首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent work on a diverse array of echinoderm species has demonstrated, as is true in amphibians, that thyroid hormone (TH) accelerates development to metamorphosis. Interestingly, the feeding larvae of several species of sea urchins seem to obtain TH through their diet of planktonic algae (exogenous source), whereas nonfeeding larvae of the sand dollar Peronella japonica produce TH themselves (endogenous source). Here we examine the effects of TH (thyroxine) and a TH synthesis inhibitor (thiourea) on the development of Dendraster excentricus, a sand dollar with a feeding larva. We report reduced larval skeleton lengths and more rapid development of the juvenile rudiment in the exogenous TH treatments when compared to controls. Also, larvae treated with exogenous TH reached metamorphic competence faster at a significantly reduced juvenile size, representing the greatest reduction in juvenile size ever reported for an echinoid species with feeding larvae. These effects of TH on D. excentricus larval development are strikingly similar to the phenotypically plastic response of D. excentricus larvae reared under high food conditions. We hypothesize that exogenous (algae-derived) TH is the plasticity cue in echinoid larvae, and that the larvae use ingested TH levels as an indicator for larval nutrition, ultimately signaling the attainment of metamorphic competence. Furthermore, our experiments with the TH synthesis inhibitor thiourea indicate that D. excentricus larvae can produce some TH endogenously. Endogenous TH production might, therefore, be a shared feature among sand dollars, facilitating the evolution of nonfeeding larval development in that group. Mounting evidence on the effects of thyroid hormones in echinoderm development suggests life-history models need to incorporate metamorphic hormone effects and the evolution of metamorphic hormone production.  相似文献   

2.
Evolutionary transitions in larval nutritional mode have occurred on numerous occasions independently in many marine invertebrate phyla. Although the evolutionary transition from feeding to nonfeeding development has received considerable attention through both experimental and theoretical studies, mechanisms underlying the change in life history remain poorly understood. Facultative feeding larvae (larvae that can feed but will complete metamorphosis without food) presumably represent an intermediate developmental mode between obligate feeding and nonfeeding. Here we show that an obligatorily feeding larva can be transformed into a facultative feeding larva when exposed to the thyroid hormone thyroxine. We report that larvae of the subtropical sand dollar Leodia sexiesperforata (Echinodermata: Echinoidea) completed metamorphosis without exogenous food when treated with thyroxine, whereas the starved controls (no thyroxine added) did not. Leodia sexiesperforata juveniles from the thyroxine treatment were viable after metamorphosis but were significantly smaller and contained less energy than sibling juveniles reared with exogenous food. In a second starvation experiment, using an L. sexiesperforata female whose eggs were substantially larger than in the first experiment (202+/-5 vs. 187+/-5 microm), a small percentage of starved L. sexiesperforata larvae completed metamorphosis in the absence of food. Still, thyroxine-treated larvae in this experiment completed metamorphosis faster and in much higher numbers than in the starved controls. Furthermore, starved larvae of the sand dollar Mellita tenuis, which developed from much smaller eggs (100+/-2 microm), did not complete metamorphosis either with or without excess thyroxine. Based on these data, and from recent experiments with other echinoids, we hypothesize that thyroxine plays a major role in echinoderm metamorphosis and the evolution of life history transitions in this group. We discuss our results in the context of current life history models for marine invertebrates, emphasizing the role of egg size, juvenile size, and endogenous hormone production for the evolution of nonfeeding larval development.  相似文献   

3.
Critical roles of hormones in metamorphic life history transitions are well documented in amphibians, lampreys, insects, and many plant species. Recent evidence suggests that thyroid hormones (TH) or TH-like compounds can regulate development to metamorphosis in echinoids (sea urchins, sand dollars, and their relatives). Moreover, previous research has provided evidence for endogenous hormone synthesis in both feeding and nonfeeding echinoderm larvae. However, the mechanisms for endogenous synthesis remain largely unknown. Here, we show that facultatively planktotrophic larvae (larvae that reach metamorphosis in the absence of food but have the ability to feed) from the subtropical sea biscuit Clypeaster rosaceus can synthesize thyroxine endogenously from incorporated iodine (I(125)). When treated with the goitrogen thiourea (a peroxidase inhibitor), iodine incorporation, thyroxine synthesis, and metamorphosis are all blocked in a dose-dependent manner. The inhibitory effect on metamorphosis can be rescued by administration of exogenous thyroxine. Finally, we demonstrate that thiourea induces morphological changes in feeding structures comparable to the phenotypic plastic response of larval structures to low food conditions, further supporting a signaling role of thyroxine in regulating larval morphogenesis and phenotypic plasticity. We conclude that upregulation of endogenous hormone synthesis might have been associated with the evolution of nonfeeding development, subsequently leading to morphological changes characteristic of nonfeeding development.  相似文献   

4.
Peronella japonica, an intermediate type of direct-developing sand dollar, forms an abbreviated pluteus, followed by metamorphosis within 3 days without feeding. In this species, ingression of mesenchyme cells starts before hatching and continues until gastrulation, but no typical secondary mesenchyme cells (SMCs) migrate from the tip of the archenteron. Here, I investigated the cell lineage of mesenchyme cells through metamorphosis in P. japonica and found that mesenchyme cells migrating before hatching (early mesenchyme cells [EMCs]) were exclusively derived from micromeres and became larval skeletogenic cells, whereas cells migrating after hatching (late mesenchyme cells [LMCs]) appeared to contain several nonskeletogenic cells. Thus, it is likely that EMCs are homologous to primary mesenchyme cells (PMCs) and LMCs are similar to the SMCs of typical indirect developers, suggesting that heterochrony in the timing of mesenchyme cell ingression may have occurred in this species. EMCs disappeared after metamorphosis and LMCs were involved in adult skeletogenesis. Embryos from which micromeres were removed at the 16-cell stage formed armless plutei that went on to form adult skeletons and resulted in juveniles with normal morphology. These results suggest that in P. japonica, LMCs form adult skeletal elements, whereas EMCs are specialized for larval spicule formation. The occurrence of evolutionary modifications in mesenchyme cells in the transition from indirect to direct development of sand dollars is discussed.  相似文献   

5.
The effect of constant and fluctuating salinity on larval development and metamorphosis of the sand dollar Dendraster excentricus was investigated in the laboratory. Sand dollar larvae at different stages of development were kept either at 32‰ (controls), exposed to constant low salinity (22‰) throughout development, or exposed to fluctuating salinity (i.e. transferring larvae from 32‰ to 22‰ for 7 days then back to 32‰ for the rest of their development). Larvae exposed to constant low salinity were significantly smaller but developed all larval arms at a slower rate than larvae in all other treatments. Larvae exposed to fluctuating salinity recovered and developed significantly longer larval arms and bigger rudiments than larvae kept at constant low salinity. Larvae exposed to fluctuating salinity produced more juveniles than larvae at constant high salinity (32‰), while those at constant low salinity produced few or no juveniles. Four-arm larvae exposed to fluctuating salinity produced significantly more juveniles than six-arm larvae exposed to the same treatment. Transferring competent 8-arm larvae from 31‰ to 15‰ for 2 days then back to 31‰, induced metamorphosis with juvenile production being significantly higher than for those kept at a constant salinity of 20, 25 and 31‰. This study indicates that a short-term decrease in salinity might induce metamorphosis for this species.  相似文献   

6.
Insect molting and metamorphosis are intricately governed by two hormones, ecdysteroids and juvenile hormones (JHs). JHs prevent precocious metamorphosis and allow the larva to undergo multiple rounds of molting until it attains the proper size for metamorphosis. In the silkworm, Bombyx mori, several "moltinism" mutations have been identified that exhibit variations in the number of larval molts; however, none of them have been characterized molecularly. Here we report the identification and characterization of the gene responsible for the dimolting (mod) mutant that undergoes precocious metamorphosis with fewer larval-larval molts. We show that the mod mutation results in complete loss of JHs in the larval hemolymph and that the mutant phenotype can be rescued by topical application of a JH analog. We performed positional cloning of mod and found a null mutation in the cytochrome P450 gene CYP15C1 in the mod allele. We also demonstrated that CYP15C1 is specifically expressed in the corpus allatum, an endocrine organ that synthesizes and secretes JHs. Furthermore, a biochemical experiment showed that CYP15C1 epoxidizes farnesoic acid to JH acid in a highly stereospecific manner. Precocious metamorphosis of mod larvae was rescued when the wild-type allele of CYP15C1 was expressed in transgenic mod larvae using the GAL4/UAS system. Our data therefore reveal that CYP15C1 is the gene responsible for the mod mutation and is essential for JH biosynthesis. Remarkably, precocious larval-pupal transition in mod larvae does not occur in the first or second instar, suggesting that authentic epoxidized JHs are not essential in very young larvae of B. mori. Our identification of a JH-deficient mutant in this model insect will lead to a greater understanding of the molecular basis of the hormonal control of development and metamorphosis.  相似文献   

7.
Peronella japonica, a sand dollar, forms an abbreviated pluteus larva and metamorphoses within 3 days without feeding. In the present study, the cleavage pattern of Peronella embryos was found to be quite irregular in the vegetal blastomeres at the fourth cleavage. Less than half of the embryos examined formed four typical micromeres. The majority formed zero, one, two or three typical micromeres of regular size, and the blastomere(s) remaining in the vegetal-most region was atypical in size and/or its direction of division. Most embryos were able to form pluteus larvae and a considerable proportion of these metamorphosed into juvenile sea urchins, regardless of whether or not they had formed four typical micromeres of regular size, although embryos which formed no typical micromeres developed into pluteus larvae less frequently. The micromere progeny in Peronella embryos form skeletogenic mesenchyme cells. The average numbers of skeletogenic mesenchyme cells in the three sand dollar species, Clypeaster japonicus, Astriclypeus manni and P. japonica were 62, 122 and 219, respectively. In these species, the skeletogenic mesenchyme cell-specific glycoprotein (msp130) was first detected immediately after ingression of the primary mesenchyme cells, spicules appeared at the early gastrula stage and triradiate spicules were found in late gastrulae. Appearance of these characteristics was markedly accelerated in the embryos of A. manni and P. japonica in comparison with those of C. japonicus. Each step in the formation of larval spicules was equally accelerated in A. manni and P. japonica, although the appearance of the adult skeleton was further accelerated in P. japonica in comparison with A. manni, possibly because of omission of the four- to eight-armed pluteus stages. Received: 1 September 1995 / Accepted in revised form: 21 May 1995  相似文献   

8.
Summary Electrophoretic separation of hemoglobins of normalXenopus laevis and of isogenic animals derived from female hybrids ofXenopus laevis×Xenopus gilli revealed 5–9 components in premetamorphic larvae, and 3–4 components in adult toads. InXenopus laevis the number of larval hemoglobin components showed considerable variation, but this variation was absent in isogenic tadpoles, suggesting a genetic basis for hemoglobin polymorphism in larvae.Electrophoretic separation of larval and adult hemoglobins at different concentrations of acrylamide and treatment of these solutions with mercaptoethanol revealed that larval hemoglobin components are charge isomers, whereas adult hemoglobin was found to contain a minor dimeric component.Estimation of hemoglobin components showed that the main increase in adult hemoglobin, i.e from 30–90% of total hemoglobin, occurs within 4 weeks after completion of metamorphosis. By incroporation of3H amino acids in vivo a switch to preferential synthesis of adult hemoglobin and a corresponding decrease in larval hemoglobin production could be demonstrated during early climax stages. This suggests that thyroid hormones are involved in the hemoglobin transition. Yet chemical inhibition of the larval thyroid by thiourea resulted in a delayed but complete hemoglobin transition without morphological transformation. It is concluded that hemoglobin transition and morphological transformation of theXenopus tadpole require different concentrations of thyroid hormones.Abbreviations Hb hemoglobin - HbA adult hemoglobin - HbL larval hemoglobin  相似文献   

9.
The ascidian endostyle is a mucus-secreting pharyngeal organ, it has iodine-concentrating activity and the biosynthesis of thyroid hormones has been well documented. According to our recent findings, ascidians possess thyroid hormones, which are localized in mesenchymal cells. We have studied the presence and localization of l-thyroxine (T4) in Ascidia malaca (Traustedt), Ascidiella aspersa (Müller), Phallusia mamillata (Cuvier) and Ciona intestinalis (Linnaeus) larvae and its involvement in metamorphosis. In vivo treatment of swimming larvae with exogenous T4 and thiourea (a thyroid hormone synthesis inhibitor), demonstrate the presence of T4 during larval development. These results were confirmed by in vitro experiments utilizing dot blotting, radioimmunoassay and immunoperoxidase staining. The hormone was localized in mesenchymal cells of all four ascidians, spread out in the body cavity, under the adhesive papillae and around the intestine. The presence of TH in mesenchymal cells could be related to blood cells, musculature and heart tissue differentiation. The results suggest that this hormone could be involved in the control of metamorphosis.  相似文献   

10.
The tissue of glass sponges (Class Hexactinellida) is unique among metazoans in being largely syncytial, a state that arises during early embryogenesis when blastomeres fuse. In addition, hexactinellids are one of only two poriferan groups that already have clearly formed flagellated chambers as larvae. The fate of the larval chambers and of other tissues during metamorphosis is unknown. One species of hexactinellid, Oopsacas minuta, is found in submarine caves in the Mediterranean and is reproductive year round, which facilitates developmental studies; however, describing metamorphosis has been a challenge because the syncytial nature of the tissue makes it difficult to trace the fates using conventional cell tracking markers. We used three‐dimensional models to map the fate of larval tissues of O. minuta through metamorphosis and provide the first detailed account of larval tissue reorganization at metamorphosis of a glass sponge larva. Larvae settle on their anterior swimming pole or on one side. The multiciliated cells that formed a belt around the larva are discarded during the first stage of metamorphosis. We found that larval flagellated chambers are retained throughout metamorphosis and become the kernels of the first pumping chambers of the juvenile sponge. As larvae of O. minuta settle, larval chambers are enlarged by syncytial tissues containing yolk inclusions. Lipid inclusions at the basal attachment site gradually became smaller during the six weeks of our study. In O. minuta, the flagellated chambers that differentiate in the larva become the post‐metamorphic flagellated chambers, which corroborate the view that internalization of these chambers during embryogenesis is a process that resembles gastrulation processes in other animals.  相似文献   

11.
All chordates share several characteristic features including a dorsal hollow neural tube, a notochord, a pharynx and an endostyle. Unlike other chordate taxa, ascidians have a biphasic life-history with two distinct body plans. During metamorphosis, the larval nerve cord and notochord degenerate and the pharyngeal gill slits and endostyle form. While ascidians, like other marine invertebrates, metamorphose in response to specific environmental cues, it remains unclear how these cues trigger metamorphosis. We have identified a novel gene (Hemps) which encodes a protein with a putative secretion signal sequence and four epidermal growth factor (EGF)-like repeats which is a key regulator of metamorphosis in the ascidian Herdmania curvata. Expression of Hemps increases markedly when the swimming tadpole larva becomes competent to undergo metamorphosis and then during the first 24 hours of metamorphosis. The Hemps protein is localised to the larval papillae and anterior epidermis of the larva in the region known to be required for metamorphosis. When the larva contacts an inductive cue the protein is released, spreading posteriorly and into the tunic as metamorphosis progresses. Metamorphosis is blocked by incubating larvae in anti-Hemps antibodies prior to the addition of the cue. Addition of recombinant Hemps protein to competent larvae induces metamorphosis in a concentration-dependent manner. A subgroup of genes are specifically induced during this process. These results demonstrate that the Hemps protein is a key regulator of ascidian metamorphosis and is distinct from previously described inducers of this process in terrestrial arthropods and aquatic vertebrates.  相似文献   

12.
Evolution of direct-developing larvae: selection vs loss   总被引:3,自引:0,他引:3  
Observations of a sea urchin larvae show that most species adopt one of two life history strategies. One strategy is to make numerous small eggs, which develop into a larva with a required feeding period in the water column before metamorphosis. In contrast, the second strategy is to make fewer large eggs with a larva that does not feed, which reduces the time to metamorphosis and thus the time spent in the water column. The larvae associated with each strategy have distinct morphologies and developmental processes that reflect their feeding requirements, so that those that feed exhibit indirect development with a complex larva, and those that do not feed form a morphologically simplified larva and exhibit direct development. Phylogenetic studies show that, in sea urchins, a feeding larva, the pluteus, is the ancestral form and the morphologically simplified direct-developing larva is derived. The current hypothesis for evolution of the direct-developing larval form in sea urchins suggests that major developmental changes occur by neutral loss of larval features after the crucial transition to a nonfeeding life history strategy. We present evidence from Clypeaster rosaceus, a sea urchin with a life history intermediate to the two strategies, which indicates that major developmental changes for accelerated development have been selected for in a larva that can still feed and maintains an outward, pluteus morphology. We suggest that transformation of larval form has resulted from strong selection on early initiation and acceleration of adult development.  相似文献   

13.
In the marine environment a wide range of invertebrates have a pelagobenthic lifecycle that includes planktonic larval and benthic adult phases. Transition between these morphologically and ecologically distinct phases typically occurs when the developmentally competent larva comes into contact with a species-specific environmental cue. This cue acts as a morphogenetic signal that induces the completion of the postlarval/juvenile/adult developmental program at metamorphosis. The development of competence often occurs hours to days after the larva is morphologically mature. In the non-feeding--lecithotrophic--larvae of the ascidian Herdmania curvata and the gastropod mollusc Haliotis asinina, gene expression patterns in pre-competent and competent stages are markedly different, reflecting the different developmental states of these larval stages. For example, the expression of Hemps, an EGF-like signalling peptide required for the induction of Herdmania metamorphosis, increases in competent larvae. Induction of settlement and metamorphosis results in further changes in developmental gene expression, which apparently is necessary for the complete transformation of the larval body plan into the adult form.  相似文献   

14.
A comparative study of the larval and adult pineal organs, which are sensitive to incident light, was carried out in the river lamprey Lampetra japonica, using intracellular recording from the pineal photoreceptors. The tissue overlying the larval pineal organ is transparent, whereas that over the adult pineal is translucent. The optical density of this oval pineal window in the adult lamprey was 1.2. In order to elucidate the early development of the larval pineal, the ratio r of the diameter (micron) of the pineal to the body-length (cm) was measured. The value of r was 62.5 in a small larva of 2.8 cm, 29.7 in a larger one of 14.3 cm, and 9.3 in an adult of 54 cm body-length. The intracellular response to light of the larval pineal was a hyperpolarization, showing fundamentally the same pattern as that of the adult pineal. It was possible to record a typical response even from the pineal of the smallest larva, 2.8 cm in body length, used in this study. The intensity-amplitude relationship was analysed after Naka-Rushton's hyperbolic equation. The value of sigma of isolated larval pineals was 0.88 log unit higher than that of adults. The value of n was larger in larvae, suggesting a sensitive reaction to changing photic stimulus. The spectral sensitivity was compared. The peak was at 505 nm in the larva, but 525 nm in the adult. A change of visual pigment in the pineal during metamorphosis is suggested.  相似文献   

15.
Physico-chemical analysis of juvenile hormones (JHs) of Spodoptera littoralis revealed highest quantities in the second half of embryonic development and in newly hatched 1st instar larvae. At these stages, mostly JH II, JH I and little JH III were found, while in later stages only JH II and JH III were found. Titres fluctuated in a similar manner in all larval instars, being lowest during the moults. In last (=6th) instar larvae, JHs disappeared in the late feeding-digging stage and again increased in the early prepupal stage. Parasitisation with Chelonus inanitus, a solitary egg-larval parasitoid which induces in its host the precocious onset of metamorphosis in the 5th instar, did not alter JH homologue composition but led to a disappearance of JHs in the 5th instar. Implantation of a parasitoid larva into early 5th instar larvae containing polydnavirus/venom caused a drop in the JH titre which indicates that the parasitoid larva plays an important role in the manipulation of the host's JH titre. In the parasitoid larva, only JH III was found; titres were highest in the 2nd larval instar, a stage when the host is in the 5th instar and contains almost no JHs. Thus, JHs of the parasitoid and the host fluctuate in an independent manner.  相似文献   

16.
The effect of LiCl on the establishment of left-right (LR) asymmetry in larvae of the direct-developing echinoid Peronella japonica was investigated with special attention to the location of the amniotic opening and ciliary band pattern. The larvae of echinoids are LR symmetric, but shortly before metamorphosis the larval LR symmetry is lost as a result of the formation of an amniotic cavity (vestibule), part of the adult rudiment, on the left side of the body. P. japonica has been considered to be the only exception among the echinoids, because the amniotic cavity forms at the midline of the larval body. In the present study we discovered the following two different LR asymmetric traits in larvae of P. japonica: the opening of the amniotic cavity initially forms at the midline of the larval body but shifts to the left dorsal side, and a looped ciliary band that initially forms with LR symmetry becomes LR asymmetric as a result of the formation of a bulge on left dorsal side. The establishment of LR asymmetry in both the location of the amniotic opening and the change in the shape of the ciliary band was influenced by exposing embryos to LiCl. Quantitative analysis of the shift in amniotic opening showed that exposure of embryos to LiCl causes repression of leftward shifting of the amniotic opening in earlier stage larvae, and leftward or rightward shifting in later stage larvae. These findings suggest that LiCl is an effective means of impairing the establishment of LR asymmetry in sea urchin embryos.  相似文献   

17.
The calcareous sponge Leucosolenia laxa releases free-swimming hollow larvae called coeloblastulae that are the characteristic larvae of the subclass Calcinea. Although the coeloblastula is a major type of sponge larva, our knowledge about its development is scanty. Detailed electron microscopic studies on the metamorphosis of the coeloblastula revealed that the larva consists of four types of cells: flagellated cells, bottle cells, vesicular cells, and free cells in a central cavity. The flagellated cells, the principal cell type of the larva, are arranged in a pseudostratified layer around a large central cavity. The larval flagellated cells characteristically have glutinous granules that are used as internal markers during metamorphosis. After a free-swimming period the larva settles on the substratum, and settlement apparently triggers the initiation of metamorphosis. The larval flagellated cells soon lose their flagellum and begin the process of dedifferentiation. Then the larva becomes a mass of dedifferentiated cells in which many autophagosomes are found. Within 18 h after settlement, the cells at the surface of the cell mass differentiate to pinacocytes. The cells beneath the pinacoderm differentiate to scleroblasts that form triradiate spicules. Finally, the cells of the inner cell mass differentiate to choanocytes and are arranged in a choanoderm that surrounds a newly formed large gastral cavity. We found glutinous granules in these three principal cell types of juvenile sponges, thus indicating the multipotency of the flagellated cells of the coeloblastula.  相似文献   

18.
In the marine hydroid Hydractinia echinata, metamorphosis transforms the spindle-shaped larva into a primary polyp. It bears a hypostome with a ring of tentacles at its apical end, a gastric region in the middle and stolons at the base. In nature, metamorphosis is induced in response to external stimuli provided by bacteria. These stimuli can be replaced by artificial inducers, one of which is heat shock. Among heat shock treated stages are those undergoing complete metamorphosis but also specimens forming chimeras of different developmental stages. In the chimeric larvae, the posterior is transformed into the apical hypostome of the adult polyp while the anterior part of the larva persists as larval tissue. After transverse sectioning, these stage chimeras regenerate the missing body parts with respect to the nature of the tissue at the wound surface. This shows that the decision to make larva or polyp morphology depends not on the majority of the tissue in the original body section, but on stage specificity within the regenerating animal part. Single cells can escape from this general rule, since RFamide nerve cells which usually differentiate in polyp tissue appear in regenerated larval tails of sectioned stage chimeras. The results indicate that the pattern-forming system of the larva and of the adult have features in common. The primary signals controlling patterning along the anterior-posterior axis in larvae and the apical-basal axis in polyps arethus likelyto be the same while the interpretation of these primary signals by the individual cells changes during metamorphosis.  相似文献   

19.
Nutritional condition of metamorphosing sole: spatial and temporal analyses   总被引:1,自引:0,他引:1  
Sole Solea solea larvae were collected during five cruises in the Bay of Biscay in 1992 and 1993. The larval growth rate, triacylgycerol (TAG) and sterol (ST) content, and the width of the marginal otolith increments were determined on the same individual larva as indicators of nutritional condition. The TAG content increased during the ontogenetic larval development up to an elevated value corresponding to the end of metamorphosis. During metamorphosis, sole larvae continued to accumulate TAG and to increase in length. Seasonal and yearly variations of growth and nutritional condition of sole larvae at the onset of metamorphosis were more important than spatial variations. Analysis of larval growth showed that, during each cruise, the faster growing larvae were generally those with the highest TAG content (and TAG : ST ratio). In 1993, larvae began to metamorphose earlier and their growth (both larval growth and recent growth) were significantly higher than in 1992. Their relatively low nutritional condition, however, seemed to be the result of a low accumulation of TAG. Sole metamorphosis occurs without growth arrest and the majority of the larvae during this phase are judged to be in good nutritional condition (TAG : ST ratio > 1). In the Bay of Biscay, metamorphosis does not seem to be a critical period in the life cycle of the sole. It is suggested that larvae originating from different cohorts probably have the same chance of survival during or just after metamorphosis when they enter the benthic environment.  相似文献   

20.
Many marine organisms spend the early part of their lives as larvae suspended in the water column before metamorphosing into benthic reproductive adults. Metamorphosis does not occur until a larva has become competent to respond to appropriate stimuli and after a suitable habitat for the young juvenile has been encountered. The gaseous neurotransmitter nitric oxide is thought to be important in the regulation of metamorphosis by holding the organism in the larval state. We have investigated expression of the neuronal nitric oxide synthase (nNOS) gene in larval and metamorphosing individuals of the marine mud snail Ilyanassa obsoleta. Our results indicate that nNOS is expressed at constant levels throughout larval development. In contrast, expression of nNOS decreases markedly during the first 24 h of metamorphosis. Our observations support previous findings that demonstrate that nitric oxide is present in larvae though competence. The decrease in nNOS gene expression that occurs during metamorphosis corresponds with a previously described reduction in nNOS activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号