首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 57 毫秒
1.
These studies provide further information regarding the mechanism of the light/dark-mediated regulation of pyruvate,Pi dikinase in leaves. It is shown that a catalysis-linked phosphorylation of pyruvate,Pi dikinase can be demonstrated following incubation of the enzyme with [32P]phosphoenolpyruvate or [beta-32P]ATP plus Pi, that the enzyme-bound phosphate is located on a histidine residue, and that this phosphate is retained during ADP-mediated inactivation. Further evidence is provided that phosphorylation of this histidine is a prerequisite for ADP-mediated inactivation through phosphorylation of a threonine residue from the beta-phosphate of ADP. It is demonstrated that diethylpyrocarbonate (which forms a derivative with histidine residues) prevents [32P]phosphoenolpyruvate-dependent labeling (catalytic labeling) and [beta-32P]ADP-dependent labeling (inactivation labeling) of the enzyme. In addition, it is demonstrated that oxalate, an analog of pyruvate, competitively inhibits ADP-dependent inactivation with respect to ADP. The significance of these results is discussed with regard to the mechanism of regulation of pyruvate,Pi dikinase in vivo.  相似文献   

2.
S-Adenosylmethionine decarboxylase is one of a small group of enzymes that use a pyruvoyl residue as a cofactor. Histidine decarboxylase from Lactobacillus 30a, the best studied pyruvoyl-containing enzyme, has an (alpha beta)6 subunit structure with the pyruvoyl moiety linked through an amide bond to the NH2-terminal of the larger alpha subunit (Recsei, P. A., Huynh, Q. K., and Snell, E. E. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 973-977). To examine potential structural analogies between the two enzymes, we have isolated and partially characterized S-adenosylmethionine decarboxylase. The purified enzyme comprises equimolar amounts of two subunits of Mr = 14,000 and 19,000 (by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and has a native molecular weight of 136,000 (by gel filtration). Approximately 4 mol of [methyl-3H] adenosylmethionine are incorporated per mol of enzyme (Mr = 136,000) when the enzyme is inactivated with this substrate and NaCNBH3. These data suggest an (alpha beta)4 structure with 1 pyruvoyl residue for each alpha beta pair. The two subunits have been separated by reversed-phase high performance liquid chromatography after reduction and carboxymethylation. The smaller subunit (beta) has a free amino terminus. The amino terminus of the larger subunit (alpha) appears to be blocked by a pyruvoyl group; this subunit can be sequenced only after this group is converted to an alanyl residue by reduction with sodium cyanoborohydride in the presence of ammonium acetate. This work suggests that S-adenosylmethionine decarboxylase is structurally much more similar to histidine decarboxylase than previously thought.  相似文献   

3.
Escherichia coli isocitrate lyase (EC 4.1.3.1.) can be phosphorylated in vitro by an ATP-dependent reaction. The enzyme becomes phosphorylated by an endogenous kinase when partially purified sonic extracts are incubated with [gamma-32P]ATP. Treatment of isocitrate lyase with diethyl pyrocarbonate, a histidine-modifying reagent, blocked incorporation of [32P]phosphate from [gamma-32P]ATP. The isoelectric point of the enzyme was altered by treatment with phosphoramidate, a histidine phosphorylating agent, which suggests that isocitrate lyase can be phosphorylated at a histidine residue(s). Immunoprecipitated 32P-labeled isocitrate lyase was subjected to alkaline hydrolysis, mixed with chemically synthesized phosphohistidine standards, and analyzed by anion exchange chromatography. Characterization of the phosphoamino acid was based on the demonstration that the 32P-labeled product from alkali-hydrolyzed isocitrate lyase comigrated with synthetic 1-phosphohistidine. In addition, loss of catalytic activity after treatment with potato acid phosphatase indicates that catalytically active isocitrate lyase is the phosphorylated form of the enzyme.  相似文献   

4.
Y Igarashi  B A McFadden  T el-Gul 《Biochemistry》1985,24(15):3957-3962
[3H] Diethyl pyrocarbonate was synthesized [Melchior, W. B., & Fahrney, D. (1970) Biochemistry 9, 251-258] from [3H] ethanol prepared by the reduction of acetaldehyde by NaB3H4. Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) from spinach was inactivated with this reagent at pH 7.0 the presence of 20 mM Mg2+, and tryptic peptides that contained modified histidine residues were isolated by reverse-phase high-performance liquid chromatography. Labeling of the enzyme was conducted in the presence and absence of the competitive inhibitor sedoheptulose 1,7-bisphosphate. The amount of one peptide that was heavily labeled in the absence of this compound was reduced 10-fold in its presence. The labeled residue was histidine-298. This result, in combination with our earlier experiments [Saluja, A. K., & McFadden, B. A. (1982) Biochemistry 21, 89-95], suggests that His-298 in spinach RuBisCO is located in the active site domain and is essential to enzyme activity. This region of the primary structure is strongly conserved in seven other ribulosebisphosphate carboxylases from divergent sources.  相似文献   

5.
In regenerating rat liver, nuclear protein histone H2A was shown to be phosphorylated on its amino-terminal serine residue [Sung et al. (1971) J. Biol. Chem. 246, 1358-1364], but the protein kinase which phosphorylates this residue has not been identified. To evaluate the possibility that protein kinase C can phosphorylate this residue, calf thymus histone H2A was 32P-labeled by incubation with [gamma-32P]ATP and highly purified protein kinase C from rat brain in the presence of calcium and phospholipid. About 1 mol of 32P was incorporated per mol of histone H2A and the Km and apparent Vmax of the reaction were calculated to be 2.1 microM and 0.35 mumol/min/mg, respectively. So histone H2A seemed to be a good substrate for protein kinase C. Further, the proteolytic phosphopeptides of 32P-labeled histone H2A were isolated by means of a series of column chromatographies and analyzed for their amino acid compositions. Comparison of the data with the known primary structure of histone H2A revealed their amino acid sequence as 1Ser-Gly-Arg. These data suggest that protein kinase C may be a candidate for the protein kinase which phosphorylates the amino-terminal serine residue of histone H2A during the regeneration of rat liver.  相似文献   

6.
In the preceeding paper (Brown, D. R., Roth, M. J., Reinberg, D., and Hurwitz, J. (1984) J. Biol. Chem. 259, 10545-10555), it was shown that following bacteriophage phi X174 (phi X) DNA synthesis in vitro using purified proteins, the phi X A protein could be detected covalently linked to nascent 32P-labeled DNA. This phi X A protein-[32P]DNA complex was the product of the reinitiation reaction. The phi X A protein-[32P]DNA complex could be trapped as a protein-32P-oligonucleotide complex by the inclusion of ddGTP in reaction mixtures. In this report, the structure of the phi X A protein-32P-oligonucleotide complex has been analyzed. The DNA sequence of the oligonucleotide bound to the phi X A protein has been determined and shown to be homologous to the phi X (+) strand sequence immediately adjacent (3') to the replication origin. The phi X A protein was directly linked to the 5' position of a dAMP residue of the oligonucleotide; this residue corresponded to position 4306 of the phi X DNA sequence. The phi X A protein-32P-oligonucleotide complex was exhaustively digested with either trypsin or proteinase K and the 32P-labeled proteolytic fragments were analyzed. Each protease yielded two different 32P-labeled peptides in approximately equimolar ratios. The two 32P-labeled peptides formed after digestion with trypsin (designated T1 and T2) and with proteinase K (designated PK1 and PK2) were isolated and characterized. Digestion of peptide T1 with proteinase K yielded a product which co-migrated with peptide PK2. In contrast, peptide T2 was unaffected by digestion with proteinase K. These results suggest that the phi X A protein contains two active sites that are each capable of binding covalently to DNA. The peptide-mononucleotide complexes T1-[32P]pdA and T2-[32P]pdA were isolated and subjected to acid hydrolysis in 6.0 N HCl. In each case, the major 32P-labeled products were identified as [32P] phosphotyrosine and [32P]Pi. This indicates that each active site of the phi X A protein participates in a phosphodiester linkage between a tyrosyl moiety of the protein and the 5' position of dAMP.  相似文献   

7.
The amino acid sequence of histidine-containing protein (HPr) from Streptococcus faecalis has been determined by direct Edman degradation of intact HPr and by amino acid sequence analysis of tryptic peptides, V8 proteolytic peptides, thermolytic peptides, and cyanogen bromide cleavage products. HPr from S. faecalis was found to contain 89 amino acid residues, corresponding to a molecular weight of 9438. The amino acid sequence of HPr from S. faecalis shows extended homology to the primary structure of HPr proteins from other bacteria. Besides the phosphoenolpyruvate-dependent phosphorylation of a histidyl residue in HPr, catalyzed by enzyme I of the bacterial phosphotransferase system, HPr was also found to be phosphorylated at a seryl residue in an ATP-dependent protein kinase catalyzed reaction [Deutscher, J., & Saier, M. H., Jr. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 6790-6794]. The site of ATP-dependent phosphorylation in HPr of S. faecalis has now been determined. [32P]P-Ser-HPr was digested with three different proteases, and in each case, a single labeled peptide was isolated. Following digestion with subtilisin, we obtained a peptide with the sequence -(P)Ser-Ile-Met-. Using chymotrypsin, we isolated a peptide with the sequence -Ser-Val-Asn-Leu-Lys-(P)Ser-Ile-Met-Gly-Val-Met-. The longest labeled peptide was obtained with V8 staphylococcal protease. According to amino acid analysis, this peptide contained 36 out of the 89 amino acid residues of HPr. The following sequence of 12 amino acid residues of the V8 peptide was determined: -Tyr-Lys-Gly-Lys-Ser-Val-Asn-Leu-Lys-(P)Ser-Ile-Met-.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
A common diagnostic feature of glycosylinositol phospholipid (GPI)-anchored proteins is their release from the membrane by a phosphatidylinositol-specific phospholipase C (PI-PLC). However, some GPI-anchored proteins are resistant to this enzyme. The best characterized example of this subclass is the human erythrocyte acetylcholinesterase, where the structural basis of PI-PLC resistance has been shown to be the acylation of an inositol hydroxyl group(s) (Roberts, W. L., Myher, J. J., Kuksis, A., Low, M. G., and Rosenberry, T. L. (1988) J. Biol. Chem. 263, 18766-18775). Both PI-PLC-sensitive and resistant GPI-anchor precursors (P2 and P3, respectively) have been found in Trypanosoma brucei, where the major surface glycoprotein is anchored by a PI-PLC-sensitive glycolipid anchor. The accompanying paper (Mayor, S., Menon, A. K., Cross, G. A. M., Ferguson, M. A. J., Dwek, R. A., and Rademacher, T. W. (1990) J. Biol. Chem. 265, 6164-6173) shows that P2 and P3 have identical glycans, indistinguishable from the common core glycan found on all the characterized GPI protein anchors. This paper shows that the single difference between P2 and P3, and the basis for the PI-PLC insusceptibility of P3, is a fatty acid, ester-linked to the inositol residue in P3. The inositol-linked fatty acid can be removed by treatment with mild base to restore PI-PLC sensitivity. Biosynthetic labeling experiments with [3H]palmitic acid and [3H]myristic acid show that [3H]palmitic acid specifically labels the inositol residue in P3 while [3H]myristic acid labels the diacylglycerol portion. Possible models to account for the simultaneous presence of PI-PLC-resistant and sensitive glycolipids are discussed in the context of available information on the biosynthesis of GPI-anchors.  相似文献   

9.
N H Goss  C T Evans  H G Wood 《Biochemistry》1980,19(25):5805-5809
Pyruvate phosphate dikinase contains a pivotal histidyl residue which functions to mediate the transfer of phosphoryl moieties during the reaction catalyzed by the enzyme. The tryptic peptide which contains this essential histidyl residue has been isolated by a two-step procedure originally developed by Wang and co-workers [Wang, T., Jurasek, L., & Bridger, W. A. (1972) Biochemistry 11, 2067]. This peptide has been sequenced by the manual dansyl-Edman procedure and is shown to be NH2-Gly-Gly-Met-Thr-Ser-His-Ala-Ala-Val-Val-Ala-Arg-CO2H. There is no readily interpretable homology between this peptide and other phosphorylated histidyl peptides previously isolated from other enzymes. By use of Chou & Fasman [Chou, P. Y., & Fasman, G. D. (1974) Biochemistry 13, 222], it is predicted that the sequence contains an alpha helix from the methionine residue through to the carboxyl terminal arginine residue.  相似文献   

10.
An extremely rapid and sensitive assay for guanylate cyclase utilizing [alpha-32P]-GTP has been developed. It involves incubation of 5-100 mug of enzyme protein with 1 mM [alpha-32P]-GTP in 40 mM Tris HC1 buffer (pH 7.4) containing 3-3 mM MnSO2, 10 mM theophylline and 1 mM cyclic GMP. The reaction is terminated by addition of EDTA, and [32P]-cyclic GMP formed is isolated by sequential chromatography on Dowex-50-H+ and alumina. Recovery of 75-85% of [3H]-cyclic GMP and a blank of 0.001-0.003% of added [32P]-GTP was routinely obtained. The [32P] radioactivity isolated was shown to be cyclic GMP by a variety of techniques. The assay has also been shown to be applicable for a variety of tissues.  相似文献   

11.
A well characterized histidine kinase purified from yeast has been shown to phosphorylate histone H4 on a histidine residue. This enzyme is unlike the two-component histidine kinases predominantly found in prokaryotes. Until now, a histidine kinase similar to this yeast enzyme has not been purified from a mammalian source. By using a purification scheme similar to that used to purify the yeast histidine kinase, a protein fraction with histone H4 kinase activity has been isolated from porcine thymus. The yeast histidine kinase was shown to be detectable using an in-gel kinase assay system and using this system, four major bands of histone H4 kinase activity were apparent in the porcine thymus preparation. Through the use of immunoprecipitation, alkaline hydrolysis and subsequent phosphoamino acid analysis it has been demonstrated that this partially purified kinase fraction is capable of phosphorylating histone H4 on histidine. In conclusion, an preparation has been made from porcine thymus that contains histone H4 kinase activity and at least one of the kinases present in this preparation is a histidine kinase.  相似文献   

12.
The two cysteinyl residues present in histidine decarboxylase from Lactobacillus 30a differ greatly in reactivity. One (class 1) reacts readily in the native state with dithiobis-(2-nitrobenzoate) with complete loss of enzyme activity; the other (class 2) reacts only after denaturation of the enzyme (Lane, R. S., and Snell, E. E. (1976) Biochemistry 15, 4175-4179). These differences in reactivity permitted use of covalent (disulfide) chromatography to isolate separate peptides that contain these two residues. Sequence analysis showed that the class 1 cysteinyl residue is at position 147 in a hydrophilic portion of the alpha chain (Huynh, Q. K., Recsei, P. A., Vaaler, G. L., and Snell, E. E. (1984) J. Biol. Chem. 259, 2833-2839), while the class 2 cysteinyl residue is present at position 71, adjacent to a hydrophobic portion of the same chain. Cysteinyl peptides identical with or homologous to the class 2 cysteinyl peptide of the Lactobacillus 30a enzyme were isolated from the alpha subunits of histidine decarboxylases from Lactobacillus buchneri and Clostridium perfringens, respectively. The L. buchneri enzyme also contained a peptide homologous to the class 1 cysteinyl peptide from Lactobacillus 30a. However, no corresponding peptide was present in the enzyme from C. perfringens, in which the second cysteinyl residue of the alpha chain occupies position 3, very near the essential pyruvoyl residue. This enzyme, unlike those from Lactobacillus 30a or L. buchneri, also contains one cysteinyl residue in its beta chain. Although Cys 147 is an active site residue in histidine decarboxylase from Lactobacillus 30a, the absence of a corresponding residue in the C. perfringens enzyme confirms previous indications (Recsei, P. A., and Snell, E. E. (1982) J. Biol. Chem. 257, 7196-7202) that this SH group is not essential for decarboxylase action.  相似文献   

13.
An enzyme that converts [3H, 32P]ATP, with a 3H:32P ratio of 1:1, to oligoadenylates with the same 3H:32P ratio was increased in plants following treatment with human leukocyte interferon or plant antiviral factor or inoculation with tobacco mosaic virus. The enzyme was extracted from tobacco leaves, callus tissue cultures, or cell suspension cultures. The enzyme, a putative plant oligoadenylate synthetase, was immobilized on poly(rI) . poly(rC)-agarose columns and converted ATP into plant oligoadenylates. These oligoadenylates were displaced from DEAE-cellulose columns with 350 mM KCl buffer, dialyzed, and further purified by high-performance liquid chromatography (HPLC) and DEAE-cellulose gradient chromatography. In all steps of purification, the ratio of 3H:32P in the oligoadenylates remained 1:1. The plant oligoadenylates isolated by displacement with 350 mM KCl had a molecular weight greater than 1000. The plant oligoadenylates had charges of 5- and 6-. HPLC resolved five peaks, three of which inhibited protein synthesis in reticulocyte and wheat germ systems. Partial structural elucidation of the plant oligoadenylates has been determined by enzymatic and chemical treatments. An adenylate with a 3',5'-phosphodiester and/or a pyrophosphoryl linkage with either 3'- or 5'-terminal phosphates is postulated on the basis of treatment of the oligoadenylates with T2 RNase, snake venom phosphodiesterase, and bacterial alkaline phosphatase and acid and alkaline hydrolyses. The plant oligoadenylates at 8 X 10(-7) M inhibit protein synthesis by 75% in lysates from rabbit reticulocytes and 45% in wheat germ cell-free systems.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
T E Garabedian  R G Yount 《Biochemistry》1991,30(42):10126-10132
The active-site topology of smooth muscle myosin has been investigated by direct photoaffinity-labeling studies with [3H]ADP. Addition of vanadate (Vi) and Co2+ enabled [3H]ADP to be stably trapped at the active site (t1/2 greater than 5 days at 0 degrees C). The extraordinary stability of the myosin.Co2+.[3H]ADP.Vi complex allowed it to be purified free of excess [3H]ADP before irradiation began and ensured that only active-site residues became labeled. Following UV irradiation, approximately 10% of the trapped [3H]ADP became covalently attached at the active site. All of the [3H]ADP incorporated into the 200-kDa heavy chain, confirming earlier results using untrapped [alpha-32P]ATP [Maruta, H., & Korn, E. (1981) J. Biol. Chem. 256, 499-502]. After extensive trypsin digestion of labeled subfragment 1, HPLC separation methods combined with alkaline phosphatase treatment allowed two labeled peptides to be isolated. Sequence analysis of both labeled peptides indicated that Glu-185 was the labeled residue. Since Glu-185 has been previously identified as a residue at the active site of smooth myosin using [3H]UDP as a photolabel [Garabedian, T. E., & Yount, R. G. (1990) J. Biol. Chem. 265, 22547-22553], these results provide further evidence that Glu-185, located immediately adjacent to the glycine-rich loop, is located in the purine binding pocket of the active site of smooth muscle myosin.  相似文献   

15.
6-Hydroxybenzofuran and phenylhydrazine are mechanism-based inhibitors of dopamine beta-hydroxylase (D beta H; EC 1.14.17.1). We report here the isolation and characterization of radiolabeled peptides obtained after inactivation of D beta H with [3H]6-hydroxybenzofuran and [14C]phenylhydrazine followed by digestion with Staphylococcus aureus V8 protease. Inactivation of D beta H with [3H]6-hydroxybenzofuran gave only one labeled peptide, whereas inactivation with [14C]phenylhydrazine gave several labeled peptides. Each inhibitor labeled a unique tyrosine in the enzyme corresponding to Tyr477 in the primary sequence of the bovine enzyme (Robertson, J. G., Desai, P. R., Kumar, A., Farrington, G. K., Fitzpatrick, P. F., and Villafranca, J. J. (1990) J. Biol. Chem. 265, 1029-1035). In addition, [14C]phenylhydrazine also labeled a unique histidine (His249) as well as several other peptides. Examination of the complete peptide profile obtained by high pressure liquid chromatography analysis also revealed the presence of a modified but nonradioactive peptide. This peptide was isolated and sequenced and was identical whether the enzyme was inactivated by 6-hydroxybenzofuran or phenylhydrazine. An arginine at position 503 was missing from the sequence cycle performed by Edman degradation of the modified peptide, but arginine was present in the identical peptide isolated from native dopamine beta-hydroxylase. These data are analyzed based on an inactivation mechanism involving formation of enzyme bound radicals (Fitzpatrick, P. F., and Villafranca, J. J. (1986) J. Biol. Chem. 261, 4510-4518) interacting with active site amino acids that may have a role in substrate binding and binding of the copper ions at the active site.  相似文献   

16.
The mRNA capping reaction catalyzed by rat liver mRNA guanylyltransferase proceeds through an enzyme-GMP intermediate in which GMP is linked to the enzyme by a phosphoamide linkage. The studies described here show that GMP is bound to the epsilon-amino group of lysine of rat liver guanylyltransferase. The enzyme-[32P]GMP intermediate was digested with pronase to a [32P]GMP-peptide which was then converted to [32P]phosphoryl-peptide through periodate oxidation followed by beta-elimination. After alkaline hydrolysis of the [32P]phosphoryl-peptide, the major radioactive product co-electrophoresed with the authentic N epsilon-phospholysine on DEAE-cellulose paper. Neither [32P]Nimid-phosphohistidine nor Nguanido-phosphoarginine was detected in the hydrolysates. Furthermore, formation of N epsilon-guanylyl-lysine linkage on the enzyme was more directly shown by isolation of [32P]GMP(5' leads to N epsilon)lysine when the steps of periodate oxidation and beta-elimination were omitted. The results indicate that the nucleophile in the guanylyltransferase to which the guanylyl residue is linked is the epsilon-amino group of a lysine residue. [32P]Phosphoryl-lysine was also isolated from the vaccinia virus capping enzyme-[32P]GMP intermediate. Guanylyltransferase from HeLa cells, wheat germ, Artemia salina and yeast also formed the enzyme-GMP complex and, from the stability of the complex, the linkage between the enzyme and GMP was suggested to be a phosphoamide.  相似文献   

17.
Dehydroalanine is present in the histidine ammonia-lyase (histidase) from Pseudomonas putida ATCC 12633 as shown by reaction of purified enzyme with K14CN or NaB3H4 and subsequent identification of [14C]aspartate or [3H]alanine, respectively, following acid hydrolysis of the labeled protein. When labeling with cyanide was conducted under denaturing conditions, 4 mol of [14C]cyanide was incorporated per mol of enzyme (Mr 220 000), equivalent to one dehydroalanine residue being modified per subunit in this protein composed of four essentially identical subunits. In native enzyme, inactivation of catalytic activity by cyanide was complete when 1 mol of [14C]cyanide had reacted per mol of histidase, suggesting that modification of any one of the four dehydroalanine residues in the tetrameric enzyme was sufficient to prevent catalysis at all sites. Loss of activity on treatment with cyanide could be blocked by the addition of the competitive inhibitor cysteine or substrate if Mn2+ was also present. Cross-linking of native enzyme with dimethyl suberimidate produced no species larger than tetramer, thereby eliminating the possibility that an aggregation phenomenon might explain why only one-fourth of the dehydroalanyl residues was modified by cyanide during inactivation. A labeled tryptic peptide was isolated from enzyme inactivated with [14C]cyanide. Its composition was different from that of a tryptic peptide previously isolated from other histidases and shown to contain a highly reactive and catalytically important cysteine residue. Such a finding indicates the dehydroalanine group is distinct from the active site cysteine. Treatment of crude extracts with [14C]cyanide and purification of the inactive enzyme yielded labeled protein that release [14C]aspartate on acid hydrolysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Phosphorylation of isocitrate lyase in Escherichia coli   总被引:2,自引:0,他引:2  
E F Robertson  H C Reeves 《Biochimie》1989,71(9-10):1065-1070
Isocitrate lyase from Escherichia coli becomes phosphorylated in vitro by an endogenous kinase when partially purified extracts are incubated with [gamma-32P]ATP. Treatment of isocitrate lyase with histidine modifying reagents, and alkaline hydrolysis of in vitro phosphorylated enzyme indicated the presence of a phosphohistidine residue. Phosphorylation of isocitrate lyase can also occur in vivo, which indicates a possible regulatory significance of this modification. In addition to phosphorylation, isocitrate lyase is capable of incorporating label from both [alpha-32P]ATP and [14C]ATP suggesting that more than one type of covalent modification occurs on this enzyme. This report reviews the studies which have demonstrated the phosphorylation and modification of isocitrate lyase from Escherichia coli.  相似文献   

19.
G J Roth  E T Machuga  J Ozols 《Biochemistry》1983,22(20):4672-4675
Aspirin (acetylsalicylic acid) inhibits prostaglandin synthesis by acetylating a single internal serine residue of the initial enzyme in the biosynthetic pathway, prostaglandin synthetase. In this study, the region of the enzyme that is modified by aspirin has been isolated, and its amino acid sequence has been determined. Sheep vesicular gland [acetyl-3H]prostaglandin synthetase was purified following treatment with [acetyl-3H]aspirin and digest with pepsin. An acetyl-3H-labeled peptic peptide of approximately 25 residues was isolated by high-pressure liquid chromatography, and its amino acid sequence was determined to be Ile-Glu-Met-Gly-Ala-Pro-Phe-Ser-Leu-Lys-Gly-Leu-Gly-Asn-Pro-Ile-Glu-Ser-Pro-Glu-Tyr. The acetylated serine residue was located at position 8 in this sequence. The current study marks this polypeptide sequence as a region related to an active site of the enzyme.  相似文献   

20.
A high salt nuclear extract from the true slime mold Physarum polycephalum was used as a source of kinase activity for the incubation of calf thymus histones with [gamma-32P]ATP. A major proportion of the 32P incorporated into histones was acid-labile and alkali-stable. The nature of the alkali-stable phosphorylated component was analyzed by subjecting the phosphorylated protein to total alkaline hydrolysis and separating the resultant phosphoamino acids by anion exchange chromatography. The 32P-labeled material co-chromatographed with phosphohistidine standards and did not co-chromatograph with phosphoserine, phosphothreonine, or phosphotyrosine standards. In similar experiments using reversed phase high-performance liquid chromatography to separate the phosphoamino acids, the 32P-labeled phosphoamino acid behaved like the 1-isomer of phosphohistidine, in not being retained by the column, and unlike 3-phosphohistidine, phosphoserine, phosphothreonine, phosphotyrosine, and phosphoarginine, which were all retained on the column. Histone H4 was a good substrate for the histidine kinase activity and the location of the phosphorylated histidine residue was probed by peptide mapping using chymotrypsin or V8 protease. Both maps were consistent with labeling of histidine 75 and inconsistent with labeling of histidine 18. The data show that Physarum nuclei contain a major kinase activity which produces phosphohistidine. The methods we have developed for studying this kinase activity provide the basis for a complete characterization of the structure and function of the Physarum enzyme and can be applied to the study of similar kinase activities in other systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号