首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Pseudomonas multivorans glucose-6-phosphate dehydrogenase (EC 1.1.1.49) active with nicotinamide adenine dinucleotide, which is inhibitable by adenosine-5'-triphosphate, was purified approximately 1,000-fold from extracts of glucose-grown bacteria, and characterized with respect to subunit composition, response to different inhibitory ligands, and certain other properties. The enzyme was found to be an oligomer composed of four subunits of about 60,000 molecular weight. Reduced nicotinamide adenine dinucleotide phosphate, but not reduced nicotinamide adenine dinucleotide, was found to be a potent inhibitor of its activity. The range of concentrations of reduced nicotinamide adenine dinucleotide phosphate over which inhibition occurred was about 100-fold lower than that for adenosine-5'-triphosphate. The data suggest that reduced nicotinamide adenine dinucleotide phosphate may play an important role in regulation of hexose phosphate metabolism in P. multivorans. Antisera prepared against the purified enzyme strongly inhibited its activity, but failed to inhibit the activity of the nicotinamide adenine dinucleotide phosphate-specific glucose-6-phosphate dehydrogenase which is also present in extracts of this bacterium. Immunodiffusion experiments confirmed the results of the enzyme inhibition studies, and failed to support the idea that the two glucose-6-phosphate dehydrogenase species from P. multivorans represent different oligomeric forms of the same protein.  相似文献   

2.
Two major species of glucose-6-phosphate dehydrogenase (EC 1.1.1.49) differing in size, pyridine nucleotide specificity, and susceptibility to inhibition by adenosine 5'-triphosphate (ATP) were detected in extracts of Pseudomonas multivorans (which has recently been shown to be synonymous with the species Pseudomonas cepacia) ATCC 17616. The large species (molecular weight ca. 230,000) was active with nicotinamide adenine dinucleotide (NAD) or nicotinamide adenine dinucleotide phosphate (NADP) and was markedly inhibited by ATP, which decreased its affinity for glucose-6-phosphate and for pyridine nucleotides. This form of the enzyme exhibited homotropic effects for glucose-6-phosphate. The small species (molecular weight ca. 96,000) was active with NADP but not with NAD, was not inhibited by ATP, and exhibited no homotropic effects for glucose-6-phosphate. Under certain conditions multiplicity of 6-phosphogluconate dehydrogenase (EC 1.1.1.43) activities was also noted. One form of the enzyme (80,000 molecular weight) was active with either NAD or NADP and was inhibited by ATP, which decreased its affinity for 6-phosphogluconate. The other form (120,000 molecular weight) was highly specific for NADP and was not susceptible to inhibition by ATP. Neither form of the enzyme exhibited homotropic effects for 6-phosphogluconate. The possible relationships between the different species of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase are discussed.  相似文献   

3.
Streptococcus faecalis grown with glucose as the primary energy source contains a single, nicotinamide adenine dinucleotide phosphate (NADP)-specific 6-phosphogluconate dehydrogenase. Extracts of gluconate-adapted cells, however, exhibited 6-phosphogluconate dehydrogenase activity with either NADP or nicotinamide adenine dinucleotide (NAD). This was shown to be due to the presence of separate enzymes in gluconate-adapted cells. Although both enzymes catalyzed the oxidative decarboxylation of 6-phosphogluconate, they differed from one another with respect to their coenzyme specificity, molecular weight, pH optimum, K(m) values for substrate and coenzyme, and electrophoretic mobility in starch gels. The two enzymes also differed in their response to certain effector ligands. The NADP-linked enzyme was specifically inhibited by fructose-1,6-diphosphate, but was insensitive to adenosine triphosphate (ATP) and certain other nucleotides. The NAD-specific enzyme, in contrast, was insensitive to fructose-1,6-diphosphate, but was inhibited by ATP. The available data suggest that the NAD enzyme is involved primarily in the catabolism of gluconate, whereas the NADP enzyme appears to function in the production of reducing equivalents (NADPH) for use in various reductive biosynthetic reactions.  相似文献   

4.
The adenosone 5'-triphosphate-insensitive glucose 6-phosphate dehydrogenase from Pseudomonas cepacia has been found to be strongly inhibited by long-chain fatty acids and their acyl coenzyme A esters, suggesting that an important role of this isoenzyme might be to provide reduced nicotinamide adenine dinucleotide phosphate for reductive steps in fatty acid synthesis. The enzyme, which has been redesignated the fatty acid-sensitive glucose 6-phosphate dehydrogenase, has been purified to homogeneity using affinity chromatography with nicotinamide adenine dinulceotide phosphate-substituted Sepharose as a key step in the purification. The purified preparations were used to study the immunological properties and subunit composition of the enzyme and its relationship to the adenosine 5'-triphosphate-sensitive glucose 6-phosphate dehydrogenase present in extracts of P. cepacia. Although both enzymes were found to be composed of similar size subunits of about 60,000 daltons, immunological studies failed to demonstrate any antigenic similarity between them. Studies of the sedimentation behavior of the fatty acid-sensitive enzyme in sucrose gradients indicated that its apparent molecular weight is increased in the presence of glucose 6-phosphate and suggest that it may exist in an aggregated state in vivo. Palmitoyl coenzyme A, which strongly inhibited the enzyme, failed to influence its sedimentation behavior.  相似文献   

5.
A nicotinamide adenine dinucleotide (NAD) linked 6-phosphogluconate (6-PG)dehydrogenase has been detected in Rhizobium. The enzyme activity is similar in both slow- and fast-growing rhizobia. The nicotinamide adenine dinucleotide phosphate (NADP) dependent 6-PG dehydrogenase was detected only in the fast growers and was more than twice as active as the NAD-linked enzyme. Partial characterization of the products of 6-PG oxidation in Rhizobium suggests that the NADP-linked enzyme is the decarboxylating enzyme of the pentose phosphate (PP) pathway (EC 1.1.1.44) whereas a phosphorylated six-carbon compound, containing ketonic group(s), is the product of the oxidation catalyzed by the NAD-linked enzyme.  相似文献   

6.
The l-alanine dehydrogenase from cell-free extracts of Desulfovibrio desulfuricans was purified approximately 56-fold. The Michaelis constants for the substrates of the amination reaction and the pH optima for the reactions catalyzed by this enzyme closely agree with those reported for other l-alanine dehydrogenases. Pyruvate was found to inhibit the amination reaction. The enzyme was absolutely specific for l-alanine and nicotinamide adenine dinucleotide. Its sensitivity to para-chloromecuribenzoate suggests that sulfhydryl groups may be necessary for enzymatic activity. These extracts also contained a nicotinamide adenine dinucleotide phosphate-specific glutamic dehydrogenase which was separated from the l-alanine dehydrogenase during purification.  相似文献   

7.
Nicotinamide adenine dinucleotide phosphate-specific isocitrate dehydrogenase was extracted from etiolated pea (Pisum sativum L.) seedlings and was purified 65-fold. The purified enzyme exhibits one predominant protein band by polyacrylamide gel electrophoresis, which corresponds to the dehydrogenase activity as measured by the nitro blue tetrazolium technique. The reaction is readily reversible, the pH optima for the forward (nicotinamide adenine dinucleotide phosphate reduction) and reverse reactions being 8.4 and 6.0, respectively. The enzyme has different cofactor and inhibitor characteristics in the two directions. Manganese ions can be used as a cofactor for the reaction in each direction but magnesium ions only act as a cofactor in the forward reaction. Zinc ions, and to a lesser extent calcium ions, inhibit the enzyme at low concentrations when magnesium but not manganese is the metal activator. It is suggested that there is a fundamental difference between magnesium and manganese in the activation of the enzyme. The enzyme shows normal kinetics and the Michaelis contant for each substrate was determined. The inhibition by nucleotides, nucleosides, reaction products, and related compounds was studied. The enzyme shows a linear response to the mole fraction of reduced nicotinamide adenine dinucleotide phosphate when total nicotinamide adenine dinucleotide phosphate (nicotinamide adenine dinucleotide phosphate plus reduced nicotinamide adenine dinucleotide phosphate) is kept constant. Isocitrate in the presence of divalent metal ions will protect the enzyme from inactivation by p-chloromercuribenzoate. Protection is also afforded by manganese ions alone but not by magnesium ions alone There is a concerted inhibition of the enzyme by oxalacetate and glyoxylate.  相似文献   

8.
Purified preparations of the rickettsial agent, Coxiella burnetii, have been examined for their ability to decarboxylate 6-phosphogluconate. The enzyme 6-phosphogluconic acid dehydrogenase [6-phospho-d-gluconate: NADP (nicotinamide adenine dinucleotide phosphate) oxidoreductase (decarboxylating), EC 1.1.1.44] was detected in extracts, but not in whole-cell preparations of C. burnetii. Both extracts and whole cells were shown to be free from contaminating host enzyme activity. Partial characterization of the enzyme has shown that it is substrate-dependent, specific for NADP, and requires magnesium for activity. The pH optimum of the rickettsial enzyme is 8.0.  相似文献   

9.
A rapid, high-yield method for purification of 6-phosphogluconate dehydrogenase from Escherichia coli K-12 is described. Sonic extracts prepared from heat-induced cultures of strain RW184, doubly lysogenic for the specialized transducing bacteriophage lambdacI857St68h80dgndhis and bearing a deletion of the gene for glucose 6-phosphate dehydrogenase, contained levels of 6-phosphogluconate dehydrogenase 15- to 20-fold higher than cultures of wild-type cells. Affinity chromatography on blue dextran-Sepharose with batchwise elution with 1 mM nicotinamide adenine dinucleotide phosphate affected a further 10-fold purification. Enzyme prepared in this manner was homogeneous according to electrophoresis on sodium dodecyl sulfate-polyacrylamide gels and immunoelectrophoresis using antiserum directed against it. Fructose 1,6-diphosphate is an inhibitor of enzyme activity.  相似文献   

10.
Glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and other enzymes related to carbohydrate metabolism were studied in rhizobia. A nicotinamide adenine dinucleotide phosphate-6-phosphogluconate dehydrogenase was detected in strains of the fast-growing group of Rhizobium but not in strains of the slow-growing group. An enzymatic differentiation of rhizobia was established.  相似文献   

11.
The activities of enzymes of carbohydrate metabolism, enzymes of the tricarboxylic acid cycle and some related enzymes were measured in cell-free extracts of strain TK-6, an extremely thermophilic, obligately autotrophic, aerobic hydrogen-oxidizing bacterium. Activities of phosphofructokinase, aldolase, pyruvate kinase, 6-phosphogluconate dehydrase and 2-keto-3-deoxy-6-phosphogluconate aldolase, key enzymes of the Embden-Meyerhof and the Entner-Doudoroff pathways were not found in the extracts. All of the tricarboxylic acid cycle enzymes except α-ketoglutarate dehydrogenase, and reduced nicotinamide adenine dinucleotide oxidase were present. These metabolic defects are considered to be one of the reasons for the obligate autotrophy of strain TK-6.  相似文献   

12.
Heterotrophic Metabolism of the Chemolithotroph Thiobacillus ferrooxidans   总被引:4,自引:2,他引:2  
Glucose-6-phosphate dehydrogenase and the enzymes of the Entner-Doudoroff pathway, 6-phosphogluconate dehydrase and 2-keto-3-deoxy-6-phosphogluconate aldolase (assayed together), are induced during heterotrophic growth of Thiobacillus ferrooxidans on an iron-glucose-supplemented medium or on glucose alone. By contrast, autotrophic cells (iron-grown) contain low levels of these enzymes. Fructose 1, 6-diphosphate aldolase, an enzyme of the Embden-Meyerhof pathway, is present at low levels irrespective of the growth medium, suggesting that this enzyme is not involved in energy-yielding reactions but merely provides intermediates for biosynthesis. The Entner-Doudoroff and pentose-phosphate pathways are the principle means through which glucose is dissimilated and is presumed to be concerned with energy production. Isotopic studies showed that a high rate of CO(2) formation from specifically labeled glucose came from carbon atoms 1 and 4. An unexpectedly high rate of evolution of CO(2) also came from carbon 6, suggesting that the triose phosphate formed during glucose breakdown and specifically as a result of 2-keto-3-deoxy-6-phosphogluconate aldolase activity, was metabolized via some unorthodox metabolic route. Cells grown in the iron-supplemented and glucose-salts media have a complete tricarboxylic acid cycle, whereas autotrophically grown T. ferrooxidans lacked both alpha-ketoglutarate dehydrogenase and reduced nicotinamide adenine dinucleotide oxidase. Two isocitrate dehydrogenases [nicotinamide adenine dinucleotide (NAD) and NAD phosphate (NADP) specific] were present. NAD-linked enzyme was constitutive, whereas the NADP-linked enzyme was induced upon adaptation of autotrophic cells to heterotrophic growth.  相似文献   

13.
Levels of enzymes operative in the Embden-Meyerhof-Parnas (glycolytic) pathway, pentose phosphate cycle, citric acid cycle, and certain other phases of intermediary carbohydrate metabolism have been compared in Thiobacillus thioparus and T. neapolitanus. All enzymes of the glycolytic pathway except phosphofructokinase were demonstrated in both organisms. There were some striking quantitative differences between the two organisms with respect to the activities of the individual enzymes of the glycolytic pathway and the citric acid cycle. Qualitative differences were also found: the isocitrate dehydrogenase activity of T. thioparus is strictly nicotinamide adenine dinucleotide phosphate (NADP)-dependent, whereas that of T. neapolitanus is primarily nicotinamide adenine dinucleotide-dependent, activity with NADP being low; the glucose-6-phosphate dehydrogenase of T. thioparus is particulate, whereas that of T. neapolitanus is partly soluble and partly particulate; the 6-phosphogluconate dehydrogenase of T. thioparus is soluble, that of T. neapolitanus is partly soluble and partly particulate. All enzymes which function in the carbon reduction cycle were present at very high levels. In contrast, enzymes which operate exclusively in cycles other than the carbon reduction cycle were present at low levels. Of the enzymes not operative in the carbon reduction cycle that were examined, isocitric dehydrogenase had the highest specific activity. Both organisms possessed reduced nicotinamide adenine dinucleotide dehydrogenase activity. The qualitative and quantitative aspects of the data are discussed in relation to possible biochemical explanations of obligate autotrophy.  相似文献   

14.
A microorganism capable of degrading DL-mandelic acid was isolated from sewage sediment of enrichment culture and was identified as Pseudomonas convexa. It was found to metabolize mandelic acid by a new pathway involving 4-hydroxymandelic acid, 4-hydroxybenzaldehyde, 4-hydroxybenzoic acid, and 3,4-dihydroxybenzoic acid as aromatic intermediates. All the enzymes of the pathway were demonstrated in cell-free extracts. L-Mandelate-4-hydroxylase, a soluble enzyme, requires tetrahydropteridine, nicotinamide adenine dinucleotide phosphate, reduced form, and Fe2+ for its activity. The next enzyme, L-4-hydroxymandelate oxidase (decarboxylating), a particulate enzyme, requires flavine adenine dinucleotide and Mn2+ for its activity. A nicotinamide adenine dinucleotide-dependent, as well as a nicotinamide adenine dinucleotide phosphate-dependent, benzaldehyde dehydrogenase has been resolved and partially purified.  相似文献   

15.
植物戊糖磷酸途径及其两个关键酶的研究进展   总被引:1,自引:0,他引:1  
戊糖磷酸途径是植物体中糖代谢的重要途径,主要生理功能是产生供还原性生物合成需要的NADPH,可供核酸代谢的磷酸戊糖以及一些中间产物可参与氨基酸合成和脂肪酸合成等。葡萄糖-6-磷酸脱氢酶和6-磷酸葡萄糖酸脱氢酶是戊糖磷酸途径的两个关键酶,广泛的分布于高等植物的胞质和质体中。本文综述了植物戊糖磷酸途径及其两个关键酶的分子生物学的研究进展,讨论了该途径在植物生长发育和环境胁迫应答中的作用。  相似文献   

16.
Late during sporulation, Bacillus subtilis produces glucose dehydrogenase (GlcDH; EC 1.1.1.47), which can react with D-glucose or 2-deoxy-D-glucose and can use nicotinamide adenine dinucleotide (NAD) or nicotinamide adenine dinucleotide phosphate (NADP) as a cofactor. This enzyme is found mainly in the forespore compartment and is present in spores; it is probably made exclusively in the forespore. The properties of GlcDH were determined both in crude cell extracts and after purification. The enzyme is stable at pH 6.5 but labile at pH 8 or higher; the pH optimum of enzyme activity is 8. After inactivation at pH 8, the activity can be recovered in crude extracts, but not in solutions of the purified enzyme, by incubation with 3 M KCl and 5 mM NAD or NADP. As determined by gel filtration, enzymatically active GlcDH has a molecular weight of about 115,000 (if the enzyme is assumed to be globular). GlcDH is distinct from a catabolite-repressible inositol dehydrogenase (EC 1.1.1.18), which can also react with D-glucose, requires specifically NAD as a cofactor, and has an electrophoretic mobility different from that of GlcDH.  相似文献   

17.
The nicotinamide adenine dinucleotide phosphate-specific glutamate dehydrogenase (NADP-GDH) of Chlorella sorokiniana was purified 260-fold to electrophoretic homogeneity in six steps. Depending on the techniques used, the native enzyme appeared to have a molecular weight of 290,000 or 410,000 and to be composed of five to seven identical subunits with a molecular weight of 58,000. The amino acid composition of this enzyme was shown to differ considerably from that of the NAD-GDH in this organism. The NH2-terminal amino acid was unavailable to dansylation. All six cysteines in the native enzyme were in the free sulfhydryl form. The pH optima for the aminating and deaminating reactions were 7.2 and 9.2, respectively. The Km values for NH4+, alpha-ketoglutarate, NADPH, L-glutamate, and NADP+ were 68, 12, 0.13, and 0.038 mM, respectively. At low substrate concentrations, no cooperativity was seen; however, severe inhibition of enzyme activity was observed at high alpha-ketoglutarate concentrations. Nucleotides did not affect enzyme activity. Antiserum produced in rabbits to the subunits of the enzyme yielded a single precipitin band with the purified enzyme in Ouchterlony double-diffusion analysis. Immunoelectrophoresis was used to confirm the purity of the enzyme and also to quantify the amount of enzyme antigen. These studies indicate that the NADPH-GDH and NAD-GDH isozymes are distinct molecular species in this organism.  相似文献   

18.
Glucose-adapted Streptococcus faecalis produced little if any (14)CO(2) from glucose-1-(14)C, although high levels of glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (EC 1.1.1.44) were detected in cell-free extracts. Metabolism of glucose through the oxidative portion of the hexose-monophosphate pathway was shown to be regulated in this organism by the specific inhibitory interaction of the Embden-Meyerhof intermediate, fructose-1, 6-diphosphate (FDP), with 6-phosphogluconate dehydrogenase. Glucose-6-phosphate dehydrogenase activity was unaffected by FDP. The S. faecalis 6-phosphogluconate dehydrogenase was partially purified from crude extracts by standard fractionation procedures and certain kinetic parameters of the FDP-mediated inhibition were investigated. The negative effector was shown to cause a decrease in V(max) and an increase in the apparent K(m) for both 6-phosphogluconate and nicotinamide adenine dinucleotide phosphate (NADP). These effects were apparently a consequence of the ligand interacting with the enzyme at a site distinct from either the substrate or the coenzyme sites. Among the evidence supporting this was the fact that beta-mercaptoethanol blocked completely FDP inhibition, but had no effect on catalytic activity. The possibility that the regulation of 6-phosphogluconate dehydrogenase activity by FDP might be of some general significance was suggested by the observation that this enzyme from several other sources was also sensitive to FDP.  相似文献   

19.
The mycelial growth front of the band strain of Neurospora grown on a solid surface exhibits a circadian rhythm of conidiation. Enzyme assays on extracts from that mycelium have shown that the activities of 6 of 13 enzymes (nicotinamide adenine dinucleotide nucleosidase, isocitrate lyase, citrate synthase, glyceraldehydephosphate dehydrogenase, phosphogluconate dehydrogenase, and glucose-6-phosphate dehydrogenase) and soluble-protein content oscillate with the visible morphological change. The rhythmic enzymes associated with the Krebs and glyoxylate cycles are more active during conidiogenesis, whereas the activities of the rhythmic enzymes of glycolysis and the hexose monophosphate shunt are reduced during that phase. The absence of enzyme oscillations in wild-type and fluffy strains which do not form conidia under the conditions employed suggests that the enzyme fluctuations are associated with conidiogenesis itself. Oscillations of enzyme activity as a function of time are restricted to the growth front. A permanent record of rhythmicity associated with conidial and nonconidial regions does, however, exist in the mycelial mat behind the growth front. The activities of three enzymes (nicotinamide adenine dinucleotide nucleosidase, glucose-6-phosphate dehydrogenase, and phosphogluconate dehydrogenase) are not directly influenced by CO(2) concentration, but are correlated with the prescence or absence of conidiation which is controlled by CO(2) concentration. In contrast, citrate synthase and malate dehydrogenase activities are correlated with changes in CO(2) concentration.  相似文献   

20.
Glucose-6-phosphate dehydrogenase activity in paired adult Schistosoma mansoni is about twice as great as in paired adult Schistosoma japonicum. 2. 6-phosphogluconate dehydrogenase activity accounts for 25.8% of the measured production of reduced nicotinamide adenine dinucleotide phosphate (NADPH) in S. japonicum but only 8.6% of the measured production of NADPH in S. mansoni. 3. These data suggest a species difference in 6-phosphogluconate metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号