首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We report a comparison of fibrinolytic variables between 10 Caucasians on a predominantly European diet and 10 Greenland Eskimos on a traditional Inuit diet containing a substantial amount of fish and sea animals. We studied the diurnal variation in tissue type plasminogen activator (t-PA) and plasminogen activator inhibitor (PAI) antigens and activities during a 24-h period. Blood samples were taken every 4 h. The variations of the sinusoidal curves were evaluated by the Friedman χ2 test. t-PA and PAI-1 antigen in plasma fluctuated significantly during the 24 h (Eskimos p < 0.000007 and p < 0.0007; Caucasians p < 0.00003 and p < 0.02), with a peak in the early morning and a nadir in the afternoon. This also held true for PA1 activity (Eskimos p < 0.0008; Caucasians p < O.Ol), whereas t-PA activity showed an inverse but still significant pattern (Eskimos p < 0.006; Caucasians p < 0.0008). Amplitudes, areas underneath, and overall medians of the sinusoidal curves did not deviate between the two groups with respect to t-PA and PAL In contrast to the significant variation of t-PA and PAI, the plasma concentrations of fibrin degradation products (D-Dimer), a measure of effective fibrinolysis, remained constant during the 24 h, and the absolute differences between groups did not reach statistical significance. These findings suggest that circadian variation of fibrinolytic activators and inhibitors is a basic biologic phenomenon, which is not affected by life-style, dietary habits, or ethnic differences. Furthermore, the lack of diurnal variation in D-Dimer raises the question of whether there is a causal relationship between low morning activities of t-PA and the frequent onset of myocardial infarction at that time of day, as suggested by several authors.  相似文献   

2.
Effect of prolonged physical exercise on the fibrinolytic system   总被引:6,自引:0,他引:6  
The effect of a test marathon race on plasma fibrinolytic activity (FA) was studied in 16 endurance athletes before, immediately after, 3 h, and 31 h after the run. Tissue plasminogen activator (t-PA) activity increased about 31-fold immediately after the run. Similar increases were found in t-PA antigen concentration. Plasminogen activator inhibitor (PAI) was not detectable immediately after the race and was significantly decreased 3 h (P less than 0.05) and 31 h (P less than 0.01) later. B beta 15-42 peptide increased by 0.63 pmol.ml-1 (P less than 0.001), D-dimer by 68.3 ng.ml-1 (P less than 0.05). Euglobulin lysis time (ELT) was reduced from 109 to 18 min (P less than 0.001). The increased t-PA activity and t-PA antigen concentration disappeared in the course of the first 3 h after exertion. ELT also reached its pre-exercise levels at this time. Thirty-one hours after the race ELT and t-PA antigen levels were slightly but significantly reduced (P less than 0.05), whereas B beta 15-42 peptide remained increased (P less than 0.05). t-PA activity was unchanged compared with pre-exercise values. It seems that the exercise-induced FA is mainly caused by the marked increase of t-PA antigen and t-PA activity.  相似文献   

3.
Corneal epithelial cells secrete tissue plasminogen activator (t-PA), urokinase type plasminogen activator (u-PA) and their inhibitor (PAI), whereas these cell types in other tissues are known to secrete only u-PA hitherto. Endothelial cells in the cornea produce mostly u-PA and only small amounts of t-PA and PAI which remain confined in the cellular compartment contrary to the situation in the vascular endothelial cells where they are liberated into the circulation in the order PAI greater than t-PA greater than U-PA. These unique features of activator/inhibitor secretion and production may play an important role in the remodeling of the corneal matrix.  相似文献   

4.
The concentrations of tissue plasminogen activator (t-PA), urokinase plasminogen activator (u-PA) and plasminogen activator inhibitor (PAI-1) have been determined in endometrial curettings obtained from 46 subfertile women during proliferative, early or late secretory phases of the menstrual cycle. t-PA activity and antigen concentrations was significantly higher (P < 0.001) in late secretory endometrium than in proliferative or early secretory endometrium. Higher concentrations of PAI-1 antigen (P < 0.05) were also noted in late secretory phase than in proliferative and early secretory endometrium. However, u-PA concentration was not significantly different and no PAI activity could be demonstrated in the menstrual phases studied. Zymography studies confirmed the presence of both t-PA and u-PA in the endometrium. Ovarian hormonal patterns may therefore influence the activity of plasminogen activators especially of t-PA in the endometrium during various phases of the menstrual cycle.  相似文献   

5.
We have previously demonstrated that plasminogen activator inhibitor (PAI-1) is associated with the extracellular matrix of cultured bovine smooth muscle cells (Knudsen, B.S., Harpel, P.C., Nachman, R.L. (1987) J. Clin. Invest. 80, 1082-1089). In this report we describe the physiologic role of PAI-1 during the interaction of the tissue plasminogen activator (t-PA) secreting Bowes human melanoma cell line with endothelial extracellular matrices. In addition we have characterized the t-PA.PAI complexes formed during this interaction in the presence and absence of plasminogen. In the absence of plasminogen, a 104-kDa complex between Bowes t-PA and PAI-1 appears in the supernatant. In the presence of plasminogen, PAI initially prevents plasmin formation on the matrix and protects the matrix from degradation by plasmin. The 104-kDa t-PA.PAI complex is degraded into a 68 and a 47-kDa complex by small amounts of plasmin generated from secreted Bowes t-PA and plasminogen. Analysis of these complexes revealed that t-PA is rapidly cleaved by plasmin within the complex whereas complexed PAI-1 is not further degraded. Matrix-associated PAI-1 may play an important role in the protection of extracellular matrices from remodeling and degradation by cellular t-PA and plasminogen.  相似文献   

6.
We compared two methods that measure plasminogen activator inhibitor (PAI) activity in plasma based on the ability of PAI to inhibit tissue plasminogen activator (tPA) or urokinase (uPA) in order to determine which method most accurately measures plasma PAI activity after stressors, like hemorrhage. Plasma PAI activity was significantly elevated after hemorrhage in both assays. Using standard curves derived from rhPAI-1, we found that the tPA-PAI assay was more sensitive than the uPA-PAI assay. However, we measured a 10-fold difference in PAI activity as measured between assays, suggesting that some endogenous plasma constituents (tPA, uPA, plasminogen or plasmin) may interfere with the accurate determination of PAI activity. Increasing the amount of plasma in each assay led to a progressive increase in PAI activity. However, removing either tPA or plasminogen from the tPA-PAI assay unmasked the presence of some endogenous tPA and plasminogen. Furthermore, increasing plasma volume in either assay increases measured plasma tPA, but not uPA. Finally, plasma tPA is elevated after hemorrhage, whereas plasma uPA is not. These results suggest that endogenous tPA and plasminogen may interfere with the measurement of plasma PAI activity in the tPA-PAI assay after hemorrhage or other stresses. The uPA-PAI assay does not have this confounding problem because endogenous uPA does not interfere with the assay, nor does it rise during hemorrhage.  相似文献   

7.
K Shimaya  H Sumi  M Maruyama  H Mihara 《Enzyme》1992,46(4-5):204-212
Anaphylactic shock was induced in rabbits by injecting bovine serum albumin (BSA) as an antigen. Measurements of the enzyme activities in the fibrinolytic system confirmed that a rapid and strong increase of plasminogen activator (PA) was induced during anaphylaxis. The euglobulin fibrinolytic activity (EFA) as estimated by the plasminogen-rich fibrin plate method rose significantly, peaking at 15 min after the BSA injection (when the arterial pressure was minimum). However, EFA was not detected by the plasminogen-poor fibrin plate method. The tissue-type PA (t-PA) activity using the natural substrate plasminogen increased significantly with a peak at 15 min. The amidolytic activity also simultaneously increased significantly using the t-PA substrate, H-D-Ile-Pro-Arg-pNA. The plasminogen activator inhibitor (PAI) activity remained at baseline levels until 30 min, but rose fourfold at 90 min. The main plasma fibrinolytic enzyme which increased in anaphylaxis was proved by zymography to be t-PA with a molecular weight (MW) of 69,000.  相似文献   

8.
Structure and function of human tissue-type plasminogen activator (t-PA)   总被引:5,自引:0,他引:5  
Full-length tissue-type plasminogen activator (t-PA) cDNA served to construct deletion mutants within the N-terminal "heavy" (H)-chain of the t-PA molecule. The H-chain cDNA consists of an array of structural domains homologous to domains present on other plasma proteins ("finger," "epidermal growth factor," "kringles"). These structural domains have been located on an exon or a set of exons. The endpoints of the deletions nearly coincide with exon-intron junctions of the chromosomal t-PA gene. Recombinant t-PA deletion mutant proteins were obtained after transient expression in mouse Ltk- cells, transfected with SV40-pBR322-derived t-PA cDNA plasmids. It is demonstrated that the serine protease moiety of t-PA and its substrate specificity for plasminogen is entirely contained within the C-terminal "light" (L)-chain of the protein. The presence of cDNA, encoding the t-PA signal peptide preceding the remaining portion of t-PA, suffices to achieve secretion of (mutant) t-PA into the medium. The stimulatory effect of fibrin on the plasminogen activator activity of t-PA was shown to be mediated by the kringle K2 domain and, to a lesser extent, by the finger domain. The other domains on the H-chain, kringle K1, and the epidermal growth-factor-like domain, do not contribute to this property of t-PA. These findings correlate well with the fibrin-binding properties of the rt-PA deletion-mutant proteins, indicating that stimulation of the activity is based on aligning of the substrate plasminogen and its enzyme t-PA on the fibrin matrix. The primary target for endothelial plasminogen activator inhibitor (PAI) is located within the L-chain of t-PA. Deleting specific segments of t-PA H-chain cDNA and subsequent transient expression in mouse Ltk- cells of t-PA deletion-mutant proteins did not affect the formation of a stable complex between mutant t-PA and PAI.  相似文献   

9.
Clinical and experimental data indicate that activated oxygen species interfere with vascular endothelial cell function. Here, the impact of extracellular oxidant injury on the fibrinolytic response of cultured human umbilical vein endothelial (HUVE) cells was investigated at the protein and mRNA levels. Xanthine (50 microM) and xanthine oxidase (100 milliunits), which produces the superoxide anion radical (O2-) and hydrogen peroxide (H2O2), was used to sublethally injure HUVE cells. Following a 15-min exposure, washed cells were incubated for up to 24 h in serum-free culture medium. Tissue-type plasminogen activator (t-PA) antigen, plasminogen activator inhibitor-1 (PAI-1) antigen, and PAI-1 activity were determined in 1.25 ml of conditioned medium and t-PA and PAI-1 mRNA in the cell extracts of 2 x 10(6) HUVE cells. Control cells secreted 3.9 +/- 1.3 ng/ml (mean +/- S.D., n = 12) within 24 h. Treatment with xanthine/xanthine oxidase for 15 min induced a 2.8 +/- 0.4-fold increase (n = 12, p less than 0.05) of t-PA antigen secretion after 24 h. The t-PA antigen was recovered predominantly in complex with PAI-1. The oxidant injury caused a 3.0 +/- 0.8-fold increase (n = 9, p less than 0.05) in t-PA mRNA within 2 h. Total protein synthesis was unaltered by xanthine/xanthine oxidase. The oxidant scavengers superoxide dismutase and catalase, in combination, abolished the effect of xanthine/xanthine oxidase on t-PA secretion and t-PA mRNA synthesis. Xanthine/xanthine oxidase treatment of HUVE cells did not affect the PAI-1 secretion in conditioned medium nor the PAI-1 mRNA levels in cell extracts. Thus extracellular oxidant injury induces t-PA but not PAI-1 synthesis in HUVE cells.  相似文献   

10.
24 established melanoma cell cultures were screened for their secretion of plasminogen activators and plasminogen activator inhibitors into the culture medium by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by conventional and reverse fibrin autography. Among the cell lines investigated, 22 cell lines predominantly secreting tissue type plasminogen activator (t-PA) and four cell lines additionally secreting urokinase were found. The conditioned media of two cell lines (KRFM and MJZJ) were found to contain plasminogen activator inhibitor (PAI) activity at a Mr position of approximately 50,000. The PAI of one of the two melanoma cell (MJZJ)-conditioned media found to contain PAI activity was purified to apparent homogeneity employing concanavalin A-Sepharose chromatography, gel filtration on Sephadex G-150, chromatography on Affi-Gel blue, and affinity chromatography on a Sepharose 4B immobilized monoclonal anti-t-PA IgG column. The purified melanoma PAI was found to be a single chain protein, acid stable, immunologically related to the endothelial derived PAI. In contrast to endothelial PAI, melanoma PAI presented itself in the conditioned media of the melanoma cells and in the purified preparation to an appreciable extent in its active form.  相似文献   

11.
Tissue plasminogen activator (t-PA) and plasminogen activator inhibitor 1 (PAI-1) directly influence thrombus formation and degradation and thereby risk for arterial thrombosis. Activation of the renin-angiotensin system has been linked to the production of PAI-1 expression via the angiotensin II type 1 receptor (AT1R). In addition, bradykinin can induce the release of t-PA through a B2 receptor mechanism. In the present study, we aimed to investigate the epistatic effects of polymorphisms in genes from the renin-angiotensin, bradykinin, and fibrinolytic systems on plasma t-PA and PAI-1 levels in a large population-based sample (n=2527). We demonstrated a strong significant interaction within genetic variations of the bradykinin B2 gene (P=0.002) and between ACE and bradykinin B2 (p=0.003) polymorphisms on t-PA levels in females. In males, polymorphisms in the bradykinin B2 and AT1R gene showed the most strong effect on t-PA levels (P=0.006). In both females and males, the bradykinin B2 gene interacted with AT1R gene on plasma PAI-1 levels (P=0.026 and P=0.039, respectively). In addition, the current study found a borderline significant interaction between PAI 4G5G and ACE I/D on plasma t-PA and PAI-1 levels. These results support the idea that the interplay between the renin-angiotensin, bradykinin, and fibrinolytic systems might play an important role in t-PA and PAI-1 biology.  相似文献   

12.
Melanoma cells produce tissue plasminogen activator (t-PA) that plays an important role in tumor invasion and metastasis. The production of t-PA by normal human uveal melanocytes has not been reported previously. In order to explore this possibility, we studied the production of t-PA by cultured human uveal melanocytes and compared that with the production by cultured human uveal melanoma cells and epidermal melanocytes. Human adult uveal melanocytes were isolated and cultured from donor eyes. The cells were cultured in serum-free medium for 48 h and the conditioned medium then collected for the plasminogen activator (PA) activity assay. Free PA activity was tested in an amidolytic assay using a t-PA standard curve. PA type was identified by fibrinography and antihuman t-PA and urokinase plasminogen activator (u-PA) blocking antibodies. Free PA activity was found in the conditioned medium of normal melanocytes and melanoma cells. The predominant PA activity was t-PA. Normal uveal melanocytes produced more t-PA (3.23 +/- 0.73 IU/105 cells/24 h) than that of epidermal melanocytes (1.25 IU/105 cells/24 h) but much less than uveal melanoma cells (11.0 +/- 3.39 IU/105 cells/24 h). Western blot analysis revealed that most t-PA in conditioned media were one-chain t-PA with molecular weight of 69 kDa. Our study indicates that uveal melanocytes may contribute to the free t-PA activity previously found in aqueous humor and choroidal eye cup superfusions. Therefore, this function of uveal melanocytes may play a role in intraocular matrix remodeling, fibrinolysis and aqueous humor outflow.  相似文献   

13.
Plasminogen, plasmin, and plasminogen activator (PA) activities and PA and PA inhibitor (PAI) contents were measured in granulosa (GC) and theca interna cell extracts and follicular fluid (FF) obtained from preovulatory follicles of prepubertal gilts treated with eCG and hCG to induce follicular growth and ovulation. Plasmin activity in FF increased just before the time of expected ovulation. This increase was not attributable to changes in plasminogen levels, which remained relatively constant during preovulatory follicular development. The increase in follicular plasmin levels was associated with significant (p less than 0.01) increases in PA activity and content and decreases in PAI content in GC and FF. Western blot analysis suggested that follicular PA activity was represented principally by two forms of tissue type PA (t-PA) each with a pI of 7.8 and with molecular masses of 72,000 and 78,000 daltons, respectively. Two PA-PAI complexes of 126,000 and 130,000 daltons were observed. These complexes were partially dissociated with nucleophilic agents into two t-PA-like forms and a 52,000-dalton PAI protein with a pI of 4.8. Biochemical characteristics of the PAI protein suggest that it belongs to the same class of inhibitors as bovine and human PAI-1. These data indicate that rupture of the porcine ovarian follicle is temporally associated with a net increase in PA activity and an increase in plasmin activity. The increase in PA activity appears to be regulated by changes in PA and PAI content.  相似文献   

14.
In this study, we provide evidence that plasminogen activator of tissue-type (t-PA), at least, is present in extracts of bovine oocyte cortical granules, and that its activity varies significantly with the duration of oocyte in vitro maturation. Cortical granules were collected from bovine oocytes by means of micromanipulation, after 0, 12, or 24 h of IVM. Our results show that plasminogen activator activity of cortical granule extracts was significantly higher after 24 h of IVM than after 12 h of IVM or before IVM. This activity was apparently due, at least partly, to tissue-type plasminogen activator as shown immunologically. No evidence was found for the presence of urokinase-type plasminogen activator, plasminogen activator inhibitors or plasmin inhibitors in bovine oocyte cortical granule extracts. Our findings further support the hypothesis that t-PA activity of oocyte origin may have a role in oocyte maturation or fertilization, as well as in post-fertilization events, such as cortical reaction and formation of the zona block to polyspermy.  相似文献   

15.
W P Fay  W G Owen 《Biochemistry》1989,28(14):5773-5778
Plasminogen activator inhibitor (PAI) was purified in active form from porcine platelets under nondenaturing conditions. The purified inhibitor (Mr 47,000) reacts with tissue-type plasminogen activator (t-PA), urokinase (UK), and activated protein C (APC) to yield both SDS-stable complexes and a modified PAI of slightly reduced molecular weight. The second-order rate constants for the inhibition of t-PA and UK by PAI are 3.5 X 10(7) and 3.4 X 10(7) M-1 s-1, respectively. Activated protein C reacts with PAI with a second-order rate constant of 1.1 X 10(4) M-1 s-1. This rate is not accelerated by protein S, phospholipid, and calcium, or heparin. It is concluded that (1) PAI can function as both inhibitor and substrate of its target proteases, (2) if APC promotes fibrinolysis via inactivation of PAI, then APC must be present in concentrations several orders of magnitude greater than t-PA, or the interaction of APC and PAI must be accelerated by presently unknown mechanisms, and (3) in the absence of heparin, platelet PAI is the most rapid inhibitor of APC yet described.  相似文献   

16.
Changes in plasminogen activator (PA) and PA inhibitor (PAI) activities were measured during follicular development in granulosa cells (GC) and theca tissue (TT) isolated from the six largest yolk-filled preovulatory follicles (F1, F2, F3, F4, F5, F6) and large white follicles (LWF) of the domestic hen. PA activity increased and PAI activity decreased during follicular development, with the peak PA value and minimum activity for PAI observed in the largest preovulatory follicle (F1) 12-14 h before expected time of ovulation. The PA activity in GC and TT appears to be principally of the tissue (t)-PA type judging from its substrate specificity and biochemical characteristics. The enzyme cleaved the chromogenic substrate specific for t-PA (Spectrozyme TM t-PA; CH3SO2-D-CHT-Gly-Arg-p-nitroanilide) more efficiently (4-6 x) than that for u-PA (Spectrozyme TM UK; Cbo-L-Glu-(alpha-t-BuO)-Gly-Arg-p-nitroanilide), suggesting that t-PA may be the predominant PA in the chicken preovulatory follicle. Determination of PA activity following sodium dodecyl sulphate-polyacrylamide gel electrophoresis and isoelectric focussing suggested the presence of two forms of the enzyme in GC and TT. The predominant form of PA had a molecular weight of 75,000 and an isoelectric point (pI) of 7.7, characteristics similar to those reported for t-PA in humans, pigs, and rodents. The other form of PA had a molecular weight of 35,000 and pI of 8.4. PAI present in GC and TT had a molecular weight of 50,000 and pI of 4.7. In GC, an acid-labile PAI was detected with biochemical characteristics similar to those of the protease, nexin I.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Circadian variation of fibrinolytic activity in blood.   总被引:9,自引:0,他引:9  
Approximately 35 years ago, it was discovered that spontaneous fibrinolytic activity in blood showed a sinusoidal variation with a period of 24 h; it increased severalfold during the day, reaching a peak at 6:00 p.m. and then dropped to trough levels at 3:00-4:00 a.m. The range of the fluctuation and the 24-h mean levels were highly reproducible within an individual; moreover, the timing of the oscillation was remarkably consistent among individuals, with a fixed phase relationship to external clock time. The biorhythm could not be accounted for simply by variations in physical activity, body posture, or sleep/wake schedule. Gender, ethnic origin, meals, or resting levels of blood fibrinolytic activity also did not influence the basic features of the rhythm. Older subjects, compared to younger ones, showed a blunted diurnal increase in fibrinolytic activity in blood. Recent studies have established that, of the known components of the fibrinolytic system, only tissue-type plasminogen activator (tPA) and its fast-acting inhibitor, plasminogen activator inhibitor-1 (PAI-1), show a marked circadian variation in plasma. In contrast, levels of plasminogen, alpha 2-antiplasmin, urinary-type plasminogen activator, and a reversible tPA inhibitor vary little or none during the 24 h. Quenching antibodies to tPA have shown that the circadian rhythm of fibrinolytic activity in blood is due exclusively to changes in tPA activity. However, the 24-h fluctuation of plasma tPA activity is phase shifted in relation to the rhythm of immunoreactive tPA, but shows a precise phase inversion with respect to the 24-h variation of PAI-1 activity and antigen. Therefore, plasma tPA activity, as currently measured in vitro, is tightly and inversely related to the levels of PAI-1 throughout the 24-h cycle. The factors controlling the rhythmicity of plasma PAI-1 are not fully elucidated but probably involve a humoral mechanism; changes in endothelial function, circulating platelet release products, corticosteroids, catecholamines, insulin, activated protein C, or hepatic clearance do not appear to be responsible. Shift workers on weekly shift rotations show a disrupted 24-h rhythm of plasma tPA and PAI-1. In acute and chronic diseases, the circadian rhythmicity of fibrinolytic activity may show a variety of alterations, affecting the 24-h mean, the amplitude, or the timing of the fluctuation. It is advisable, therefore to define the 24-h pattern of plasma tPA and PAI-1 in patient groups, before levels based on a single blood sampling time are compared to those of a control population.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The site of the reaction between plasminogen activators and plasminogen activator inhibitor 1 (PAI-1) was investigated in cultures of human umbilical vein endothelial cells. In conditioned medium from endothelial cells, two forms of a plasminogen activator-specific inhibitor can be demonstrated: an active form that readily binds to and inhibits plasminogen activators and an immunologically related quiescent form which has no anti-activator activity but which can be activated by denaturation. In conditioned medium, only a few percent of PAI-1 is the active form. However, the addition of increasing concentrations of tissue-type plasminogen activator (t-PA) or urokinase to confluent endothelial cells produced a saturable (3.0 pmol/5 x 10(5) cells), dose-dependent increase of the activator-PAI-1 complex in the conditioned medium even in the presence of actinomycin D or cycloheximide. This resulted also in a dose-dependent decrease of the residual PAI activity measured by reverse fibrin autography both in the conditioned medium and cell extracts. Short-time exposure of endothelial cells to a large amount of t-PA caused almost complete depletion of all cell-associated PAI activity. Although there was no detectable PAI activity even after activation of PAI by denaturants or antigen in the culture medium at 4 degrees C without the addition of t-PA, the addition of t-PA at 4 degrees C not only resulted in the formation of 70% of the amount of the t-PA.PAI complex in conditioned medium at 37 degrees C, but also induced PAI-1 antigen in a time and dose-dependent manner in the conditioned medium. Moreover, 125I-labeled t-PA immobilized on Sepharose added directly to endothelial cells formed a complex with PAI-1 in a dose-dependent manner. On the other hand, no detectable complex was formed with PAI-1 when Sepharose-immobilized 125I-labeled t-PA was added to endothelial cells under conditions in which the added t-PA could not contact the cells directly but other proteins could pass freely by the use of a Transwell. All these results suggest that a "storage pool" on the surface of endothelial cells or the extracellular matrix produced by endothelial cells contains almost all the active PAI-1, and reaction between PA and PAI-1 mainly occurs on the endothelial cell membranes, resulting in a decrease of the conversion of active PAI-1 to the quiescent form.  相似文献   

19.
The aim of the present study was to investigate the effect of melatonin on plasminogen activator activity (PAA), plasminogen activator inhibition (PAI) and plasmin inhibition (PI) in ram spermatozoa and seminal plasma, in correlation with changes in blood testosterone. Melatonin implants (18 mg) were placed subcutaneously in sixteen Chios rams in autumn and spring. Semen samples for spectrophotometrical assays were collected 36 h before the implantation of melatonin and thereafter once a week, for 17 weeks. Blood samples for testosterone assay (RIA) were collected 8h before implantation (one sample/30 min x 7.5 h) and thereafter every 15 days for 105 days after implantation. For each ram, six parameters of testosterone were estimated: mean value, basal level, number of peaks, peak amplitude, peak duration and mean testosterone concentration during peaks. Melatonin implantation during autumn induced an increase in PAA and t-PAI in spermatozoa; melatonin implantation in spring induced an additional increase in u-PAI and PI; no change in PAA, PAI or PI was found in seminal plasma, during autumn or spring. The melatonin-induced increase of PAA, PAI and PI in spermatozoa was in positive correlation with the increase of testosterone mean value, basal level and number of peaks; the increase of testosterone parameters was greater in autumn compared to spring. Changes of PAA, PAI and PI of spermatozoa, under the influence of melatonin, might indicate changes in the fertilizing ability of spermatozoa, since plasminogen activators and their inhibitors are present on the plasma and the outer acrosomal membrane of spermatozoa and are released during the acrosome reaction.  相似文献   

20.
Human omental microvascular endothelial (HOME) cells seeded on Matrigel begin to migrate within 1 h, forming honeycomb-like structures and capillary-like networks within 18 h. Cross-sections of the capillary networks show them to be tube-like structures. Northern blot analysis showed that tissue-type plasminogen activator (t-PA) mRNA synthesis increased from the initial state at 0 h after seeding on Matrigel, reaching a steady state after 4 h. This elevated cellular t-PA mRNA level decreased markedly at 24 h. In contrast, the cellular plasminogen activator inhibitor-1 (PAI-1) mRNA level demonstrated biphasic curves during the 24 h after seeding on Matrigel: the PAI-1 mRNA level was increased eightfold initially at 4 h over that at O h, then declined, and again secondarily increased to greater than tenfold at 18 h. Cellular levels of both 72 kD type IV collagenase and tissue inhibitor of metalloproteinase (TIMP-2) mRNA were increased only a slightly within 2–4 h. These elevated mRNA levels were maintained for 18 h, while the TIMP-1 mRNA level increased up to 18 h, reaching around three times the level at O h. However, on collagen-coated dishes, cellular levels of t-PA, PAI-1, 72 kD type IV collagenase, TIMP-1, and TIMP-2 mRNA were not greatly changed during incubation for 24 h. On Matrigel, the cellular t-PA mRNA level at 18 h after seeding was greatly increased when treated with specific anti-transforming growth factor-β (TGF-β) antibody. In contrast, both PAI-1 and TIMP-1 mRNA levels at 18 h were reduced in the presence of anti-TGF-β antibody. Development of the capillary network on Matrigel was inhibited in the presence of anti-t-PA antibody. Epidermal growth factor (EGF) enhanced t-PA gene expression and TGF-β inhibited its expression in HOME cells cultured on collagen-coated dishes. On the other hand, TGF-β enhanced cellular expression of the PAI-1 gene. The formation of a capillary network by HOME cells on Matrigel appears to be balanced by angiogenic EGF and anti-angiogenic TGF-β through modulation of PA activity. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号