sorghum accessions from 12 countries were evaluated for both resistance to greenbug biotype I and genetic diversity using fluorescence-labeled amplified fragment length polymorphism (AFLP). Twenty-six AFLP primer combinations produced 819 polymorphic fragments indicating a relatively high level of polymorphism among the accessions. Genetic similarity coefficients among the sorghum accessions ranged from 0.69 to 0.90. Cluster analysis indicated that there were two major groups based on polymorphic bands. This study has led to the identification of new genetic sources of sorghum with substantial genetic variation and distinct groupings of resistant accessions that have the potential for use in the development of durable greenbug resistant sorghum.  相似文献   

6.
Six generations, consisting of three resistant parents, three susceptible parents, their 15 possible F1 crosses, 15 F2's, 15 BC1's (F1 x resistant female parent) and 15 BC2's (F1 x susceptible male parent) were analysed following Hayman (Heredity 12: 371–390, 1958) to evaluate the nature and type of gene action governing resistance to H. turcicum. The results showed that all types of gene effects, viz., additive, dominance and epistasis (i.e., additive x additive, additive x dominance and dominance x dominance) were operating in one cross or the other in controlling resistance. However, it was additive gene action and dominance x dominance type of epistasis with duplicate nature that were important in controlling resistance in most crosses. Depending upon the final objectives, one of the breeding methods, viz., recurrent selection, heterosis breeding, back-cross method or full-sib selection (bi-parental mating) may be followed.  相似文献   

7.
Greenbug, Schizaphis graminum (Rondani), represents the most important pest insect of sorghum, Sorghum bicolor (L.) Moench, in the Great Plains of the United States. Biotype E is the most widespread and dominant type not only in sorghum and wheat, Triticum aestivum L., fields, but also on many noncultivated grass species. This study was designed to determine sorghum accession PI 550610 resistance to greenbug biotype E, to map the resistance quantitative trait loci (QTLs) by using an established simple sequence repeat (SSR) linkage map and to identify SSR markers closely linked to the major resistance QTLs. In greenhouse screening tests, seedlings of PI 550610 showed strong resistance to the greenbug at a level similar to resistant accession PI550607. For QTL mapping, one F2 population containing 277 progeny and one population containing 233 F2:3 families derived from Westland A line x PI 550610 were used to genotype 132 polymorphic SSR markers and to phenotype seedling resistance to greenbug feeding. Phenotypic evaluation of sorghum seedling damage at 7, 12, 17, and 21 d postinfestation in the F2:3 families revealed that resistance variation was normally distributed. Single marker analysis indicated 16 SSRs spread over five chromosomes were significant for greenbug resistance. Composite interval and multiple interval mapping procedures indicated that a major QTL resided in the interval of 6.8 cM between SSR markers Xtxp358 and Xtxp289 on SBI-09. The results will be valuable in the development of new greenbug biotype E resistant sorghum cultivars and for the further characterization of major genes by map-based cloning.  相似文献   

8.
A biotype of Sonchus oleraceus L. (Compositae) has developed resistance to herbicides inhibiting acetolactate synthase (ALS) following field selection with chlorsulfuron for 8 consecutive years. The aim of this study was to determine the inheritance and mechanism of resistance in this biotype. Determination of ALS activity and inhibition kinetics revealed that Km and Vmax did not vary greatly between the resistant and susceptible biotypes. ALS extracted from the resistant biotype was resistant to five ALS-inhibiting herbicides in an in vitro assay. ALS activity from the resistant biotype was 14 19, 2, 3 and 3 times more resistant to inhibition by chlorsulfuron, sulfometuron, imazethapyr, imazapyr and flumetsulam, respectively, than the susceptible biotype. Hybrids between the resistant and a susceptible biotype were produced, and inheritance was followed through the F1, F2 and F3 generations. F1 hybrids displayed a uniform intermediate level of resistance between resistant and susceptible parents. Three distinct phenotypes, resistant, intermediate and susceptible, were identified in the F2 generation following chlorsulfuron application. A segregation ratio of 121 was observed, indicative of the action of a single, nuclear, incompletely dominant gene. F3 families, derived from intermediate F2 individuals, segregated in a similar manner. Resistance to herbicides inhibiting ALS in this biotype of S. oleraceus is due to the effect of a single gene coding for a resistant form of the target enzyme, ALS.  相似文献   

9.
The greenbug, Schizaphis graminum (Rondani), is one of the major pests of wheat worldwide. The efficient utilization of wheat genes expressing resistance to greenbug infestation is highly dependent on a clear understanding of their relationships. The use of such genes will be further facilitated through the use of molecular markers linked to resistance genes. The present study involved several F2 wheat populations derived from crosses between susceptible cultivars and resistant germplasm carrying different greenbug resistance genes. These populations were used to characterize the inheritance of a wheat gene (Gbz) conferring tolerance to greenbug biotype I, to identify molecular markers linked to Gbz, and to investigate the relationship between Gbz and Gb3, a previously identified greenbug resistance gene. Our results indicated that Gbz is inherited as a single dominant gene. Microsatellite marker Xwmc157 is completely linked to Gbz, and Xbarc53 and Xgdm46 flank Gbz at distances of 5.1 and 9.5 cM, respectively. Selection of Gbz using marker Xwmc157 alone gives breeders 100% selection accuracy. Gbz may be placed in the distal region of the long arm of the wheat chromosome 7D. The results of allelism tests indicated that Gbz is either allelic or tightly linked to Gb3.Communicated by D.A. Hoisington  相似文献   

10.
Abstract 1 The greenbug Schizaphis graminum (Rondani) is a serious pest of Sorghum bicolor L. and small grains in the Southern Plains of the U.S.A. Use of resistant cultivars, the major greenbug management strategy, has been challenged by the rapid development of new greenbug biotypes that overcome plant resistance. 2 We used a high‐throughput amplified fragment length polymorphism (AFLP) fingerprinting method to examine genetic divergence among eight greenbug biotypes (B, C, E, G, I and K, New York and South Carolina). Clustering analysis based on 1775 scored AFLP markers clearly showed that biotypes (C, E, I and K), which are able to infest sorghum fields, share more common polymorphisms among themselves than with other biotypes. 3 This result suggests that common genetic factors exist among these biotypes, enabling them to predominate and thrive in monoculture crops. Our study demonstrated the sensitivity of AFLP in obtaining large quantities of biotype‐associated polymorphic information across the entire greenbug genome.  相似文献   

11.
Biotypic diversity of the greenbug, Schizaphis graminum (Rondani) (Hemiptera: Aphididae), was assessed among populations collected from cultivated wheat, Triticum aestivum L., and sorghum, Sorghum bicolor (L.) Moench, and their associated noncultivated grass hosts. Greenbugs were collected during May through August 2002 from 30 counties of Kansas, Nebraska, Oklahoma, and Texas. Discounting the presumptive biotype A, five of the remaining nine letter-designated greenbug biotypes were collected; however, biotypes C, F, J, and K were not detected. Biotypes E and I exhibited the greatest host range and were the only biotypes collected in all four states. Sixteen greenbug clones, collected from eight plant species, exhibited unique biotype profiles. Eleven were collected from noncultivated grasses, three from wheat, and two from sorghum. The most virulent biotypes were collected from noncultivated hosts. The great degree of biotypic diversity among noncultivated grasses supports the contention that the greenbug species complex is composed of host-adapted races that diverged on grass species independently of, and well before, the advent of modern agriculture.  相似文献   

12.
Interactions of the parasitoid Lysiphlebus testaceipes (Cresson) and the greenbug, Schizaphis graminum (Rondani), on greenbug-resistant 'Cargill 607E' (antibiosis), 'Cargill 797' (primarily tolerance), and -susceptible 'Golden Harvest 510B' sorghum, Sorghum bicolor (L.) Moench, were tested using three levels of biotype I greenbug infestation. The parasitoid infestation rate was 0.5 female and 1.0 male L. testaceipes per plant. For all three greenbug infestation levels, the parasitoid brought the greenbug under control (i.e., prevented the greenbugs from killing the plants) on both resistant hybrids, but it did not prevent heavy leaf damage at the higher greenbug infestation rates. At the low greenbug infestation rate (50 greenbugs per resistant plant when parasitoids were introduced), greenbugs damaged 5 and 18% of the total leaf area on 'Cargill 797' and 'Cargill 607E', respectively, before greenbugs were eliminated. Leaf damage was higher for the intermediate infestation study (120 greenbugs per plant), 21% and 30% leaf area were damaged on the resistant sorghum hybrids 'Cargill 797' and 'Cargill 607E', respectively. At the high greenbug infestation rate (300 greenbugs per plant), heavy damage occurred: 61% on 'Cargill 607E' and 75% on 'Cargill 797'. The parasitoids did not control greenbugs on the susceptible sorghum hybrid 'Golden Harvest 510B'. L. testaceipes provided comparable control on both greenbug-resistant hybrids. This study supports previous studies indicating that L. testaceipes is effective in controlling greenbugs on sorghum with antibiosis resistance to greenbugs. Furthermore, new information is provided indicating that L. testaceipes is also effective in controlling greenbugs on a greenbug-tolerant hybrid.  相似文献   

13.
Inheritance of resistance and allelic relationships were studied in three resistant pigeonpea sources for strain 2 of sterility mosaic pathogen. The resistant genotypes (ICP 7035, ICP 7349 and ICP 8850) were crossed with susceptible genotypes (BDN1 and LRG30) to determine the inheritance of resistance. The resistant and susceptible genotypes were also crossed among themselves to obtain information on their allelic relationships. Parents, F1 and F2 generations were sown in pots and screened using infector-hedge technique. Observations in parents, F1 and F2 generations, indicated dominance of resistance in certain crosses and the dominance of susceptibility in others. Disease reaction appeared to be governed by two independent non-allelic genes, with at least three multiple alleles, at one of the loci.  相似文献   

14.
Laboratory bioassays were conducted to determine the toxicity of four insecticides (ethyl parathion, chlorpyrifos, malathion, and carbofuran) to insecticide-susceptible and resistant populations of greenbug, Schizaphis graminum (Rondani). These bioassays were used to develop and validate a discriminating concentration for assessing insecticide resistance in greenbug populations in the field. Samples from wheat and sorghum in two states, Oklahoma and Kansas, indicated that insecticide resistance persists in greenbug populations over a large area at a low level.  相似文献   

15.
Fifty-eight synthetic hexaploid wheats, developed by crossing Triticum dicoccum Schrank. and Aegilops tauschii (Coss.) Schmal., were evaluated at the seedling stage, together with their parents, for resistance to greenbug (Schizaphis graminum Rondani) under greenhouse conditions. Seedlings of different synthetic hexaploids showed large phenotypic differences for resistance. All the T. dicoccum parents were susceptible, while high levels of resistance were observed in some of the Ae. tauschii parents. Of the synthetic hexaploids derived from resistant Ae. tauschii parents, a high proportion (76%) showed levels of resistance to the greenbug biotype used that were comparable to those of the resistant parent. While there were clear indications of the presence of suppressor genes for greenbug resistance in the A and/or B genomes of T. dicoccum in some synthetics, positive epistatic interaction was also found in synthetic hexaploids with higher levels of resistance than that of either parent. Resistance from different Ae. tauschii accessions was expressed differently when crossed with the same T. dicoccum, indicating diversity among the resistance genes present in the test synthetic hexaploid wheats. Based on resistance reactions, the genes conferring greenbug resistance in these synthetic hexaploids are probably different from resistance genes previously transferred to wheat from Ae. tauschii.  相似文献   

16.
The inheritance of resistance to lettuce root aphid, Pemphigus bursarius, was studied in lettuce using the Wellesbourne cultivars Avondefiance and Avoncrisp as resistant parents and Borough Wonder and Webb's Wonderful as aphid-susceptible parents. All four cultivars were crossed in all possible combinations including reciprocals and the response to root aphid of plants in the P1F1F2 and BC generations was assessed using apterae of P. bursarius from the lettuce cv. Iceberg. Resistance to attack was clearly inherited and the parents appeared to be homozygous for their resistance or susceptibility. In the F1 generation, however, in all crosses between resistant and susceptible parents, segregation into susceptible, resistant and some slightly less resistant plants occurred. This and the highly significant differences in segregation between pairs of reciprocal crosses in the F1 and other generations indicate that the inheritance of resistance to root aphid is controlled by extra-nuclear factors. Modifying genes might also be involved but there appears to be no linkage of root aphid resistance with resistance to downy mildew, for which the Wellesbourne lettuces were bred.  相似文献   

17.
Anthracnose, caused by Colletotrichum graminicola, infects all aerial parts of sorghum, Sorghum bicolor (L.) Moench, plants and causes loss of as much as 70%. F1 and F2 plants inoculated with local isolates of C. graminicola indicated that resistance to anthracnose in sorghum accession G 73 segregated as a recessive trait in a cross with susceptible cultivar HC 136. To facilitate the use of marker-assisted selection in sorghum breeding programs, a PCR-based specific sequence characterized amplified region (SCAR) marker was developed. A total of 29 resistant and 20 susceptible recombinant inbred lines (RILs) derived from a HC 136 × G 73 cross was used for bulked segregant analysis to identify a RAPD marker closely linked to a gene for resistance to anthracnose. The polymorphism between the parents HC 136 and G 73 was evaluated using 84 random sequence decamer primers. Among these, only 24 primers generated polymorphism. On bulked segregant analysis, primer OPA 12 amplified a unique band of 383 bp only in the resistant parent G 73 and resistant bulk. Segregation analysis of individual RILs showed the marker OPA 12383 was 6.03 cM from the locus governing resistance to anthracnose. The marker OPA 12383 was cloned and sequenced. Based on the sequence of cloned RAPD product, a pair of SCAR markers SCA 12-1 and SCA 12-2 was designed using the MacVector program, which specifically amplified this RAPD fragment in resistant parent G 73, resistant bulk and respective RILs. Therefore, it was confirmed that SCAR marker SCA 12 is at the same locus as RAPD marker OPA 12383 and hence, is linked to the gene for resistance to anthracnose.  相似文献   

18.
Three commercial and six experimental plant growth bioregulators were surveyed for their effect on aphid reproduction when applied to sorghum. Only CCC and PIX had a significant effect on the greenbug, Schizaphis graminum. Application of the commercial bioregulators CCC and PIXR caused about a 50% decrease in aphid reproduction rate when applied to greenbug susceptible sorghum but had little effect when applied to a greenbug resistant sorghum line. Electronic monitoring of aphid probing behavior on CCC treated, greenbug-susceptible sorghum showed a response pattern which was indistinguishable from that normally observed on greenbug resistant lines and was different from that associated with aphid probing behavior on untreated susceptible lines. The isolated pectin content of the CCC treated susceptible sorghum was twice that of the controls and had twice the methoxy content. These results support the argument that pectin is a barrier to aphid-stylet penetration for phloem feeding aphids which probe intercellularly and that manipulation of pectin content and/or structure can be a major factor in host-plant resistance to sap-sucking insects.  相似文献   

19.
Genetic effects on controlling stripe rust resistance were determined in two wheat crosses, Bakhiawar-92 × Frontana (cross 1) and Inqilab-91 × Fakhre Sarhad (cross 2) using Area under Disease Progress Curve (AUDPC) as a measure of stripe rust resistance. The resistant and susceptible genotypes for crosses were identified by initial assessment of 45 wheat accessions for stripe rust resistance. Mixed inheritance model was applied to the data analysis of six basic populations P 1, F 1, P 2, B 1, B 2, and F 2 in the crosses. The results indicated that AUDPC in cross 1 was controlled by two major genes with additive-dominance epistatic effect plus polygenes with additive-dominance epistatic effects (model E). Whereas in case of cross 2, it was under the control of two major genes with additive-dominance epistatic effect plus additive-dominant polygenes (model E-1). Additive effect was predominant then all other types of genetic effects suggesting the delay in selection for resistance till maximum positive genes are accumulated in the individuals of subsequent generations. Occurrence of transgressive segregants for susceptibility and resistance indicated the presence of resistance as well as some negative genes for resistance in the parents. The major gene heritability was higher than the polygene heritability in B 1, B 2 and F 2 for the crosses. The major gene as well as the polygene heritability was ranging from 48.99 to 87.12% and 2.26 and 36.80% for the two crosses respectively. The highest phenotypic variations in AUDPC (2504.10 to 5833.14) for segregating progenies (BC 1, BC 2 and F 2) represent that the character was highly influenced by the environment. The article is published in the original.  相似文献   

20.
A blackgrass population has developed resistance to fenoxaprop-P-ethyl following field selection with the herbicide for 6 consecutive years. Within this population, 95% of the individuals are also resistant to flupyrsulfuron. Both the inheritance(s) and the mechanism(s) of resistances were investigated by making crosses between the resistant and a susceptible biotype. The inheritance was followed through the F1 and F2 generations either by spraying the herbicide on seedlings at the three-leaf stage or using a seedling bioassay, based on coleoptile length. No maternal effects were evident in the fenoxaprop-P-ethyl responses of the F1 plants, suggesting that the inheritance was nuclear. Some F1 families treated with fenoxaprop-P-ethyl segregated in a 3:1 (resistant:susceptible) ratio, indicating that the resistance was conferred by two dominant and independent nuclear genes. This was confirmed by the 15:1 (R:S) ratio observed in the F2 generation treated with fenoxaprop- P-ethyl. The use of selective inhibitors of herbicide de-toxifying enzymes (aminobenzotriazole, pyperonylbutoxide, malathion and tridiphane) with the F2 plants suggested that each of the two genes may govern two different mechanisms of fenoxaprop-P-ethyl resistance: the ACCase mutation previously postulated and an enhanced herbicide metabolism, mediated by cytochrome P 450 mono-oxygenases (P 450) susceptible to malathion. The P 450 activity may also confer resistance to flupyrsulfuron. This study clearly indicates that two distinct mechanisms of resistance may co-exist in the same plant. Received: 18 August 2000 / Accepted: 6 December 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号