首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We have perturbed the dynamics of the nuclear lamins by means of cell fusion between mitotic and interphase cells and have studied redistribution of lamins in fused cells as a function of extracellular pH levels. We show here that in heterophasic M-1 HeLa homokaryons disassembly of interphase lamins predominates at low pH levels between 7.0 to 7.3, whereas deposition of cytoplasmic lamins around condensed metaphase chromosomes was observed at pH 8.0. In HeLa homokaryons lamina disassembly and lamina deposition around chromosomes are mutually exclusive. Using heterophasic M-1 homokaryons of the Chinese hamster cell line DON we observed that disassembly of interphase lamins and deposition of lamins around condensed chromosomes coexisted in the same homokaryon kept at pH 7.0. Disassembly of lamins developed synchronously with premature chromosome condensation (PCC) whereas lamina deposition around the condensed M-chromosomes was followed by telophasing. In fusions kept at pH 8.0 cytoplasmic lamins were exclusively deposited around mitotic chromosomes. The results are interpreted as showing that pH regulates the lamina dynamics in homokaryons of mitotic and interphase cells.  相似文献   

2.
In the present work we have studied the distribution of some proteins participating in the nuclear envelope assembly (lamins A/C, B and LAP2 alpha) in mitotic cells and after hypotonic treatment with 15% Hank's solution. In untreated cells, these proteins are localized in the nuclei of interphase cells migrate to the cytoplasm during mitosis. Hypotonic treatment of interphase, prophase and telophase cells does not lead to considerable relocalization of lamins A/C and B. However, unlike normal mitosis, in prometaphase and metaphase cells their chromosomes acquire affinity to lamins and LAP2 alpha. Comparative analysis of lamins and LAP2 alpha distribution have revealed that chromosomes have special sites for binding with different proteins.  相似文献   

3.
p58 (also referred to as the lamin B receptor) is an integral membrane protein of the nuclear envelope known to form a multimeric complex with the lamins and other nuclear proteins during interphase. To examine the fate of this complex during mitosis, we have investigated the partitioning and the molecular interactions of p58 in dividing chicken hepatoma (DU249) cells. Using confocal microscopy and double immunolabelling, we show here that lamins B1 and B2 co-localize with p58 during all phases of mitosis and co-assemble around reforming nuclei. A close juxtaposition of p58/lamin B-containing vesicles and chromosomes is already detectable in metaphase; however, p58 and lamin reassembly proceeds slowly and is completed in late telophase--G1. Flotation of mitotic membranes in sucrose density gradients and analysis of mitotic vesicles by immunoelectron microscopy confirms that p58 and most of the type B lamins reside in the same compartment. Co-immunoprecipitation of both proteins by affinity-purified anti-p58 antibodies shows that they are physically associated in the context of a mitotic p58 'sub-complex'. This sub-assembly does not include the type A lamins which are fully solubilized during mitosis. Our data provide direct, in vivo and in vitro evidence that the majority of type B lamins remain connected to nuclear membrane 'receptors' during mitosis. The implications of these findings in nuclear envelope reassembly are discussed below.  相似文献   

4.
In chicken, three structurally distinct nuclear lamin proteins have been described. According to their migration on two-dimensional gels, these proteins have been designated as lamins A, B1, and B2. To investigate the functional relationship between chicken lamins and their mammalian counterparts, we have examined here the state of individual chicken lamin proteins during mitosis. Current models proposing functional specializations of mammalian lamin subtypes are in fact largely based on the observation that during mitosis mammalian lamin B remains associated with membrane vesicles, whereas lamins A and C become freely soluble. Cell fractionation experiments combined with immunoblotting show that during mitosis both chicken lamins B1 and B2 remain associated with membranes, whereas lamin A exists in a soluble form. In situ immunoelectron microscopy carried out on mitotic cells also reveals membrane association of lamin B2, whereas the distribution of lamin A is random. From these results we conclude that both chicken lamins B1 and B2 may functionally resemble mammalian lamin B. Interestingly, immunolabeling of mitotic cells revealed an association of lamin B2 with extended membrane cisternae that resembled elements of the endoplasmic reticulum. Quantitatively, we found that all large endoplasmic reticulum-like membranes present in metaphase cells were decorated with lamin B2-specific antibodies. Given that labeling of these mitotic membranes was lower than labeling of interphase nuclear envelopes, it appears likely that during mitotic disassembly and reassembly of the nuclear envelope lamin B2 may reversibly distribute between the inner nuclear membrane and the endoplasmic reticulum.  相似文献   

5.
《The Journal of cell biology》1993,123(6):1661-1670
Recent evidence shows that the COOH-terminal CaaX motif of lamins is necessary to target newly synthesized proteins to the nuclear envelope membranes. Isoprenylation at the CaaX-cysteine has been taken to explain the different fates of A- and B-type lamins during cell division. A-type lamins, which loose their isoprenylation shortly after incorporation into the lamina structure, become freely soluble upon mitotic nuclear envelope breakdown. Somatic B-type lamins, in contrast, are permanently isoprenylated and, although depolymerized during mitosis, remain associated with remnants of nuclear envelope membranes. However, Xenopus lamin B3, the major B-type lamin of amphibian oocytes and eggs, becomes soluble after nuclear envelope breakdown in meiotic metaphase. Here we show that Xenopus lamin B3 is permanently isoprenylated and carboxyl methylated in oocytes (interphase) and eggs (meiotic metaphase). When transfected into mouse L cells Xenopus lamin B3 is integrated into the host lamina and responds to cell cycle signals in a normal fashion. Notably, the ectopically expressed Xenopus lamin does not form heterooligomers with the endogenous lamins as revealed by a coprecipitation experiment with mitotic lamins. In contrast to the situation in amphibian eggs, a significant portion of lamin B3 remains associated with membranes during mitosis. We conclude from these data that the CaaX motif-mediated modifications, although necessary, are not sufficient for a stable association of lamins with membranes and that additional factors are involved in lamin-membrane binding.  相似文献   

6.
Lamins A and C bind and assemble at the surface of mitotic chromosomes   总被引:31,自引:15,他引:16       下载免费PDF全文
To study a possible interaction of nuclear lamins with chromatin, we examined assembly of lamins A and C at mitotic chromosome surfaces in vitro. When a postmicrosomal supernatant of metaphase CHO cells containing disassembled lamins A and C is incubated with chromosomes isolated from mitotic Chinese hamster ovary cells, lamins A and C undergo dephosphorylation and uniformly coat the chromosome surfaces. Furthermore, when purified rat liver lamins A and C are dialyzed with mitotic chromosomes into a buffer of physiological ionic strength and pH, lamins A and C coat chromosomes in a similar fashion. In both cases a lamin-containing supramolecular structure is formed that remains intact when the chromatin is removed by digestion with micrococcal nuclease and extraction with 0.5 M KCl. Lamins associate with chromosomes at concentrations approximately eightfold lower than the critical concentration at which they self-assemble into insoluble structures in the absence of chromosomes, indicating that chromosome surfaces contain binding sites that promote lamin assembly. These binding sites are destroyed by brief treatment of chromosomes with trypsin or micrococcal nuclease. Together, these data suggest the existence of a specific lamin-chromatin interaction in cells that may be important for nuclear envelope reassembly and interphase chromosome structure.  相似文献   

7.
At the end of mitosis, the nuclear lamins assemble to form the nuclear lamina during nuclear envelope formation in daughter cells. We have fused A- and B-type nuclear lamins to the green fluorescent protein to study this process in living cells. The results reveal that the A- and B-type lamins exhibit different pathways of assembly. In the early stages of mitosis, both lamins are distributed throughout the cytoplasm in a diffusible (nonpolymerized) state, as demonstrated by fluorescence recovery after photobleaching (FRAP). During the anaphase-telophase transition, lamin B1 begins to become concentrated at the surface of the chromosomes. As the chromosomes reach the spindle poles, virtually all of the detectable lamin B1 has accumulated at their surfaces. Subsequently, this lamin rapidly encloses the entire perimeter of the region containing decondensing chromosomes in each daughter cell. By this time, lamin B1 has assembled into a relatively stable polymer, as indicated by FRAP analyses and insolubility in detergent/high ionic strength solutions. In contrast, the association of lamin A with the nucleus begins only after the major components of the nuclear envelope including pore complexes are assembled in daughter cells. Initially, lamin A is found in an unpolymerized state throughout the nucleoplasm of daughter cell nuclei in early G1 and only gradually becomes incorporated into the peripheral lamina during the first few hours of this stage of the cell cycle. In later stages of G1, FRAP analyses suggest that both green fluorescent protein lamins A and B1 form higher order polymers throughout interphase nuclei.  相似文献   

8.
We describe a cell-free system in which a postribosomal supernatant from metaphase HeLa cells induces prophase-like changes in permeabilized HeLa cell populations as evidenced by the nuclear lamin disassembly and chromatin condensation. We have attempted to characterize the cell-free system with permeabilized HeLa cells. First, by extracting lamins with agents known to disrupt the noncovalent interactions in the supramolecular lamin aggregate in interphase using polyclonal and a newly established monoclonal anti-lamin Ab 2E3, uniform extraction of lamins was achieved with urea and deoxycholate whereas the cation Mg2+ and 2-mercaptoethanol had little effect on the disassembly of interphase lamins. Second, cytoplasmic extract from mitotic HeLa cells, synchronized by a nitrous oxide metaphase arrest, was tested. It had a differential effect on interphase lamin depolymerization. Nuclei in G1 phase of the cell cycle were more resistant against the mitotic extracts than cells in S and G2 phase. The results are discussed in terms of a possible inactivation of mitotic extracts by factors present in nuclei in early interphase.  相似文献   

9.
p34cdc2 acts as a lamin kinase in fission yeast   总被引:10,自引:3,他引:7  
The nuclear lamina is an intermediate filament network that underlies the nuclear membrane in higher eukaryotic cells. During mitosis in higher eukaryotes, nuclear lamins are phosphorylated by a mitosis-specific kinase and this induces disassembly of the lamina structure. Recently, p34cdc2 protein kinase purified from starfish has been shown to induce phosphorylation of lamin proteins and disassembly of the nuclear lamina when incubated with isolated chick nuclei suggesting that p34cdc2 is likely to be the mitotic lamin kinase (Peter, M., J. Nakagawa, M. Dorée, J.C. Labbe, and E.A. Nigg. 1990b. Cell. 45:145-153). To confirm and extend these studies using genetic techniques, we have investigated the role of p34cdc2 in lamin phosphorylation in the fission yeast. As fission yeast lamins have not been identified, we have introduced a cDNA encoding the chicken lamin B2 protein into fission yeast. We report here that the chicken lamin B2 protein expressed in fission yeast is assembled into a structure that associates with the nucleus during interphase and becomes dispersed throughout the cytoplasm when cells enter mitosis. Mitotic reorganization correlates with phosphorylation of the chicken lamin B2 protein by a mitosis-specific yeast lamin kinase with similarities to the mitotic lamin kinase of higher eukaryotes. We show that a lamin kinase activity can be detected in cell-free yeast extracts and in p34cdc2 immunoprecipitates prepared from yeast cells arrested in mitosis. The fission yeast lamin kinase activity is temperature sensitive in extracts and immunoprecipitates prepared from strains bearing temperature-sensitive mutations in the cdc2 gene. These results in conjunction with the previously reported biochemical studies strongly suggest that disassembly of the nuclear lamina at mitosis in higher eukaryotic cells is a consequence of direct phosphorylation of nuclear lamins by p34cdc2.  相似文献   

10.
Lamins, the type V nuclear intermediate filament proteins, are reported to function in both interphase and mitosis. For example, lamin deletion in various cell types can lead to an uneven distribution of the nuclear pore complexes (NPCs) in the interphase nuclear envelope, whereas deletion of B-type lamins results in spindle orientation defects in mitotic neural progenitor cells. How lamins regulate these functions is unknown. Using mouse cells deleted of different combinations or all lamins, we show that lamins are required to prevent the aggregation of NPCs in the nuclear envelope near centrosomes in late G2 and prophase. This asymmetric NPC distribution in the absence of lamins is caused by dynein forces acting on NPCs via the dynein adaptor BICD2. We further show that asymmetric NPC distribution upon lamin depletion disrupts the distribution of BICD2 and p150 dynactin on the nuclear envelope at prophase, which results in inefficient dynein-driven centrosome separation during prophase. Therefore lamins regulate microtubule-based motor forces in vivo to ensure proper NPC distribution in interphase and centrosome separation in the mitotic prophase.  相似文献   

11.
To study phosphorylation of D. melanogaster nuclear lamins in vivo, we used Kc tissue culture cells. Kc cells contain products of both lamin genes, the lamin Dm0 gene encoding constitutive polypeptides expressed in almost all cell types and the developmentally regulated lamin C gene. We grew Kc cells in low phosphate medium and labelled them with (32P(H3PO4. To obtain mitotic cells we used vinblastine to arrest cells in metaphase. Cells were collected, washed, lysed and resultant extracts fractionated in the presence of protein phosphatase inhibitors. D. melanogaster proteins were then denatured by boiling in SDS plus DTT, followed by immunoaffinity chromatography and SDS-PAGE purification. As anticipated, we found that a CNBr fragment derived from the N-terminal part of lamin Dm0-derivatives (amino acid residues 2-158; fragment A) was phosphorylated during both interphase and mitosis. Interphase but not mitotic phosphorylation was found on an internal CNBr fragment (derived from the end of the central rod domain and the first part of the C-terminal lamin tail; amino acid residues 385-548; fragment D). Interphase only phosphorylation was also detected on another CNBr fragment derived from the extreme C-terminal portion of lamin Dm0-derivatives (amino acid residues 549-622; fragment E). To supplement these data, we used 2-D tryptic peptide mapping followed by phosphorImager analysis. We routinely detected at least seven 'spots' derived from interphase lamins but only a single mitotic lamin phosphopeptide.  相似文献   

12.
Microtubule assembly is required for the formation of the male and female pronuclei during mouse, but not sea urchin, fertilization. In mouse oocytes, 50 μM colcemid prevents the decondensation of the maternal meiotic chromosomes and of the incorporated sperm nucleus during in vitro fertilization. Nuclear lamins do not associate with either of the parental chromatin sets although peripherin, the PI nuclear peripheral antigen, appears on both. DN A synthesis docs not occur in these fertilized, colcemid-arrested oocytes. This effect is limited to the first hours after ovulation, since colcemid added 4–6 hours later no longer prevents pronuclear development, lamin acquisition, or DNA synthesis. Neither microtubule stabilization with 10 μM taxol nor microfilament inhibition with 10 μM cytochalasin D or 2.2 μg/ml lalrunculin A prevent these pronuclear events; these drugs will inhibit the apposition of the pronuclei at the egg center. In sea urchin eggs, colcemid or griseofulvin treatment doe? not result in the same effect and the male pronucleus forms with the attendant accumulation of the nuclear lamins. The differences in the requirement for microtubule assembly during pronucleus formation may be related to the cell cycle: In mice the sperm enters a meiotic cytoplasm, whereas in sea urchin eggs it enters an interphase cytoplasm. Refertilization of mitotic sea urchin eggs was performed to test the possibility that this phenomenon is related to whether the sperm enters a meiotic/mitotic cytoplasm or one at interphase; during refertilization at first mitosis, the incorporated sperm nucleus is unable to decondense and acquire lamins. These results indicate a requirement for microtubule assembly for the progression from meiosis to first interphase during mouse fertilization and suggest that the cytoskeleton is required for changes in nuclear architecture necessary during fertilization and the cell cycle.  相似文献   

13.
LAP2alpha is a LEM family protein associated with nucleoplasmic A-type lamins and chromatin in interphase. Like lamins and other lamina proteins LAP2alpha is cytoplasmic in metaphase, but it associates with chromosomes prior to nuclear envelope formation in late anaphase to telophase. In vitro phosphorylation analysis and mass spectrometry identified a cluster of at least three mitotic cyclin-dependent kinase 1 phosphorylation sites in the C-terminal chromatin-binding region of LAP2alpha as well as four additional potential sites in the cluster, some of which were targeted alternatively in LAP2alpha mutated at the major sites. LAP2alpha mutants containing serine --> alanine mutations at all seven sites revealed a clear phenotype. Mutated LAP2alpha remained associated with chromosomes throughout mitosis, but the dissociation of lamins into the cytoplasm and nuclear envelope disassembly were not affected. These data demonstrate the in vivo significance of mitotic phosphorylation for the dynamic behavior of LAP2alpha in the cell cycle and show that, unlike the interaction with lamins, the chromatin association of LAP2alpha is regulated by multiple mitosis-specific phosphorylation at sites clustered within a defined region in the C terminus of the protein.  相似文献   

14.
Protein kinase A (PKA) and the nuclear A-kinase-anchoring protein AKAP95 have previously been shown to localize in separate compartments in interphase but associate at mitosis. We demonstrate here a role for the mitotic AKAP95-PKA complex. In HeLa cells, AKAP95 is associated with the nuclear matrix in interphase and redistributes mostly into a chromatin fraction at mitosis. In a cytosolic extract derived from mitotic cells, AKAP95 recruits the RIIalpha regulatory subunit of PKA onto chromatin. Intranuclear immunoblocking of AKAP95 inhibits chromosome condensation at mitosis and in mitotic extract in a PKA-independent manner. Immunodepletion of AKAP95 from the extract or immunoblocking of AKAP95 at metaphase induces premature chromatin decondensation. Condensation is restored in vitro by a recombinant AKAP95 fragment comprising the 306-carboxy-terminal amino acids of the protein. Maintenance of condensed chromatin requires PKA binding to chromatin-associated AKAP95 and cAMP signaling through PKA. Chromatin-associated AKAP95 interacts with Eg7, the human homologue of Xenopus pEg7, a component of the 13S condensin complex. Moreover, immunoblocking nuclear AKAP95 inhibits the recruitment of Eg7 to chromatin in vitro. We propose that AKAP95 is a multivalent molecule that in addition to anchoring a cAMP/PKA-signaling complex onto chromosomes, plays a role in regulating chromosome structure at mitosis.  相似文献   

15.
Phosphorylation of the nuclear lamins during interphase and mitosis   总被引:68,自引:0,他引:68  
The nuclear lamina is a polymeric protein assembly that is proposed to function as an architectural framework for the nuclear envelope. Previous work suggested that phosphorylation of the major polypeptides of the lamina (the "lamins") may induce disassembly of this structure during mitosis. To further investigate the possible involvement of phosphorylation in regulation of lamina structure, we characterized lamin phosphorylation occurring in mammalian tissue culture cells during interphase and mitosis. Phosphorylation occurs continuously throughout all interphase periods (coordinately with nuclear envelope growth), and takes place mainly on the assembled lamina. When the lamina is disassembled during cell division, the lamins are modified with approximately 1-2 molecules of associated phosphate. This level of mitotic phosphorylation is 4-7-fold higher than the average interphase level. Lamin phosphate occurs predominantly as phosphoserine, and is distributed over numerous tryptic peptides, many of which are modified during both interphase and mitotic periods. Significantly, phosphorylation is the only detectable charge-altering postsynthetic modification of the lamins that occurs specifically during mitosis. The results of this study support the notion that phosphorylation is important for regulation of interphase and mitotic lamina structure.  相似文献   

16.
A N Stroud  R Nathan  S Harami 《In vitro》1975,11(2):61-68
Early chromatin condensation in interphase cells (G1) of human peripheral blood lymphocytes has been induced without virus or cell fusion by exposure to allogeneic or xenogeneic mitotic cells. The event, although similar in some ways to the phenomenon described as "premature chromosome condensation," "chromosome pulverization," and "prophasing," differs in that it does not require the presence of viruses and cell fusion before mitosis proceeds in the G1 cell. Early chromatin condensation in interphase cells induced by mitotic cells only, consists of chromatids in the early or late G1 phase of the cell cycle that are not pulverized or fragmented at mitosis. Some of the chromosomes are twice as long as the metaphase chromosomes and exhibit natural bands. Almost twice as many of these bands are produced as by trypsin treatment of metaphase chromosomes. The nuclear membrane is intact and nucleoli are present, to which some chromosomes are attached. The DNA content of the precocious chromosomes in G1 is half the amount of the metaphase complement.  相似文献   

17.
We have assessed the involvement of the nuclear lamins in nuclear envelope reassembly. Analysis of perforated mitotic cells shows that A-type lamins are partly cytosolic and partly chromosome-bound, whereas B-type lamins are associated with vesicular structures throughout cell division. Lamin B-containing vesicles appear to dock on vimentin intermediate filaments during prometaphase, but dissociate from the cytoskeleton and assemble around chromatin at later phases of mitosis. Mitotic vesicles isolated from prometaphase cells en bloc with vimentin filaments can specifically capture chromosomes. Efficient chromosome capturing requires cytosolic factors and a dephosphorylating environment. Urea-stripping of the vesicles abolishes binding to chromosomes. However, reconstitution of the stripped membranes with purified B-type lamins restores their ability to bind to chromosomes in a cytosol- and dephosphorylation-dependent fashion. Vesicles reconstituted with B-type lamins form membraneous 'crescents' on the surfaces of chromosomes, but, unlike native vesicles, do not fuse into large sheets. From these observations we conclude that the initial targeting of mitotic vesicles to chromosomes is dependent on B-type lamins and on factors present in the mitotic cytoplasm. Apparently, further recruitment of membranes and fusion of chromosome-bound vesicles onto chromatin involves non-lamin peripheral membrane proteins.  相似文献   

18.
Fusion of a cell in mitosis with a cell in interphase results in the condensation of chromatin in the interphase nucleus into chromosomes. Premature chromosome condensation is caused by certain proteins, called mitotic factors, that are present in the mitotic cell and are localized on chromosomes. Extracts from mitotic cells were used to immunize mice to produce monoclonal antibodies specific for cells in mitosis. Among the antibodies obtained, the MPM-4 antibody defines a 125-kD polypeptide antigen located on mitotic chromosomes by indirect immunofluorescence. Although the polypeptide antigen is present in approximately equal concentrations in extracts of interphase cells and mitotic cells, as revealed by immunoblots, it cannot be detected cytologically in the former. Cell fractionation experiments showed that the 125-kD antigen is found in the cytoplasm of interphase cells and metaphase cells, but is concentrated in fractions containing metaphase chromosomes, although not detectable in interphase nuclei. Even though the antigen is apparently primate-specific, it binds to mitotic chromosomes and prematurely condensed chromosomes in human-rodent cell hybrids without regard to the species of origin of the mitotic inducer. The presence of the antigen in the cytoplasm of interphase cells and the chromosomes of mitotic cells suggests a relationship between the presence of the antigen on chromosomes and the process of chromosome condensation and decondensation.  相似文献   

19.
The nuclear lamins are major components of a proteinaceous polymer that is located at the interface of the nuclear membrane and chromatin; these lamins are solubilized and dispersed throughout the cytoplasm during mitosis. It has been postulated that these proteins, assembled into the lamina, provide an architectural framework for the organization of the cell nucleus. To test this hypothesis we microinjected lamin antibodies into cultured PtK2 cells during mitosis, thereby decreasing the soluble pool of lamins. The antibody injected was identified, together with the lamins, in cytoplasmic aggregates by immunoelectron microscopy. We show that microinjected cells are not able to form normal daughter nuclei, in contrast to cells injected with other immunoglobulins. Although cells injected with lamin antibodies are able to complete cytokinesis, the chromatin of their daughter nuclei remains arrested in a telophase-like configuration, and the telophase-like chromatin remains inactive as judged from its condensed state and by the absence of nucleoli. These results indicate that lamins and the nuclear lamina structure are involved in the functional organization of the interphase chromatin.  相似文献   

20.
The nuclear envelope (NE) provides a semi permeable barrier between the nucleus and cytoplasm and plays a central role in the regulation of macromolecular trafficking between these two compartments. In addition to this transport function, the NE is a key determinant of interphase nuclear architecture. Defects in NE proteins such as A-type lamins and the inner nuclear membrane protein, emerin, result in several human diseases that include cardiac and skeletal myopathies as well as lipodystrophy. Certain disease-linked A-type lamin defects cause profound changes in nuclear organization such as loss of peripheral heterochromatin and redistribution of other nuclear envelope components. While clearly essential in maintenance of nuclear integrity, the NE is a highly dynamic organelle. In interphase it is constantly remodeled to accommodate nuclear growth. During mitosis it must be completely dispersed so that the condensed chromosomes may gain access to the mitotic spindle. Upon completion of mitosis, dispersed NE components are reutilized in the assembly of nuclei within each daughter cell. These complex NE rearrangements are under precise temporal and spatial control and involve interactions with microtubules, chromatin, and a variety of cell-cycle regulatory molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号