首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Using a virtual spider robot, we studied hypotheses about the weaving behaviour of orb spiders. Our model spiders built virtual webs that mimicked perfectly the visual architecture of real webs of the garden cross spider Araneus diadematus. The matching of capture spiral and auxiliary spiral pitch was an apparently emergent property in both types of web. This validated our interpretation of the garden spider''s web-building decision rules, which use strictly local interactions with previously placed threads to generate global architecture.  相似文献   

2.
Zygiella x-notata is an orb-weaving spider that often renews its trap daily. Web building has associated costs and benefits, and building successive webs may have consequences for lifetime reproductive success. In the laboratory, we tested the ability of Z. x-notata to modify its building behaviour in response to various stages in predation (prey detection, capture and ingestion) experienced with a previous web. We determined which stages provided information for the spiders. Spiders that detected, captured and ingested prey and then rebuilt their web used less silk and made a smaller capture area than in the previous web. There was no effect of prey detection alone on the next web. Capture without feeding gave the same results as capture followed by feeding. The spiders that ate prey without detection and capture (feeding by hand) had the same energetic gains as spiders that caught prey but delayed building a new web. The spiders thus showed plasticity in web-building behaviour and in the amount of silk used (energetic investment) in the short term (from one web to the next). Changes in body condition may therefore influence web construction. Moreover, information gained during prey capture appeared to influence the size and structure of the next web. This ability should enable spiders to adapt their web building to maximize their fitness. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

3.
Abstract Environmental conditions such as light level, background contrast and temperature might influence a spider's prey capture success and risk of predation. Thus it may often be advantageous for spiders to adjust web‐building behaviour in response to variation in these environmental conditions. This hypothesis was examined in a study of the construction of webs and web decorations (conspicuous strands of silk at the hub of the web) of the orb‐web spider Argiope keyserlingi. Web decorations are thought to have one or more separate functions. They may attract prey, deter predators or advertise the web to oncoming birds, thus preventing web damage. In this series of experiments, relationships between weather parameters and the construction of webs and web decorations were considered. In complementary laboratory experiments, A. keyserlingi spiders were exposed to two different light levels (700 and 90 lx), background contrasts (black and white) and temperature conditions (20 and 26°C). Of the available weather parameters, only temperature was significantly related to web decorating behaviour but not to web size. In the laboratory, temperature also influenced web‐decorating behaviour, and spiders in dim light (700 lx) constructed larger webs and longer decorations. Background contrast did not significantly alter web size or web decorations. These data suggest that when prey availability is reduced at low temperatures, spiders may use web decorations to attract prey to the web. Similarly, in dim light, spiders may build more and larger decorations to increase the visual signal to approaching prey or to advertise the web to oncoming birds.  相似文献   

4.
Behavioural and biomaterial coevolution in spider orb webs   总被引:1,自引:0,他引:1  
Mechanical performance of biological structures, such as tendons, byssal threads, muscles, and spider webs, is determined by a complex interplay between material quality (intrinsic material properties, larger scale morphology) and proximate behaviour. Spider orb webs are a system in which fibrous biomaterials—silks—are arranged in a complex design resulting from stereotypical behavioural patterns, to produce effective energy absorbing traps for flying prey. Orb webs show an impressive range of designs, some effective at capturing tiny insects such as midges, others that can occasionally stop even small birds. Here, we test whether material quality and behaviour (web design) co‐evolve to fine‐tune web function. We quantify the intrinsic material properties of the sticky capture silk and radial support threads, as well as their architectural arrangement in webs, across diverse species of orb‐weaving spiders to estimate the maximum potential performance of orb webs as energy absorbing traps. We find a dominant pattern of material and behavioural coevolution where evolutionary shifts to larger body sizes, a common result of fecundity selection in spiders, is repeatedly accompanied by improved web performance because of changes in both silk material and web spinning behaviours. Large spiders produce silk with improved material properties, and also use more silk, to make webs with superior stopping potential. After controlling for spider size, spiders spinning higher quality silk used it more sparsely in webs. This implies that improvements in silk quality enable ‘sparser’ architectural designs, or alternatively that spiders spinning lower quality silk compensate architecturally for the inferior material quality of their silk. In summary, spider silk material properties are fine‐tuned to the architectures of webs across millions of years of diversification, a coevolutionary pattern not yet clearly demonstrated for other important biomaterials such as tendon, mollusc byssal threads, and keratin.  相似文献   

5.
Aging is often associated with reduced behavioral performance such as decreased locomotion or food consumption, related to a deterioration in physiological functions. In orb-web spiders, webs are used to capture prey and aging can affect web-building behavior and web structure. Here, we investigated the effect of aging on prey capture in the orb-web spider Zygiella x-notata. The ability of adult females to capture flies was examined at different ages. The rate of prey capture did not change with age, but older spiders took more time to subdue and capture the prey. Alterations which appeared in web structure with age (increase in the number of anomalies affecting radii and capture spiral) affected prey capture behavior. Furthermore, the analysis of individual performance (carried out on 17 spiders at two different ages) showed that older females spent more time handling the prey and finding it in the web. Our results suggest that, in the laboratory, age does not affect prey capture rates but it influences prey capture behavior by affecting web structure or/and spider motor functions.  相似文献   

6.
An uloborid spider (Oclonoba sybotides constructs two types of web which are distinguished by linear or spiral stabilimenta. Food-deprived spiders tend to construct webs with spiral stabilimenta and food-satiated spiders tend to construct webs with linear stabilimenta. I experimentally examined the influence of web type on the speed of a spider's response to small and large flies. The results indicated that web type rather than the spiders' energetic condition influences the response speed to small or large Drosophila flies. I also examined whether thread tension affects the response speed of spiders by increasing the tension of the radial threads. The results showed that spiders on an expanded web responded to small prey as quickly as spiders on webs with spiral stabilimenta. The tension of the radial threads may be regulated by the degree of distortion of the radial threads at the hub. O. sybotides seems to construct orb webs which induce different responses for smaller, less-profitable prey according to its energetic state. The spider appears to increase the tension of the radial threads so that it can sense smaller prey better when hungry.  相似文献   

7.
Stegodyphus lineatus (Eresidae) is a desert spider that buildsan aerial capture web on bushes in the Negev desert in southernIsrael. Web building for spiders is costly in energy, time,and risk of predation. Spiders should trade-off these costswith the benefits in terms of prey capture. We tested the hypothesisthat the previous foraging success of the spider influencesthe effort invested in foraging. Specifically, we asked whetheran increase in food intake causes spiders to reduce web renewalactivity and web size. Alternatively, time constraints on foragingand development, resulting from a short growing season, couldinduce spiders to continue foraging even when supplemented withprey. The cost of web building was measured as time and massloss. To build an average size web (about 150 cm2), we calculatedthat a spider requires 6 h and that spiders lose 3%-7% of their weight.In field experiments, spiders responded differently to food supplementationin 2 different years. In 1994, they improved their condition comparedto individuals whose webs were removed to reduce foraging opportunitiesand compared to control spiders. In 1995, spiders tested earlier inthe season than the previous year did not improve their conditionin response to prey supplementation. Nonetheless, in both years, food-supplementedspiders built significantly smaller webs than food-deprived andcontrol spiders. This result was confirmed in a laboratory experiment whereprey intake was controlled. We conclude that for S. lineatus immediateforaging risks outweigh the potential time constraints on foraging.  相似文献   

8.
Spider orb webs are dynamic, energy absorbing nets whose ability to intercept prey is dependent on both the mechnical properties of web design and the material properties of web silks. Variation in web designs reflects variation in spider web spinning behaviours and variation in web silks reflects variation in spider metabolic processes. Therefore, natural selection may affect web function (or prey capture) through two independent and alternative pathways. In this paper, I examine the ways in which architectural and material properties, singly and in concert, influence the ability of webs to absorb insect impact energy. These findings are evaluated in the context of the evolution of diverse aerial webs. Orb webs range along a continuum from high to low energy absorbing. No single feature of web architecture characterizes the amount of energy webs can absorb, but suites of characters indicate web function. In general, webs that intercept heavy and fast flying prey (high energy absorbing webs) are large, built by large spiders, suspended under high tension and characterized by a ratio of radii to spiral turns per web greater than one. In contrast, webs that intercept light and slow flying prey (low energy absorbing webs) are suspended under low tension, are small and are characterized by radial to spiral turn ratios that are less than one. The data suggest that for spiders building high energy absorbing webs, the orb architecture contributes much to web energy absorption. In contrast, for spiders that build low energy absorbing webs, orb architecture contributes little to enhance web energy absorption. Small or slow flying insects can be intercepted by web silks regardless of web design. Although there exists variation in the material properties of silk collected from high and low energy absorbing webs, only the diameter of web fibres varies predictably with silk energy absorption. Web fibre diameter and hence the amount of energy absorbed by web silks is an isometric function of spider size. The significance of these results lies in the apparent absence of selective advantage of orb architecture to low energy absorbing webs and the evolutionary trend to small spiders that build them. Where high energy absorption is not an exacting feature of web design, web architecture should not be tightly constrained to the orb. Assuming the primitive araneoid web design is the orb web, I propose that the evolution of alternative web building behaviours is a consequence of the general, phyletic trend to small size among araneoids. Araneoids that build webs of other than orb designs are able to use new habitats and resources not available to their ancestors.  相似文献   

9.
Predator–prey interactions are important in maintaining the structure and dynamics of ecological communities. Both predators and prey use cues from a range of sensory modalities to detect and assess one another; identification of these cues is necessary to understand how selection operates to shape predator–prey interactions. Mud-dauber wasps (Sphecidae) provision their larval nests with paralyzed spiders, and different genera of wasps specialize on particular spider taxa. Sceliphron caementarium (Drury 1773) wasps preferentially capture spiders that build two-dimensional (2D) webs, rather than those that construct three-dimensional (3D) webs, but the basis of this preference is not clear. Wasps may choose spiders based on an assessment of their web architecture, as 3D webs may provide better defenses against wasp predation than do 2D webs. However, because many hymenopterans use chemical cues to locate and recognize prey, it is also possible that mud-dauber wasps rely on chemical cues associated with the spider and/or the web to assess prey suitability. When we offered foraging S. caementarium wasps 2D and 3D spiders both on and off their webs, we found that in both cases the wasps took 2D spiders and avoided 3D spiders, demonstrating that the web itself is not the impediment. Results of a series of behavioral choice assays involving filter paper discs containing spider cues and chemically manipulated spiders or spider dummies corroborated the importance of spider chemical cues in mediation of prey recognition by mud-dauber wasps. We also discuss the relative importance of visual and chemical cues for prey recognition by wasps, examine the anti-predator behaviors of 2D and 3D spiders, and consider the role of wasp predation in spider diversification.  相似文献   

10.
Portia is a web-invading araneophagic spider that uses aggressive mimicry to deceive its prey. The present paper is a first step toward clarifying experimentally the cues that govern Portia's decisions of whether to enter a web, whether to make signals once in a web, and whether to persist at signalling once started. The following conclusions are supported: cues from seeing a web elicit web entry, but volatile chemical cues from webs of prey spiders are not important; seeing a spider in a web increases Portia's inclination to enter the web; after web entry, cues from webs of prey spiders are sufficient to elicit signalling behaviour, even in the absence of other cues coming directly from the prey spider; seeing a prey spider or detecting vibrations on the web make Portia more prone to signal, but volatile chemical cues from prey spiders are not important; once Portia is on a web and signalling, seeing a moving spider and detecting vibrations on the web encourage Portia to persist in signalling; on the basis of visual cues alone, Portia can distinguish between quiescent spiders, insects and eggsacs.  相似文献   

11.
Evolutionary conflict in trait performance under different ecological contexts is common, but may also arise from functional coupling between traits operating within the same context. Orb webs first intercept and then retain insects long enough to be attacked by spiders. Improving either function increases prey capture and they are largely determined by different aspects of web architecture. We manipulated the mesh width of orbs to investigate its effect, along with web size, on prey capture by spiders and found that they functioned independently. Probability of prey capture increased with web size but was not affected by mesh width. Conversely, spiders on narrow-meshed webs were almost three times more likely to capture energetically profitable large insects, which demand greater prey retention. Yet, the two functions are still constrained during web spinning because increasing mesh width maximizes web size and hence interception, while retention is improved by decreasing mesh width because more silk adheres to insects. The architectural coupling between prey interception and retention has probably played a key role in both the macroevolution of orb web shape and the expression of plasticity in the spinning behaviours of spiders.  相似文献   

12.
Design features of the orb web of the spider, Araneus diadematus   总被引:2,自引:0,他引:2  
Analysis of orb webs of the garden cross spider (Araneus diadematus)showed that these vertical webs have a significant up/down asymmetry.Experiments demonstrated that the spider runs down faster thanup, and thus confers a relatively higher foraging value to sectionsbelow the hub. Simulations suggested that the density of capturespiral spacing, prey size, and the density of prey should allaffect the capture efficiency of a web. Webs lose effectivecapture area because of overlap of the capture zone around eachthread; the smaller the prey, the finer the mesh can be withoutlosing effective area. Lower sectors of the web have a particularmesh size (height and length of capture spiral segments) throughout,whereas in the upper sectors the mesh size changes, wideningfrom the hub towards the periphery.  相似文献   

13.
Predator–prey relationships are generally based on arm-race. Wasps and spiders are both predators, which could be potential prey for each other. The orb weaver spider Zygiella x-notata is sometimes a prey for the wasp Vespula germanica. We observed the wasp hunting behaviour under natural conditions, and we tested the influence of the spider’s behaviour on the wasp attack success. Wasps were active predators during the reproductive period of the spider. Results showed that wasps located more easily male spiders than females particularly when they were engaged in mate guarding. Female location depended on the presence of a web, but also of prey or prey remains in the web. On the other hand, their location depend neither on the characteristics and the position of the retreat in the environment nor on the size of the web. After location, males were more often captured than females whatever their behaviour (mate guarding or not). Presence of prey remains or prey in the web did not increase the risk for the spider to be captured. There was also no influence of the retreat’s characteristics or of its position in the habitat on the risk for the spider to be captured; but wasp successful attacks were less numerous when silk was present around the entrance of the retreat or when the spider was completely inside. As prey and prey remains favoured location of spiders by the wasps, we tested spider web cleaning behaviour as a response to wasp predatory pressure. By throwing small polystyrene pellets in the webs, we observed that more 80% of the spiders rejected the pellets in less than one minute. Our data indicated that wasps were significant predators of Z. x-notata and wasp attack could have been a selective pressure that had favoured spider defensive behaviours such as web cleaning.  相似文献   

14.
Some species of web building spiders use different capture tactics for different prey types. The main factors influencing the attack behaviour are the ability of the insect to escape, the risks of injury to the spiders and prey size. This study evaluated the effects of size and prey type on prey capture behaviour of the social spider Anelosimus eximius as influenced by the number of spiders attracted by prey movements that did not bite until the immobilization (bystanders) and the number of spiders that contributed to prey immobilization (catchers). We carried out a two‐factor (prey size and type) experiment offering prey belonging to four orders: Diptera, Lepidoptera, Hymenoptera and Orthoptera, in a size gradient within each prey type. Both factors influenced the number of spiders recruited as bystanders, but only prey body size influenced the number of catchers in the subduing process. The possible advantages of the presence of bystanders around the interception site are discussed.  相似文献   

15.
蜘蛛位置对成功捕获猎物和球型网图案的影响   总被引:3,自引:0,他引:3  
静坐在球型网的中心,蜘蛛可能遭受天敌的攻击并暴露在不利的天气条件下,如风和雨。然而,栖居于网的中心使蜘蛛比隐藏在隐蔽场所中的蜘蛛能更迅速地察觉并捕获猎物,这是因为猎物的位置仅能被位于网中心的蜘蛛所确定。对在隐蔽场所中的蜘蛛而言,提高对猎物捕获率的方式之一是尽量减少隐蔽所与网中心的距离。而且,网中心与隐蔽所之间较短的距离使蜘蛛能更迅速地逃离危险境况。我使用既在网中心、又在隐蔽场所的硬类肥蛛(Larinioides sclopetarius Clerck),来检验这两种行为如何影响对猎物的捕获成功率。隐藏在隐蔽场所中的蜘蛛更经常忽略猎物,使猎物也有比较多的逃离机会,这样,与在网中心的蜘蛛相比,猎物的损失率就更高。另外,研究了隐蔽场所的位置对球型网图案的影响。在大多数球型网中,网中心上方的区域比网下方小,丝也比较少,形成了结构不对称的网;隐蔽场所通常在网的上方。当隐蔽场所的位置在实验中被倒转时,就形成了非典型的球型网。最后,L.sclopetarius建造的网有很突出的边缘非对称性,与隐蔽场所相邻的区域面积较小,而远离隐蔽场所的区域面积较大,这也可解释为减少了隐蔽场所和网中心之间的距离[动物学报50(4):559-565.2004]。  相似文献   

16.
Although phylogenetic studies have shown covariation between the properties of spider major ampullate (MA) silk and web building, both spider webs and silks are highly plastic so we cannot be sure whether these traits functionally covary or just vary across environments that the spiders occupy. As MaSp2‐like proteins provide MA silk with greater extensibility, their presence is considered necessary for spider webs to effectively capture prey. Wolf spiders (Lycosidae) are predominantly non‐web building, but a select few species build webs. We accordingly collected MA silk from two web‐building and six non‐web‐building species found in semirural ecosystems in Uruguay to test whether the presence of MaSp2‐like proteins (indicated by amino acid composition, silk mechanical properties and silk nanostructures) was associated with web building across the group. The web‐building and non‐web‐building species were from disparate subfamilies so we estimated a genetic phylogeny to perform appropriate comparisons. For all of the properties measured, we found differences between web‐building and non‐web‐building species. A phylogenetic regression model confirmed that web building and not phylogenetic inertia influences silk properties. Our study definitively showed an ecological influence over spider silk properties. We expect that the presence of the MaSp2‐like proteins and the subsequent nanostructures improves the mechanical performance of silks within the webs. Our study furthers our understanding of spider web and silk co‐evolution and the ecological implications of spider silk properties.  相似文献   

17.
We examined the arthropod community on eastern hemlock, Tsuga canadensis (L.) Carr, in the context of its role in providing potential prey items for hemlock-associated web-weaving spiders. Using sticky traps simulating spider webs, we evaluated what prey items are available to web-weaving spiders in eastern hemlock based on web orientation (horizontal versus vertical) and cardinal direction. We found that the overwhelming majority (>70%) of prey items available to spiders in hemlock canopies were Diptera. Psocoptera, Hymenoptera, and Hemiptera comprised most of the remaining potential prey. A significant direction × orientation interaction, and greater trap capture in some direction-orientation combinations, suggests that spiders might locate their webs in eastern hemlock canopies for thermoregulatory purposes, ultimately optimizing prey capture. We also evaluated these findings in the context of hemlock infestation by the invasive hemlock woolly adelgid, Adelges tsugae Annand. The adelgid is a sedentary insect with a mobile crawler stage that provides a readily available, easily obtained food source for predators in hemlock canopies. However, an abundance of alternative prey will affect within canopy spider distribution and the potential intensity with which spiders consume these prey. Understanding the response of spiders to potential prey availability is essential to understanding the trophic interactions involving these predators and their potential for influencing herbivore populations.  相似文献   

18.
Prey captured by a predator may attract kleptoparasites which could significantly reduce the amount of food consumed. Stegodyphus lineatus, a cribellate spider, builds an energetically costly web. Ants raid the webs of S. lineatus to steal prey and behave as kleptoparasites. We investigated ant raids in a natural population of S. lineatus and their influence on the spider’s foraging behaviour. Considering spiders that had captured a prey, 31.2% suffered an ant raid within 24 h after the prey capture. Experimental tests showed that the response to ant raid is to delay web rebuilding and this was independent of a spider’s previous foraging success. There was a tendency for spiders that were exposed to ants to build larger webs. Neither prey-handling duration nor prey consumption was modified after exposure to ants. These results suggest that Stegodyphus lineatus adapt its web-building behaviour in response to the risk of kleptoparasitism.  相似文献   

19.
The impact of rare but positive events on the design of organisms has been largely ignored, probably due to the paucity of recordings of such events and to the difficulty of estimating their impact on lifetime reproductive success. In this respect, we investigated the size of spider webs in relation to rare but large prey catches. First, we collected field data on a short time-scale using the common orb-weaving spider Zygiella x-notata to determine the distribution of the size of prey caught and to quantify the relationship between web size and daily capture success. Second, we explored, with an energetic model, the consequences of an increase in web size on spider fitness. Our results showed that (i) the great majority of prey caught are quite small (body length less than 2mm) while large prey (length greater than 10mm) are rare, (ii) spiders cannot survive or produce eggs without catching these large but rare prey and (iii) increasing web size increases the daily number of prey caught and thus long-term survival and fecundity. Spider webs seem, therefore, designed for making the best of the rare but crucial event of catching large prey.  相似文献   

20.
Many spiders depend upon webs to capture prey. Web function results from architecture and mechanical performance of the silk. We hypothesized that the common house spider, Achaearanea tepidariorum, would alter the mechanical performance of its cobweb in response to different prey by varying the structural and material properties of its silk. We fed spiders either large, high kinetic energy crickets or small, low kinetic energy pillbugs for 1 week and then examined their freshly spun silk. We separated mechanical performance into structural and material effects. We measured both types of properties for silk threads collected directly from cobwebs to test for "tuning" of silk performance to different aspects of prey capture. We compared silk from two different functional regions of the cobweb-sticky gumfooted threads that adhere directly to prey and supporting threads that maintain web integrity. Supporting threads from cricket-fed spiders were stiffer and tougher than supporting threads from pillbug-fed spiders. Both types of silk from cricket-fed spiders broke at higher loads than silk from pillbug-fed spiders. We explain this variation using a simple model of forces exerted by prey and spiders on single threads and propose potential mechanisms for this change in material properties. Two alternative, nonexclusive, hypotheses are suggested by our data. Spiders may tune silk to different types of prey by spinning threads that are able to hold prey without deforming permanently. Alternatively, as spider's body mass differed dramatically between the two feeding regimes, spiders may tune silk to their own body mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号