首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There are now eleven manidublar pieces from the Lower and Middle Pleistocene of Java, all but one being from the Sangiran site. All of these have been assigned toHomo erectus by most workers, while others have suggested as many as four different hominoid taxa. Sangiran 21 (Mandible E), Sangiran 22 (Mandible F), and Sangiran 37 (Mandible G) are described here fully for the first time. Sangiran 21, 22, and 27 all come from the Upper Pucangan Formation and date approximately 1.2 Myr. The new mandibles are morphologically compatible with theH. erectus, crania from Java.  相似文献   

2.
A newHomo erectus cranium was found on May 18, 1993 by Budi, a local farmer, at Sangiran. It dates from the Middle Pucangan Formation approximately 1.6–1.8 mya. The braincase is essentially complete and as is most of the face. The vault has the typicalH. erectus gable shape. There is a clear sagittal ridge beginning below the middle of the frontal squama and running to mid-parietal. Parasagittal ridges are rounded angulations halfway up the parietals, and coincide with poorly marked temporal lines. In all measurements, this skull is longer and consistently narrower than Trinil. It is chronologically and morphologically similar to the famousH. erectus skull from east Africa, KNMER-3733. Although existing much older, this new specimen is what one would expect a female counterpart to Sangiran 17 to look like.  相似文献   

3.
A comparative study of Indonesian parietal bones from Sangiran, Sambungmachan 1 and Ngandong has been undertaken. This study comprises a morphological and metrical analysis of the individual parietal bones, followed by consideration of the biparietal vault. The results are compared with other hominids from earlier and later periods. These hominids were found in China (Sinanthropus II, III, X, XI and XII), in Africa (ER 3733, OH 9, Ternifine, Broken Hill and Saldanha) and in Europe (Arago XLVII, Petralona, Swanscombe, Steinheim, Le Lazaret, La Chaise (Abri Suard) and Cova Negra). These European Middle Pleistocene hominids are attributed toHomo erectus by various authors (Lumley 1973;Hemmer 1972;Spitery 1982;Lumley andFournier 1982) and to an early Neanderthal group, pre-Neanderthal orHomo sapiens sensu lato (Neanderthals+modern humans) by others (Stringer 1980, 1981, 1983, 1984,Wolpoff 1980,Holloway 1982). The discussion about the classification of those hominids is not closed, but it is not the subject of this paper and not our intention to solve it here. So we have chosen to call this fossil material ‘Anteneandertals’ (Lumley 1973). It appears that some morphological metrical features allow us to separate the Sangiran and Ngandong samples. Sambungmachan 1, whose chronological age is not well established, appears to be closer to Ngandong men.  相似文献   

4.
Hominid fossils from Ngandong and Sambungmacan, Central Java, Indonesia, are considered to be the most anatomically derived and youngest representatives of Homo erectus. Nondestructive gamma-ray spectrometric dating of three of these Homo erectus skulls showed that all samples underwent uranium leaching. Nevertheless, we could establish minimum age estimates of around 40ka, with an upper age limit of around 60 to 70ka. This means that the Homo erectus of Java very likely survived the Toba eruption and may have been contemporaneous with the earliest Homo sapiens in Southeast Asia and Australasia.  相似文献   

5.
The holotype of Homo floresiensis, diminutive hominins with tiny brains living until 12,000 years ago on the island of Flores, is a partial skeleton (LB1) that includes a partial clavicle (LB1/5) and a nearly complete right humerus (LB1/50). Although the humerus appears fairly modern in most regards, it is remarkable in displaying only 110 degrees of humeral torsion, well below modern human average values. Assuming a modern human shoulder configuration, such a low degree of humeral torsion would result in a lateral set to the elbow. Such an elbow joint would function more nearly in a frontal than in a sagittal plane, and this is certainly not what anyone would have predicted for a tool-making Pleistocene hominin. We argue that Homo floresiensis probably did not have a modern human shoulder configuration: the clavicle was relatively short, and we suggest that the scapula was more protracted, resulting in a glenoid fossa that faced anteriorly rather than laterally. A posteriorly directed humeral head was therefore appropriate for maintaining a normally functioning elbow joint. Similar morphology in the Homo erectus Nariokotome boy (KNM-WT 15000) suggests that this shoulder configuration may represent a transitional stage in pectoral girdle evolution in the human lineage.  相似文献   

6.
M. Elyaqtine 《Human Evolution》2001,16(3-4):159-168
The morphological variability of the temporal articular tubercle was studied inHomo erectus andHomo sapiens. Five configurations have been defined. There is a high heterogeneity amongHomo erectus. The Neandertal lineage and that leading toHomo sapiens sapiens are more homogenous, each of them exhibits a high frequency of one configuration. This study has also focused on the functional implications of this variation. A theoretical approach to two different configurations of the articular tubercle is considered in the same bony, muscular and ligamentary context. This suggests that the configuration which consists of a transverse concavity is, for the mandible depression, concomitant with a slight functional disadvantage in comparison with the cylindrical configuration. It appears that a midfacial projection allows for a compensation of this disadvantage. It is concluded that this model can be proposed for Neandertals which present a very concave articular tubercle and a typical midfacial projection.  相似文献   

7.
After 20 years of research, the Atapuerca sites have provided a large amount of archaeological and palaeontological remains. Human fossils have been found in three sites: Gran Dolina, galería and Sima de los Huesos. The Early Pleistocene human fossils from Gran Dolina have been ascribed to a new species,Homo antecessor, that represent the last common ancestor of Neandertals and modern humans. The Sima de los Huesos fossils and all the European Middle Pleistocene human fossils are the ancestors exclusively of the Neandertals, which evolved in Europe in conditions of geographic and genetic isolation.  相似文献   

8.
Homo erectus fossils can be divided into four zoogeographic zones that show different rates of endocranial expansion during the Pleistocene. When these are also grouped into three time levels, we find small increases from early to middle forms, and regularly greater increases from middle to late forms. These increases fit a regular pattern that also accomodates all archaic types, including Neandertals, as late subspecies ofH. erectus.  相似文献   

9.
Reconstructions of foraging behavior and diet are central to our understanding of fossil hominin ecology and evolution. Current hypotheses for the evolution of the genus Homo invoke a change in foraging behavior to include higher quality foods. Recent microwear texture analyses of fossil hominin teeth have suggested that the evolution of Homo erectus may have been marked by a transition to a more variable diet. In this study, we used microwear texture analysis to examine the occlusal surface of 2 molars from Dmanisi, a 1.8 million year old fossil hominin site in the Republic of Georgia. The Dmanisi molars were characterized by a moderate degree of surface complexity (Asfc), low textural fill volume (Tfv), and a relatively low scale of maximum complexity (Smc), similar to specimens of early African H. erectus. While caution must be used in drawing conclusions from this small sample (n = 2), these results are consistent with continuity in diet as H. erectus expanded into Eurasia.  相似文献   

10.
11.
The hominid mandible and a third metatarsal found in Dmanisi (Republic of Georgia) are accompanied by a rich faunal assemblage and a core-chopper stone tool industry. The mandible represents a somewhat isolated morphological type of Homo erectus that appears, given the combination of its primitive and advanced traits and specific dental morphology, to be a forerunner of both late H. erectus and early archaic H. sapiens. The faunal assemblage mostly consists of Villafranchian mammals, with the majority of the species assigned to an early phase of the Upper Villafranchian (Late Villanian and Early Biharian). Faunal and paleobotanical evidence as well as the depositional nature of the site indicate that hominid occupation took place in a mosaic environment of open steppe and gallery forests. Both the concentration of resources and the warm climatic conditions in the Dmanisi region at the beginning of the early Pleistocene were favorable for hominid occupation. It is possible that hominids reached the Caucasus through the Levantine corridor, and that the environment of this region allowed them to establish a stronghold and later colonize adjacent areas.  相似文献   

12.
AHomo erectus individual (KNM-ER 1808) from Koobi Fora, Kenya dating from 1·6 ± 0·1 million years exhibits pathological apposition of bone on long bone shafts. This was originally attributed to hypervitaminosis A from the consumption of carnivore livers. Bee brood has a sufficiently high concentration of vitamin A that protracted ingestion could theoretically produce hypervitaminosis A. The ecology of the East African bee,Apis mellifera scutelatta, is investigated to show that the density of nests with their brood contents within a reasonable foraging area of earlyHomo erectus would yield an ample and reliable energy source with deleteriously high vitamin A content. A potential role of honey gathering and insect larvae consumption in hominine behavioural and physical evolution is discussed.  相似文献   

13.
The hominid fossil and Paleolithic archaeology records from the Korean Peninsula are extensive, but relatively little is known about the Korean human evolutionary record outside this region. The Korean paleoanthropological record is reviewed here in light of major research issues, including the hominid fossil record, relative and chronometric dating, lithic analysis, hominid subsistence, and the presence of bone tools, art and symbolism. Some of the major conclusions drawn from this review include: (1) hominid fossils have been found in nine separate sites on the Korean Peninsula; (2) possible Homo erectus fossils are present in North Korea; (3) Ryonggok Cave, in North Korea, has exposed the remains of at least five archaic Homo sapiens individuals; (4) a possible burial of an anatomically modern Homo sapiens child, discovered in Hungsu Cave in South Korea, has been tentatively dated to roughly 40,000 years ago; (5) handaxes and cleavers have been found at a number of sites near Chongokni and they appear to date to at least 100,000 years ago; and (6) taphonomic studies are necessary for addressing issues related to determining the nature of hominid-carnivore interaction over similar resources (e.g. carcasses and shelter); and the presence/absence of Early Paleolithic bone tools, art, and symbolism in Korea.  相似文献   

14.
The taxonomic status of Homo erectus sensu lato has been a source of debate since the early 1980s, when a series of publications suggested that the early African fossils may represent a separate species, H. ergaster. To gain further resolution regarding this debate, 3D geometric morphometric data were used to quantify overall shape variation in the cranial vault within H. erectus using a new metric, the sum of squared pairwise Procrustes distances (SSD). Bootstrapping methods were used to compare the H. erectus SSD to a broad range of human and nonhuman primate samples in order to ascertain whether variation in H. erectus most clearly resembles that seen in one or more species. The reference taxa included relevant phylogenetic, ecological, and temporal analogs including humans, apes, and both extant and extinct papionin monkeys. The mean cranial shapes of different temporogeographic subsets of H. erectus fossils were then tested for significance using exact randomization tests and compared to the distances between regional groups of modern humans and subspecies/species of the ape and papionin monkey taxa. To gauge the influence of sexual dimorphism on levels of variation, comparisons were also made between the mean cranial shapes of single-sex samples for the reference taxa. Results indicate that variation in H. erectus is most comparable to single species of papionin monkeys and the genus Pan, which included two species. However, H. erectus encompasses a limited range of variation given its extensive geographic and temporal range, leading to the conclusion that only one species should be recognized. In addition, there are significant differences between the African/Georgian and Asian H. erectus samples, but not between H. ergaster (Georgia+Africa, excluding OH 9 and Daka) and H. erectus sensu stricto. This finding is in line with expectations for intraspecific variation in a long-lived species with a wide, but probably discontinuous, geographic distribution.  相似文献   

15.
16.
An investigation using the Stepping Out model of early hominin dispersal out of Africa is presented here. The late arrival of early hominins into Europe, as deduced from the fossil record, is shown to be consistent with poor ability of these hominins to survive in the Eurasian landscape. The present study also extends the understanding of modelling results from the original study by Mithen and Reed (2002. Stepping out: a computer simulation of hominid dispersal from Africa. J. Hum. Evol. 43, 433-462). The representation of climate and vegetation patterns has been improved through the use of climate model output. This study demonstrates that interpretative confidence may be strengthened, and new insights gained when climate models and hominin dispersal models are integrated.  相似文献   

17.
    
The phylogenetic relationships of early Pleistocene Homo crania from the South African sites of Swartkrans and Sterkfontein were investigated through cladistic analyses of 99 morphological characters. The Swartkrans Member 1 specimen SK 847 and the Stw 53 cranium from Sterkfontein Member 5A were treated as separate operational taxonomic units (OTUs), distinct from the three species of early Homo-H. erectus, H. habilis, and H. rudolfensis-that are recognized from the Plio-Pleistocene deposits of East Africa. The cladistic analyses differed in the treatment of the South African OTUs (separate Swartkrans and Sterkfontein OTUs vs. a single Swartkrans+Sterkfontein OTU). PAUP 4.0 was used to construct cladograms and address hypotheses about relationships. In the analysis that treated the South African specimens as a single OTU, the position of that OTU was stable as a separate branch on the Homo clade between H. rudolfensis and [H. habilis+(H. erectus+H. sapiens)]. When SK 847 and Stw 53 were treated as separate OTUs, the majority of most parsimonious trees indicated that they were positioned in similar positions as the combined South African Homo OTU; that is, as separate branches between H. rudolfensis and [H. habilis+(H. erectus+H. sapiens)], with the Swartkrans OTU generally occupying a more derived position. The position of the Sterkfontein OTU was more stable than that of the Swartkrans OTU, which was found in several other positions among the minimum length trees. Running the analyses with only those characters preserved by SK 847 and Stw 53 resulted in similar topologies for minimum length trees, although the positions of Stw 53, SK 847, and H. habilis exchanged places in some trees. In no case was an exclusive sister relationship between either South African OTU and a particular species of Homo supported statistically. Both South African OTUs differ from H. habilis in the fewest number of cladistic characters.  相似文献   

18.
In 1994 a hominid frontal bone fragment was found in the river floor of the Brangkal River, the Sangiran area, Central Java. The original stratigraphic level is not known at present stage of the research. But it is possible that the bone was derived from the Grenzbank zone of the Bapang Formation (Lower/Middle Pleistocene). Morphological features of the bone, such as a thick and continuous supraorbital torus, a wide and flat supratoral plane, and a flat and strongly inclined frontal squame suggest that the bone is assigned to JavaneseHomo erectus, especially to the Sangiran and Trinil group of it.  相似文献   

19.
ClassifyingHomo erectus into subspecies can be based on either temporal or geographical differences, but there is no accepted system for using both. This can be done with subspecies names consisting of two elements — a prefix ofneo, meso, orpaleo to indicate grade, followed by a geographical term ofeuropus, africus, sinicus, orindicus to indicate line. Thus Rhodesian isHomo erectus neoafricus, Ngandong isHomo erectus neoindicus, Peking isHomo erectus mesosinicus, ER 3733 isHomo erectus paleoafricus, etc.  相似文献   

20.
The Sterkfontein Valley specimens SK 847 (Swartkrans Member 1) and Stw 53 (Sterkfontein Member 5) provide important evidence of earlyHomo in southern Africa. However, specific identity has been disputed, with that of SK 847 especially contentious. Opinions differ markedly as to whether the specimens are conspecific or not, whether they should be referred to East African earlyHomo species, or whether they represent new species. Morphometric analysis of facial dimensions reveals contrasting affinities for the two South African fossils, and so does not support claims for their conspecifity. Stw 53 is very like smaller East African crania referred toH. habilis, whereas SK 847 has a distinctive facial pattern. In some respects it resembles early AfricanH. erectus (=H. ergaster), but with a markedly more projecting mid-face, prominent zygomatic and unexpanded frontal region, all of which militate against inclusion in that species. The taxonomic implications of these contrasting facial affinities are briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号