首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
2.
Highly pathogenic influenza A viruses cause acute severe pneumonia to which the occurrence of “cytokine storm” has been proposed to contribute. Here we show that interleukin-15 (IL-15) knockout (KO) mice exhibited reduced mortality after infection with influenza virus A/FM/1/47 (H1N1, a mouse-adapted strain) albeit the viral titers of these mice showed no difference from those of control mice. There were significantly fewer antigen-specific CD44+ CD8+ T cells in the lungs of infected IL-15 KO mice, and adoptive transfer of the CD8+ T cells caused reduced survival of IL-15 KO mice following influenza virus infection. Mice deficient in β2-microglobulin by gene targeting and those depleted of CD8+ T cells by in vivo administration of anti-CD8 monoclonal antibody displayed a reduced mortality rate after infection. These results indicate that IL-15-dependent CD8+ T cells are at least partly responsible for the pathogenesis of acute pneumonia caused by influenza A virus.Highly pathogenic influenza A viruses cause acute severe pneumonia that results in high morbidity and significant mortality (11, 12, 24, 26). Elevated levels of serum cytokines and chemokines accompany these clinical manifestations, and the possibility that this “cytokine storm” contributes to increased severity of the disease caused by avian H5N1 virus and by other strains of influenza A virus has been proposed (10, 21, 33). In fact, CCR2-deficient mice [CCR2 is chemokine (C-C motif) receptor 2] were protected from early pathological manifestations despite higher pulmonary titers of the influenza virus A/PR/8/34 (H1N1) strain (7). Tumor necrosis factor receptor 1 (TNFR-1)-deficient mice exhibited significantly reduced morbidity following challenge with H5N1 virus (31). Other cytokines or chemokines have also been investigated (8, 28, 34, 35, 38). Thus, at least some of the elevated proinflammatory cytokines may contribute to the pathogenesis of influenza A virus.Interleukin-15 (IL-15) is a pleiotropic cytokine involved in both innate and adaptive immune responses (20, 36). IL-15 utilizes the β-chain of the IL-2 receptor (IL-2R) (CD122) and the common cytokine receptor γ-chain (CD132) for signal transduction in lymphocytes and therefore shares many biological properties with IL-2 (3). Memory CD8+ T cells, natural killer (NK) cells, NKT cells, and intraepithelial lymphocyte (IEL) T cells (15, 23, 42) decrease in mice with defective IL-15 signaling, indicating the importance of IL-15 in their development and/or maintenance. IL-15 regulates not only the number of memory CD8+ T cells but also activation of their functions, including gamma interferon (IFN-γ) production and cytotoxic activity (40), which are important to target the virus (9). Therefore, it is possible that we may be able to use IL-15 as an immune-enhancing molecular adjuvant in vaccines for protection against various pathogens, including influenza A virus (37).In the present study, we demonstrate that IL-15 knockout (KO) mice exhibited high resistance against infection with mouse-adapted influenza virus A/FM/1/47 (H1N1) strain. We show for the first time that IL-15-dependent CD8+ T cells are at least partly responsible for the pathogenesis of acute pneumonia caused by influenza A virus. In addition, our observations are important in the light of recent research into the use of IL-15 as an adjuvant for vaccination.  相似文献   

3.
BackgroundHistorically, children have been undertreated for their pain, and they continue to undergo painful cutaneous procedures without analgesics. A new topical anesthetic, liposomal lidocaine 4% cream (Maxilene, RGR Pharma, Windsor, Ont.), has become available. It has pharmacologic properties that are superior to other topical anesthetics, including an onset of action of only 30 minutes. We sought to determine the success rate of cannulation, analgesic effectiveness, procedure duration and rate of adverse skin reactions when liposomal lidocaine is used before intravenous cannulation of children.MethodsIn this double-blind randomized controlled trial, children aged 1 month to 17 years received liposomal lidocaine or placebo before cannulation. Success on first cannulation attempt was recorded, and, among children 5 years and older, pain was evaluated before and after the attempt by the child, parents and research assistant using a validated measure (Faces Pain Scale-Revised). For children younger than 5 years, pain was evaluated by the parents and research assistant only. The total duration of the procedure and adverse skin reactions were also recorded.ResultsBaseline characteristics did not differ (p > 0.05) between children who received liposomal lidocaine (n = 69) and those who received placebo (n = 73). Cannulation on the first attempt was achieved in 74% of children who received liposomal lidocaine compared with 55% of those who received placebo (p = 0.03). Among children 5 years of age and older (n = 67), lower mean pain scores during cannulation were reported by those receiving liposomal lidocaine (p = 0.01). Similarly, lower mean pain scores during cannulation were reported by the parents and research assistant for all children who received liposomal lidocaine than for all those who received placebo (p < 0.001). The mean total procedure duration was shorter with liposomal lidocaine (6.7 v. 8.5 minutes; p = 0.04). The incidence of transient dermal changes was 23% in both groups (p = 1.0).ConclusionsUse of liposomal lidocaine was associated with a higher intravenous cannulation success rate, less pain, shorter total procedure time and minor dermal changes among children undergoing cannulation. Its routine use for painful cutaneous procedures should be considered whenever feasible.Painful medical procedures are routinely performed on children for diagnostic and therapeutic reasons. The provision of analgesia for these procedures, however, remains uncommon.1 Untreated pain has both short-term and long-term consequences. In the short term, there is pain during the actual procedure. This contributes to a lack of cooperation by the child, unsuccessful procedure attempts, repeated attempts, additional pain and a prolonged total procedure time. In the long term, repeated painful procedures can lead to conditioned anxiety responses and increased pain perception.2,3 Inadequate analgesia during an initial procedure may diminish analgesic effectiveness at subsequent procedures.4 Moreover, there is a relation between painful procedures in childhood and blood-injection-injury phobia,5 a condition that affects up to 10% of adults and may cause people to avoid medical care.6 In light of the cumulative evidence of the negative consequences of untreated pain in childhood, interventions are needed to diminish pain among children undergoing medical procedures and to facilitate successful completion of procedures.Intravenous cannulation is a common, painful medical procedure. Although local anesthetics reduce the pain of cannulation,7,8,9,10,11 most preparations are not feasible for routine use. The “gold standard” for skin anesthesia, lidocaine–prilocaine 5% cream, requires a 60-minute application time. In addition, it causes vasoconstriction,12 which potentially obscures landmarks and makes cannulation more difficult.13 Another commercially available preparation, amethocaine 4% gel, requires a 30-minute application time. However, it frequently causes vasodilatation and may induce hypersensitivity with repeated use.14 An alternative option, subcutaneous injection of lidocaine, requires only a few minutes to administer, but it is associated with an extra and painful puncture and is therefore not routinely used.15Liposomal lidocaine 4% cream16 (Maxilene, RGR Pharma, Windsor, Ont.) was launched in Canada in 2003. The liposome-encapsulated formulation protects the anesthetic from being metabolized too quickly.17 Liposomal lidocaine has the advantages of “needle-free” administration, a short onset of action and minimal vasoactive properties that minimize any potential interference with cannulation success. It is not associated with methemoglobinemia, a systemic side effect of lidocaine–prilocaine.18Among children, liposomal lidocaine is as effective as lidocaine–prilocaine for decreasing pain from venipuncture19 and intravenous cannulation,20,21 and as effective as buffered lidocaine injection for decreasing intravenous cannulation pain.15 Previous studies have not compared liposomal lidocaine with placebo. We conducted such a comparison to determine whether liposomal lidocaine improves cannulation success rates. We also sought to determine whether it reduces pain and procedure duration and is associated with a low frequency of dermal reactions.  相似文献   

4.
The clinical impact of the 2009 pandemic influenza A(H1N1) virus (pdmH1N1) has been relatively low. However, amino acid substitution D222G in the hemagglutinin of pdmH1N1 has been associated with cases of severe disease and fatalities. D222G was introduced in a prototype pdmH1N1 by reverse genetics, and the effect on virus receptor binding, replication, antigenic properties, and pathogenesis and transmission in animal models was investigated. pdmH1N1 with D222G caused ocular disease in mice without further indications of enhanced virulence in mice and ferrets. pdmH1N1 with D222G retained transmissibility via aerosols or respiratory droplets in ferrets and guinea pigs. The virus displayed changes in attachment to human respiratory tissues in vitro, in particular increased binding to macrophages and type II pneumocytes in the alveoli and to tracheal and bronchial submucosal glands. Virus attachment studies further indicated that pdmH1N1 with D222G acquired dual receptor specificity for complex α2,3- and α2,6-linked sialic acids. Molecular dynamics modeling of the hemagglutinin structure provided an explanation for the retention of α2,6 binding. Altered receptor specificity of the virus with D222G thus affected interaction with cells of the human lower respiratory tract, possibly explaining the observed association with enhanced disease in humans.In April 2009, the H1N1 influenza A virus of swine origin was detected in humans in North America (9, 12, 42). Evidence for its origin came from analyses of the viral genome, with six gene segments displaying the closest resemblance to American “triple-reassortant” swine viruses and two to “Eurasian-lineage” swine viruses (13, 42). After this first detection in humans, the virus spread rapidly around the globe, starting the first influenza pandemic of the 21st century. The 2009 pandemic influenza A(H1N1) virus (pdmH1N1) has been relatively mild, with a spectrum of disease ranging from subclinical infections or mild upper respiratory tract illness to sporadic cases of severe pneumonia and acute respiratory distress syndrome (3, 11, 27, 29, 30, 37). Overall, the case-fatality rate during the start of the pandemic was not significantly higher than in seasonal epidemics in most countries. However, a marked difference was observed in the case-fatality rate in specific age groups, with seasonal influenza generally causing highest mortality in elderly and immunocompromised individuals, and the pdmH1N1 affecting a relatively large proportion of (previously healthy) young individuals (3, 11, 27, 29, 30, 37).Determinants of influenza A virus virulence have been mapped for a wide variety of zoonotic and pandemic influenza viruses to the polymerase genes, hemagglutinin (HA), neuraminidase (NA), and nonstructural protein 1 (NS1). Such virulence-associated substitutions generally facilitate more efficient replication in humans via improved interactions with host cell factors. Since most of these virulence-associated substitutions were absent in the earliest pdmH1N1s, it has been speculated that the virus could acquire some of these mutations, potentially resulting in the emergence of more pathogenic viruses. Such virulence markers could be acquired by gene reassortment with cocirculating influenza A viruses, or by mutation. The influenza virus polymerase genes, in particular PB2, have been shown to be important determinants of the virulence of the highly pathogenic avian influenza (HPAI) H5N1 and H7N7 viruses and the transmission of the 1918 H1N1 Spanish influenza virus (17, 26, 34, 51). One of the most commonly identified virulence markers to date is E627K in PB2. The glutamic acid (E) residue is generally found in avian influenza viruses, while human viruses have a lysine (K), and this mutation was described as a determinant of host range in vitro (48). Given that all human and many zoonotic influenza viruses of the last century contained 627K, it was surprising that the pdmH1N1 had 627E. In addition, an aspartate (D)-to-asparagine (N) substitution at position 701 (D701N) of PB2 has previously been shown to expand the host range of avian H5N1 virus to mice and humans and to increase virus transmission in guinea pigs (26, 46). Like E627K, D701N was absent in the genome of pdmH1N1. Thus, the pdmH1N1 was the first known human pandemic virus with 627E and 701D, and it has been speculated that pdmH1N1 could mutate into a more virulent form by acquiring one of these mutations or both. Recently, it was shown that neither E627K nor D701N in PB2 of pdmH1N1 increased its virulence in ferrets and mice (18). The PB1-F2 protein has previously also been associated with high pathogenicity of the 1918 H1N1 and HPAI H5N1 viruses (8). The PB1-F2 protein of the pdmH1N1 is truncated due to premature stop codons. However, restoration of the PB1-F2 reading frame did not result in viruses with increased virulence (15). The NS1 protein of pdmH1N1 is also truncated due to a stop codon and, as a result, does not contain a PDZ ligand domain that is involved in cell-signaling pathways and has been implicated in the pathogenicity of 1918 H1N1 and HPAI H5N1 viruses (5, 8, 21). Surprisingly, restoration of a full-length version of the NS1 gene did not result in increased virulence in animal models (16). Mutations affecting virulence and host range have further frequently been mapped to hemagglutinin (HA) and neuraminidase (NA) in relation to their interaction with α2,3- or α2,6-linked sialic acids (SAs), the virus receptors on host cells (17, 32, 35, 50). The HA gene of previous pandemic viruses incorporated substitutions that allow efficient attachment to α2,6-SAs—the virus receptor on human cells—compared to ancestral avian viruses that attach more efficiently to α2,3-SAs (35, 47, 50).To search for mutations of potential importance to public health, numerous laboratories performed genome sequencing of pdmH1N1s, resulting in the real-time accumulation of information on emergence of potential virulence markers. Of specific interest were reports on amino acid substitutions from aspartic acid (D) to glycine (G) at position 222 (position 225 in H3) in HA of pdmH1N1. This substitution was observed in a fatal case of pdmH1N1 infection in June 2009 in the Netherlands (M. Jonges et al., unpublished data). Between July and December 2009, viruses from 11 (18%) of 61 cases with severe disease outcome in Norway have also been reported to harbor the D222G substitution upon direct sequencing of HA in clinical specimens. Such mutant viruses were not observed in any of 205 mild cases investigated, and the frequency of detection of this mutation was significantly higher in severe cases than in mild cases (23). In Hong Kong, the D222G substitution was detected in 12.5% (6) and 4.1% (31) of patients with severe disease and in 0% of patients with mild disease, in two different studies without prior propagation in embryonated chicken eggs. In addition to Norway and Hong Kong, the mutation has been detected in Brazil, Japan, Mexico, Ukraine, and the United States (56). Thus, D222G in HA could be the first identified “virulence marker” of pdmH1N1. pdmH1N1 with D222G in HA have not become widespread in the population, although they were detected in several countries. However, D222G in HA is of special interest, since it has also been described as the single change in HA between two strains of the “Spanish” 1918 H1N1 virus that differed in receptor specificity (47). Furthermore, upon propagation in embryonated chicken eggs, pdmH1N1 can acquire the mutation rapidly, presumably because it results in virus adaptation to avian (α2,3-SAs) receptors (49). The presence of the substitution in pdmH1N1s in the human population and its potential association with more severe disease prompted us to test its effect on pdmH1N1 receptor binding, replication, antigenic properties, and pathogenesis and transmission in animal models.  相似文献   

5.
6.
Isolation of human subtype H3N2 influenza viruses in embryonated chicken eggs yields viruses with amino acid substitutions in the hemagglutinin (HA) that often affect binding to sialic acid receptors. We used a glycan array approach to analyze the repertoire of sialylated glycans recognized by viruses from the same clinical specimen isolated in eggs or cell cultures. The binding profiles of whole virions to 85 sialoglycans on the microarray allowed the categorization of cell isolates into two groups. Group 1 cell isolates displayed binding to a restricted set of α2-6 and α2-3 sialoglycans, whereas group 2 cell isolates revealed receptor specificity broader than that of their egg counterparts. Egg isolates from group 1 showed binding specificities similar to those of cell isolates, whereas group 2 egg isolates showed a significantly reduced binding to α2-6- and α2-3-type receptors but retained substantial binding to specific O- and N-linked α2-3 glycans, including α2-3GalNAc and fucosylated α2-3 glycans (including sialyl Lewis x), both of which may be important receptors for H3N2 virus replication in eggs. These results revealed an unexpected diversity in receptor binding specificities among recent H3N2 viruses, with distinct patterns of amino acid substitution in the HA occurring upon isolation and/or propagation in eggs. These findings also suggest that clinical specimens containing viruses with group 1-like receptor binding profiles would be less prone to undergoing receptor binding or antigenic changes upon isolation in eggs. Screening cell isolates for appropriate receptor binding properties might help focus efforts to isolate the most suitable viruses in eggs for production of antigenically well-matched influenza vaccines.Influenza A viruses are generally isolated and propagated in embryonated chicken eggs or in cultures of cells of mammalian origin. Human influenza viruses were previously noted to acquire mutations in the hemagglutinin (HA) gene upon isolation and culture in the allantoic sac of embryonated chicken eggs (herein simply referred to as “eggs”) compared to the sequences of those isolated in mammalian cell substrates (herein referred to as “cells”) (29, 30, 44, 53, 58). These mutations resulted in amino acid substitutions that were found to mediate receptor specificity changes and improved viral replication efficiency in eggs (37). In general, cell-grown viruses are assumed to be more similar than their egg-grown counterparts to the viruses present in respiratory secretions (30, 56). Since their emergence in 1968, influenza A (H3N2) viruses have evolved and adapted to the human host while losing their ability to be efficiently isolated and replicate in eggs, particularly after 1992 (37, 42, 48). The rate of isolation of H3N2 clinical specimens after inoculation into eggs can be up to ∼30 times lower than that in mammalian cell cultures, highlighting the strong selective pressure for the emergence of sequence variants (77).Virtually all influenza vaccines for human use were licensed decades ago by national regulatory authorities, which used a product manufactured from influenza viruses isolated and propagated exclusively in eggs; therefore, cell culture isolates have been unacceptable for this purpose (41, 71). The antigen composition of influenza vaccines requires frequent updates (every 2 years, on average) to closely match their antigenic properties to the most prevalent circulating antigenic drift variant viruses (51). The limited availability of H3N2 viruses isolated in eggs has on one or more occasions delayed vaccine composition updates and may have reduced the efficacy of vaccination against new antigenically drifted viruses (3, 34, 37).Entry of influenza viruses into host cells is mediated by HA, which binds to sialic acid containing glycoconjugates on the surface of epithelial cells in the upper respiratory tract (2, 13). The nature of the linkage between sialic acid and the vicinal sugar (usually galactose) varies in different host species and tissues and may therefore determine whether an influenza virus binds to and infects avian or human cells (40, 46, 59, 62, 72-75). Human influenza viruses preferentially bind to α2-6-linked sialic acids, and avian viruses predominantly bind to α2-3-linked sialic acids (59). Previous studies with chicken embryo chorioallantoic membranes revealed differential lectin binding, suggesting that α2-3-linked but not α2-6-linked sialosides are present on the epithelial cells (28). Human H3N2 viruses isolated in cell culture were reported to bind with a high affinity to α2-6-linked sialosides, while viruses isolated in eggs often had increased specificity for α2-3-linked sialosides (19, 20, 28). The functional classification of avian and mammalian influenza virus receptors is further complicated since in vitro and tissue-binding assays have led to new working hypotheses involving glycan chain length, topology, and the composition of the inner fragments of the carbohydrate chain as additional receptor specificity determinants (9, 17, 65, 66, 82). However, the significance of these in vitro properties remains unknown, since the structures of the natural sialosides on host cells that are used for infectious virus entry are undefined.The techniques most widely used to study the interactions of the influenza virus with host cell receptors employ animal cells in various assay formats (36, 57, 59, 64, 69). To overcome the problems of cell-based techniques, new assays that rely on labeled sialyl-glycoproteins or polymeric sialoglycans have been developed (18). However, these assays are limited by having only a few glycans available in polymeric form and offer low throughput. In contrast, glycan microarrays can assess virus binding to multiple well-defined glycans simultaneously. Previous work with influenza live or β-propiolactone (BPL)-inactivated virions as well as recombinantly produced HAs revealed a good correlation with receptor specificity compared to that achieved by other methods of analysis (4, 11, 57, 58, 65-68).Here we have compared paired isolates derived in eggs or cell cultures from the single clinical specimen to better understand their receptor binding specificity and its implications for vaccine production. We examined the differences in the sequences of the HAs between egg- and cell-grown isolates and analyzed their receptor binding profiles using glycan microarrays. Sequence analysis of the HA and glycan binding results revealed two distinct groups of viruses, with many egg isolates showing unexpectedly reduced levels of binding to α2-3 and α2-6 sialosides compared to the levels for the viruses isolated in mammalian cells. Furthermore, these studies highlighted that specific glycans may be important for H3N2 virus growth in eggs.  相似文献   

7.
UNINTENTIONAL WEIGHT LOSS, or the involuntary decline in total body weight over time, is common among elderly people who live at home. Weight loss in elderly people can have a deleterious effect on the ability to function and on quality of life and is associated with an increase in mortality over a 12-month period. A variety of physical, psychological and social conditions, along with age-related changes, can lead to weight loss, but there may be no identifiable cause in up to one-quarter of patients. We review the incidence and prevalence of weight loss in elderly patients, its impact on morbidity and mortality, the common causes of unintentional weight loss and a clinical approach to diagnosis. Screening tools to detect malnutrition are highlighted, and nonpharmacologic and pharmacologic strategies to minimize or reverse weight loss in older adults are discussed.Unintentional weight loss is the involuntary decline in total body weight over time. In clinical practice, it is encountered in up to 8% of all adult outpatients1 and 27% of frail people 65 years and older.2 Weight loss is an important risk factor in elderly patients. It is associated with increased mortality, which can range from 9% to as high as 38% within 1 to 2.5 years after weight loss has occurred.1,3,4 Frail elderly people,5 people with low baseline body weight,5,6,7 and elderly patients recently admitted to hospital are particularly susceptible to increased mortality.8,9 Weight loss is also associated with an increased risk of in-hospital complications,10,11 a decline in activities of daily living or physical function,12,13 higher rates of admission to an institution2,8 and poorer quality of life.14  相似文献   

8.
9.
Memory CD4 T cells specific for influenza virus are generated from natural infection and vaccination, persist long-term, and recognize determinants in seasonal and pandemic influenza virus strains. However, the protective potential of these long-lived influenza virus-specific memory CD4 T cells is not clear, including whether CD4 T-cell helper or effector functions are important in secondary antiviral responses. Here we demonstrate that memory CD4 T cells specific for H1N1 influenza virus directed protective responses to influenza virus challenge through intrinsic effector mechanisms, resulting in enhanced viral clearance, recovery from sublethal infection, and full protection from lethal challenge. Mice with influenza virus hemagglutinin (HA)-specific memory CD4 T cells or polyclonal influenza virus-specific memory CD4 T cells exhibited protection from influenza virus challenge that occurred in the presence of CD8-depleting antibodies in B-cell-deficient mice and when CD4 T cells were transferred into lymphocyte-deficient RAG2−/− mice. Moreover, the presence of memory CD4 T cells mobilized enhanced T-cell recruitment and immune responses in the lung. Neutralization of gamma interferon (IFN-γ) production in vivo abrogated memory CD4 T-cell-mediated protection from influenza virus challenge by HA-specific memory T cells and heterosubtypic protection by polyclonal memory CD4 T cells. Our results indicate that memory CD4 T cells can direct enhanced protection from influenza virus infection through mobilization of immune effectors in the lung, independent of their helper functions. These findings have important implications for the generation of universal influenza vaccines by promoting long-lived protective CD4 T-cell responses.Influenza virus poses substantial threats to world health due to the emergence of new pandemic strains through viral mutation and reassortment, including the 2009 H1N1 pandemic strain. Developing effective vaccines that can provide immune-mediated protection to multiple influenza virus strains remains a major challenge, as current vaccines generate neutralizing antibodies directed against the highly variable hemagglutinin (HA) and neuraminidase (NA) surface viral glycoproteins (18). These vaccines are only partially effective at protecting individuals from succumbing to seasonal strains and are largely ineffective at protecting individuals from new pandemics. In contrast, T lymphocytes have the potential to provide long-term cross-strain protection, through their recognition of invariant viral determinants (3, 9), generation of effector responses to coordinate both cellular and humoral immunity, and development of memory populations that persist for decades (34). In humans, influenza virus-specific CD4 and CD8 T cells recognize internal polymerase, matrix, and nucleoprotein components of influenza virus which are conserved in multiple strains (3). Influenza virus-specific memory T cells generated from virus exposure and vaccines can be detected readily in the peripheral blood of healthy older children and adults (16, 30). Elucidating the protective capacities of memory T cells in antiviral immunity and their underlying mechanisms is therefore crucial to understanding clinical responses to influenza and to developing strategies to boost T-cell-mediated immunity for the next emerging pandemic.The potent cytolytic responses of virus-specific CD8 T cells and their roles in antiviral primary and secondary responses have been well established (58); however, considerably less is known about the function of memory CD4 T cells in antiviral immunity. Memory CD4 T cells have the potential to play more diverse roles in coordinating secondary responses than those of memory CD8 T cells via their ability to “help” or promote cellular and humoral immunity, and also through direct effector functions. Compared to CD8 T-cell responses, memory CD4 T-cell responses in humans were found to recognize a more diverse array of influenza virus-specific epitopes (46-48) and to exhibit cross-reactivities with new pandemic strains, including avian H5N1 and 2009 H1N1 “swine flu” strains (23, 28, 36, 48). In addition, antiviral memory CD4 T cells generated as a result of influenza vaccination (22) were found to persist longer than CD8 T cells in vivo following smallpox vaccination (29). These findings suggest that memory CD4 T-cell responses could be potential targets for boosting long-term cellular immunity following vaccination, although their protective capacity remains undefined.The role of CD4 T cells in anti-influenza virus immunity has been elucidated mainly for primary responses, and less is known about the protective potential and mechanisms underlying memory CD4 T-cell-directed secondary responses. In primary influenza virus infection, CD4 T cells promote antibody production by B cells necessary for complete viral clearance (2, 17, 19, 39, 40, 57) and also promote the generation of memory CD8 T cells (4). Whether memory CD4 T cells have a similar helper-intensive role in promoting B cells and CD8 T cells in secondary influenza responses or whether effector responses predominate is not known. In this study, we investigated the mechanisms by which memory CD4 T cells mediate secondary responses and promote recovery from influenza virus infection in the clinically relevant scenario of a persisting CD4 T-cell response but no preexisting antibody response to a new influenza virus strain. We demonstrate that both influenza virus HA-specific and polyclonal influenza virus-specific memory CD4 T cells direct rapid lung viral clearance and protect from lethality via secondary antiviral responses in the absence of CD8 T cells, B cells, or any lymphocytes. Unlike primary responses to influenza virus, which can mediate protection independent of gamma interferon (IFN-γ), memory CD4 T-cell-mediated protection in the lung is dependent on secreted IFN-γ and is associated with localized interactions with lung airways and foci of T-cell-directed responses. Our findings reveal that memory CD4 T cells drive antiviral protection in the lung through a qualitatively distinct mechanism and have important implications for exploiting the protective role of persisting memory CD4 T cells in vaccines and immunotherapies.  相似文献   

10.

Background

Imported malaria is an increasing problem. The arrival of 224 African refugees presented the opportunity to investigate the diagnosis and management of imported malaria within the Quebec health care system.

Methods

The refugees were visited at home 3–4 months after arrival in Quebec. For 221, a questionnaire was completed and permission obtained for access to health records; a blood sample for malaria testing was obtained from 210.

Results

Most of the 221 refugees (161 [73%]) had had at least 1 episode of malaria while in the refugee camps. Since arrival in Canada, 87 (39%) had had symptoms compatible with malaria for which medical care was sought. Complete or partial records were obtained for 66 of these refugees and for 2 asymptomatic adults whose children were found to have malaria: malaria had been appropriately investigated in 55 (81%); no malaria smear was requested for the other 13. Smears were reported as positive for 20 but confirmed for only 15 of the 55; appropriate therapy was verified for 10 of the 15. Of the 5 patients with a false-positive diagnosis of malaria, at least 3 received unnecessary therapy. Polymerase chain reaction testing of the blood sample obtained at the home visit revealed malaria parasites in 48 of the 210 refugees (23%; 95% confidence interval [CI] 17%– 29%). The rate of parasite detection was more than twice as high among the 19 refugees whose smears were reported as negative but not sent for confirmation (47%; 95% CI 25%– 71%).

Interpretation

This study has demonstrated errors of both omission and commission in the response to refugees presenting with possible malaria. Smears were not consistently requested for patients whose presenting complaints were not “typical” of malaria, and a large proportion of smears read locally as “negative” were not sent for confirmation. Further effort is required to ensure optimal malaria diagnosis and care in such high-risk populations.In many industrialized countries, the incidence of imported malaria is rising because of changing immigration patterns and refugee policies as well as increased travel to malaria-endemic regions.1,2,3,4,5,6,7,8,9,10 Imported malaria is not rare in Canada (300–1000 cases per year),3 the United States2,3,4 or other industrialized countries.5,6,7,8,9,10 Malaria can be a serious challenge in these countries because of its potentially rapid and lethal course.11,12,13,14 The task of front-line health care providers is made particularly difficult by the protean clinical presentations of malaria. Classic periodic fevers (tertian or quartan) are seen infrequently.9,15,16,17,18,19 Atypical and subtle presentations are especially common in individuals who have partial immunity (e.g., immigrants and refugees from disease-endemic areas) or are taking malaria prophylaxis (e.g., travellers).9,16,17 Even when malaria is considered, an accurate diagnosis can remain elusive or can be delayed as a result of inadequate or distant specialized laboratory support.19,20In Quebec, the McGill University Centre for Tropical Diseases collaborates with the Laboratoire de santé publique du Québec to raise awareness of imported malaria, to offer training and quality-assurance testing, and to provide reference diagnostic services. A preliminary diagnosis is typically made by the local laboratory, and smears (with or without staining) are sent to the McGill centre, where they are reviewed within 2–48 hours, depending on the urgency of the request. Initial medical decisions are usually based on local findings and interpretations. Although malaria is a reportable disease, there is no requirement to use the reference service.On Aug. 9, 2000, 224 refugees from Tanzanian camps landed in Montréal aboard an airplane chartered by Canadian immigration authorities. Over the ensuing 5 weeks, the McGill University Centre for Tropical Diseases noted an increase in demand for malaria reference services and an apparent small “epidemic” of imported malaria. This “epidemic” prompted us to investigate the performance of the health care system in the diagnosis and management of imported malaria.  相似文献   

11.
12.
13.
14.
To investigate the fine-scale diversity of the polyphosphate-accumulating organisms (PAO) “Candidatus Accumulibacter phosphatis” (henceforth referred to as “Ca. Accumulibacter”), two laboratory-scale sequencing batch reactors (SBRs) for enhanced biological phosphorus removal (EBPR) were operated with sodium acetate as the sole carbon source. During SBR operations, activated sludge always contained morphologically different “Ca. Accumulibacter” strains showing typical EBPR performances, as confirmed by the combined technique of fluorescence in situ hybridization (FISH) and microautoradiography (MAR). Fragments of “Ca. Accumulibacter” 16S rRNA genes were retrieved from the sludge. Phylogenetic analyses together with sequences from the GenBank database showed that “Ca. Accumulibacter” 16S rRNA genes of the EBPR sludge were clearly differentiated into four “Ca. Accumulibacter” clades, Acc-SG1, Acc-SG2, Acc-SG3, and Acc-SG4. The specific FISH probes Acc444, Acc184, Acc72, and Acc119 targeting these clades and some helpers and competitors were designed by using the ARB program. Microbial characterization by FISH analysis using specific FISH probes also clearly indicated the presence of different “Ca. Accumulibacter” cell morphotypes. Especially, members of Acc-SG3, targeted by probe Acc72, were coccobacillus-shaped cells with a size of approximately 2 to 3 μm, while members of Acc-SG1, Acc-SG2, and Acc-SG4, targeted by Acc444, Acc184, and Acc119, respectively, were coccus-shaped cells approximately 1 μm in size. Subsequently, cells targeted by each FISH probe were sorted by use of a flow cytometer, and their polyphosphate kinase 1 (ppk1) gene homologs were amplified by using a ppk1-specific PCR primer set for “Ca. Accumulibacter.” The phylogenetic tree based on sequences of the ppk1 gene homologs was basically congruent with that of the 16S rRNA genes, but members of Acc-SG3 with a distinct morphology comprised two different ppk1 genes. These results suggest that “Ca. Accumulibacter” strains may be diverse physiologically and ecologically and represent distinct populations with genetically determined adaptations in EBPR systems.Enhanced biological phosphorus removal (EBPR) has been applied in many wastewater treatment plants to reduce the phosphorus that causes eutrophication in surface waters. EBPR employs polyphosphate-accumulating organisms (PAOs), which are enriched through alternating aerobic-anaerobic cycles (34). Since PAOs are essential for an understanding of EBPR, many candidates have been proposed as potential PAOs, such as Acinetobacter spp. (11), Tetrasphaera spp. (31), Microlunatus phosphovorus (36), Lampropedia spp. (40), and Gram-positive Actinobacteria (24). However, those organisms do not exhibit all of the characteristics of the EBPR biochemistry model. Recently developed culture-independent approaches such as PCR-clone libraries, fluorescence in situ hybridization (FISH), and microautoradiography (MAR) have highlighted an uncultured Rhodocyclus-related bacterium, “Candidatus Accumulibacter phosphatis” (henceforth referred to as “Ca. Accumulibacter”), as one of the most important PAO candidates (2, 5, 16, 22, 23, 27, 28, 47).Numerous studies have sought to investigate uncultured “Ca. Accumulibacter” and have shown the presence of genetically and physiologically different members with a global geographic distribution (3, 9, 22, 27, 39). For example, Kong et al. (22) identified two morphologically different “Ca. Accumulibacter” cells of small cocci and large coccobacilli labeled with PAOmix (PAO462, PAO651, and PAO846) in laboratory-scale EBPR reactors. Additional results showing phenotypic and morphological diversities of “Ca. Accumulibacter” cells also existed with respect to the different roles of denitrifying PAO (DPAO) in the EBPR process (3, 9, 23). Carvalho et al. (3) detected two different morphotypes of “Ca. Accumulibacter” with different nitrate reduction capabilities. The presence of other “Ca. Accumulibacter” strains with 15% genome sequence divergence from the dominant strains in metagenomic analyses is likely to explain these morphological and phenotypic differences (12). McMahon et al. (33) suggested the use of the polyphosphate kinase (ppk) gene, which is involved in the production of polyphosphate, for a finer elucidation of “Ca. Accumulibacter” diversity. He et al. (15) grouped “Ca. Accumulibacter” strains into five distinct clades, designated clades I, IIA, IIB, IIC, and IID, using ppk gene sequence information. Flowers and colleagues (9) previously reported that “Ca. Accumulibacter” cells of clade IA had nitrate reduction activity with phosphorus uptake but that “Ca. Accumulibacter” cells of clade IIA did not.FISH-fluorescence activated cell sorting (FACS) techniques have been used for the separation of specific microbial cells from complex microbial consortia and their metabolic gene analysis (14, 46). For example, Miyauchi et al. (35) sorted PAOmix probe-labeled “Ca. Accumulibacter” cells from EBPR sludge and analyzed their nitrite reductase gene (nirS) diversity. In the current study, we found that four different “Ca. Accumulibacter” clades (Acc-SG1, Acc-SG2, Acc-SG3, and Acc-SG4) were present in the EBPR sludge of laboratory-scale reactors supplied with acetate as the sole carbon source. We analyzed their morphological characteristics and ppk gene sequence information using a suite of FISH and FACS approaches and linked fine-scale phylogenetic diversities of “Ca. Accumulibacter” strains with their morphological characteristics and metabolic genes. This study will be useful for further genetic and physiological studies of different “Ca. Accumulibacter” clades.  相似文献   

15.
Avian H7 influenza viruses have been responsible for poultry outbreaks worldwide and have resulted in numerous cases of human infection in recent years. The high rate of conjunctivitis associated with avian H7 subtype virus infections may represent a portal of entry for avian influenza viruses and highlights the need to better understand the apparent ocular tropism observed in humans. To study this, mice were inoculated by the ocular route with viruses of multiple subtypes and degrees of virulence. We found that in contrast to human (H3N2 and H1N1) viruses, H7N7 viruses isolated from The Netherlands in 2003 and H7N3 viruses isolated from British Columbia, Canada, in 2004, two subtypes that were highly virulent for poultry, replicated to a significant titer in the mouse eye. Remarkably, an H7N7 virus, as well as some avian H5N1 viruses, spread systemically following ocular inoculation, including to the brain, resulting in morbidity and mortality of mice. This correlated with efficient replication of highly pathogenic H7 and H5 subtypes in murine corneal epithelial sheets (ex vivo) and primary human corneal epithelial cells (in vitro). Influenza viruses were labeled to identify the virus attachment site in the mouse cornea. Although we found abundant H7 virus attachment to corneal epithelial tissue, this did not account for the differences in virus replication as multiple subtypes were able to attach to these cells. These findings demonstrate that avian influenza viruses within H7 and H5 subtypes are capable of using the eye as a portal of entry.Highly pathogenic avian influenza (HPAI) H5N1 viruses, which have resulted in over 420 documented cases of human infection to date, have generally caused acute, often severe and fatal, respiratory illness (1, 50). While conjunctivitis following infection with H5N1 or human influenza viruses has been rare, most human infections associated with H7 subtype viruses have resulted in ocular and not respiratory disease (1, 9, 37, 38). Infrequent reports of human conjunctivitis infection following exposure to H7 influenza viruses date from 1977, predominantly resulting from laboratory or occupational exposure (21, 40, 48). However, in The Netherlands in 2003, more than 80 human infections with H7N7 influenza virus occurred among poultry farmers and cullers amid widespread outbreaks of HPAI in domestic poultry; the majority of these human infections resulted in conjunctivitis (14, 20). Additionally, conjunctivitis was documented in the two human infections resulting from an H7N3 outbreak in British Columbia, Canada, in 2004, as well as in H7N3- and H7N2-infected individuals in the United Kingdom in 2006 and 2007, respectively (13, 18, 29, 46, 51). The properties that contribute to an apparent ocular tropism of some influenza viruses are currently not well understood (30).Host cell glycoproteins bearing sialic acids (SAs) are the cellular receptors for influenza viruses and can be found on epithelial cells within both the human respiratory tract and ocular tissue (26, 31, 41). Both respiratory and ocular tissues additionally secrete sialylated mucins that function in pathogen defense and protection of the epithelial surface (5, 11, 22). Within the upper respiratory tract, α2-6-linked SAs (the preferred receptor for human influenza viruses) predominate on epithelial cells (26). While α2-3-linked SAs are also present to a lesser degree on respiratory epithelial cells, this linkage is more abundantly expressed on secreted mucins (2). In contrast, α2-3-linked SAs (the preferred receptor for avian influenza viruses) are found on corneal and conjunctival epithelial cells of the human eye (31, 41), while secreted ocular mucins are abundantly composed of α2-6 SAs (5). It has been suggested that avian influenza viruses are more suited to infect the ocular surface due to their general α2-3-linked SA binding preference, but this has not been demonstrated experimentally (30).The mouse model has been used previously to study the role of ocular exposure to respiratory viruses (6, 39). In mice, ocular inoculation with an H3N2 influenza virus resulted in virus replication in nasal turbinates and lung (39), whereas ocular infection with respiratory syncytial virus (RSV) resulted in detectable virus titers in the eye and lung (6). These studies have revealed that respiratory viruses are not limited to the ocular area following inoculation at this site. However, the ability of influenza viruses to replicate specifically within ocular tissue has not been examined.Despite repeated instances of conjunctivitis associated with H7 subtype infections in humans, the reasons for this apparent ocular tropism have not been studied extensively. Here, we present a murine model to study the ability of human and avian influenza viruses to cause disease by the ocular route. We found that highly pathogenic H7 and H5 influenza viruses were capable of causing a systemic and lethal infection in mice following ocular inoculation. These highly pathogenic viruses, unlike human H3N2 and H1N1 viruses, replicated to significant titers in the mouse corneal epithelium and primary human corneal epithelial cells (HCEpiCs). Identification of viruses well suited to infecting the ocular surface is the first step in better understanding the ability of influenza viruses of multiple subtypes to use this tissue as a portal of entry.  相似文献   

16.
The ubiquitin-like ISG15 protein, as well as its conjugating enzymes, is induced by type I interferons (IFNs). Experiments using ISG15 knockout (ISG15−/−) mice established that ISG15 and/or its conjugation inhibits the replication of influenza A virus. However, in contrast to the virus inhibition results for mice, the rates of virus replication in ISG15+/+ and ISG15−/− mouse embryo fibroblasts in tissue culture were similar. Here we focus on human tissue culture cells and on the effect of ISG15 and/or its conjugation on influenza A virus gene expression and replication in such cells. We demonstrate that IFN-induced antiviral activity against influenza A virus in human cells is significantly alleviated by inhibiting ISG15 conjugation using small interfering RNAs directed against ISG15-conjugating enzymes. IFN-induced antiviral activity against influenza A virus protein synthesis was reduced 5- to 20-fold by suppressing ISG15 conjugation. The amounts of the viral proteins that were restored by these siRNA treatments were approximately 40 to 50% of the amounts produced in cells that were not pretreated with IFN. Further, we show that ISG15 conjugation inhibits influenza A virus replication 10- to 20-fold at early times after infection in human cells. These results show that ISG15 conjugation plays a substantial role in the antiviral state induced by IFN in human cells. In contrast, we show that in mouse embryo fibroblasts ISG15 conjugation not only does not affect influenza A virus replication but also does not contribute to the IFN-induced antiviral activity against influenza A virus gene expression.Virus infection activates the synthesis of type I interferons (IFN-α and IFN-β), which induce the synthesis of a large array of proteins, many of which play crucial roles in the antiviral response (1). One of the most strongly induced proteins is ISG15, a 15-kDa ubiquitin-like protein that becomes conjugated to many cellular proteins (6, 8, 9, 12, 18, 22, 26, 30). Three of the human enzymes that catalyze this conjugation, the UbE1L E1 enzyme, the UbcH8 E2 enzyme, and the Herc5 E3 enzyme, are also induced by IFN-β (4, 10, 26, 27, 29). Although it had been reported that UbcH8 functions in both ISG15 and ubiquitin conjugation (3, 10, 13, 25, 28, 29), a recent study demonstrated that UbcH8 is unlikely to function in ubiquitin conjugation in vivo for two reasons: Km measurements revealed that the E1 ubiquitin-activating enzyme, unlike UbE1L, exhibits very low affinity for UbcH8, and UbcH8 is poorly, if not at all, expressed in the absence of IFN treatment, indicating that UbcH8 functions only during the IFN response (5). A large number of human proteins that are targets for ISG15 conjugation have been identified (22, 26, 30). Most of these targets are constitutively expressed proteins that function in diverse cellular pathways, but several of the targets are IFN-α/-β-induced antiviral proteins.Because the NS1 protein of influenza B virus (NS1B) was shown to bind ISG15 and inhibit its conjugation to target proteins, it was proposed that ISG15 and/or its conjugation is inhibitory to the replication of influenza B virus (27). Subsequently, experiments using ISG15 knockout (ISG15−/−) mice established that ISG15 and/or its conjugation inhibits the replication of not only influenza B virus but also influenza A virus (16). For example, at one of the inoculum levels employed for influenza A virus, 52% of the ISG15−/− mice died, whereas a significantly smaller percentage, 23%, of the ISG15+/+ mice died. However, the effect of ISG15 and/or its conjugation on influenza A virus replication was not detected in mouse embryo fibroblasts (MEFs) in tissue culture. MEFs supported only very limited replication of influenza A virus, and there was no significant difference in virus replication between ISG15+/+ and ISG15−/− MEFs (16). These investigators postulated that influenza A virus replication was probably selectively spared in other cell types of the ISG15−/− mouse. A subsequent study showed that ISG15 conjugation exerts its antiviral action against influenza B virus (and presumably against influenza A virus) in radioresistant stromal cells of the mouse (14). However, an antiviral effect of ISG15 conjugation against influenza A virus has not yet been demonstrated in mouse cells in tissue culture.In the present study we focus on human tissue culture cells and on the effect of ISG15 and/or its conjugation on the replication of influenza A virus in such cells. We show that IFN-induced antiviral activity against influenza A virus in human cells is significantly alleviated by inhibiting ISG15 conjugation using small interfering RNAs (siRNAs) against ISG15-conjugating enzymes. Our results show that both the synthesis of viral proteins and the early rate of virus replication are inhibited by ISG15 conjugation. In contrast, we show that in MEFs ISG15 conjugation not only does not affect influenza A virus replication but also does not contribute to IFN-induced antiviral activity against influenza A virus gene expression.  相似文献   

17.
A key question in pandemic influenza is the relative roles of innate immunity and target cell depletion in limiting primary infection and modulating pathology. Here, we model these interactions using detailed data from equine influenza virus infection, combining viral and immune (type I interferon) kinetics with estimates of cell depletion. The resulting dynamics indicate a powerful role for innate immunity in controlling the rapid peak in virus shedding. As a corollary, cells are much less depleted than suggested by a model of human influenza based only on virus-shedding data. We then explore how differences in the influence of viral proteins on interferon kinetics can account for the observed spectrum of virus shedding, immune response, and influenza pathology. In particular, induction of high levels of interferon (“cytokine storms”), coupled with evasion of its effects, could lead to severe pathology, as hypothesized for some fatal cases of influenza.Influenza A virus causes an acute respiratory disease in humans and other mammals; in humans, it is particularly important because of the rapidity with which epidemics develop, its widespread morbidity, and the seriousness of complications. Every year, an estimated 500,000 deaths worldwide, primarily of young children and the elderly, are attributed to seasonal influenza virus infections (49). Influenza pandemics may occur when an influenza virus with new surface proteins emerges, against which the majority of the population has no preexisting immunity. Both the emergence of H5N1 virus (34) and the current H1N1 virus pandemic (43) underline the importance of understanding the dynamics of infection and disease. A key question is, what regulates virus abundance in an individual host, causing the characteristic rapid decline in virus shedding following its initial peak? The main contenders in primary influenza virus infection are depletion of susceptible target cells and the impact of the host''s innate immune response (2, 20).On infection, the influenza virus elicits an immune response, including a rapid innate response that is correlated with the observed decline in the virus load after the first 2 days of infection (1). The slower adaptive response, including both humoral and cell-mediated components, takes several days to consolidate but is important for complete virus clearance and establishment of protective immunity. During infection of an immunologically naïve host, the innate immune response is particularly important as the first line of defense against infection. The innate immune response is regulated by chemokines and cytokines, chemical messengers produced by virus-infected epithelial cells and leukocytes (23), and natural interferon-producing cells, such as plasmacytoid dendritic cells (13). Among the key cytokines induced by epithelial cells infected with influenza A virus are type I interferons (IFNs) (IFN-α/β) (23), which directly contribute to the antiviral effect on infected and neighboring cells (38).Like other viruses, influenza A viruses have evolved strategies to limit the induction of innate immune responses (38). The NS1 protein plays a dominant role, and without it, the virus is unable to grow well or to cause pathology in an immunocompetent host (14). NS1 is multifunctional and counteracts both the induction of IFN expression and the function of IFN-activated antiviral effectors via multiple mechanisms (12, 17). Individual strains of influenza A virus possess these activities to various degrees (15, 21, 22, 26), and accordingly, NS1 has been implicated as a virulence factor (3, 17). A striking effect of the failure to control the innate response to virus infection is seen as a “cytokine storm,” which causes severe pathology (8).While there is an extensive literature on modeling influenza virus spread at the population level, the individual-host scale has received much less attention (2, 4, 5, 18, 19, 20, 27, 28). In a recent important paper, Baccam et al. modeled the kinetics of influenza A virus (2). The innate dynamics were included in the form of an IFN response that delayed and reduced virus production but did not prevent it; thus, the infection was resolved primarily through near-total depletion of epithelial cells. Their model was fitted to virus titers from human volunteers exposed to H1N1 influenza virus, but no data were available on the innate immune response or epithelial cell pathology. This has been a general difficulty in developing and validating more refined within-host models; there is a lack of detailed biological data from natural host systems, in particular, measures of immune kinetics and patterns of cellular depletion.The model presented here explicitly includes the ability of IFN to induce a fully antiviral state in order to explore the relative regulatory role of innate immunity and target cell depletion. Data from experimental infections of immunologically naïve horses with an equine influenza virus (36) allowed us to calibrate our model, not only to viral kinetics, but also to IFN dynamics and cell depletion in the context of infection of a naïve natural mammalian host. With our fitted model, we then investigate modulation of the immune response.  相似文献   

18.
Two effective (vac+) and two ineffective (vac) candidate live-attenuated influenza vaccines (LAIVs) derived from naturally selected genetically stable variants of A/TK/OR/71-delNS1[1-124] (H7N3) that differed only in the length and kind of amino acid residues at the C terminus of the nonstructural NS1 protein were analyzed for their content of particle subpopulations. These subpopulations included total physical particles (measured as hemagglutinating particles [HAPs]) with their subsumed biologically active particles of infectious virus (plaque-forming particles [PFPs]) and different classes of noninfectious virus, namely, interferon-inducing particles (IFPs), noninfectious cell-killing particles (niCKPs), and defective interfering particles (DIPs). The vac+ variants were distinguished from the vac variants on the basis of their content of viral subpopulations by (i) the capacity to induce higher quantum yields of interferon (IFN), (ii) the generation of an unusual type of IFN-induction dose-response curve, (iii) the presence of IFPs that induce IFN more efficiently, (iv) reduced sensitivity to IFN action, and (v) elevated rates of PFP replication that resulted in larger plaques and higher PFP and HAP titers. These in vitro analyses provide a benchmark for the screening of candidate LAIVs and their potential as effective vaccines. Vaccine design may be improved by enhancement of attributes that are dominant in the effective (vac+) vaccines.Live-attenuated vaccines are considered more effective than their inactive or single-component counterparts because they activate both the innate and adaptive immune systems and elicit responses to a broader range of antigens for longer periods of time (2, 10, 25, 28). Influenza virus variants with alterations in the reading frame of the nonstructural NS1 protein gene (delNS1), which express truncated NS1 proteins, characteristically induce enhanced yields of type I interferon (IFN) relative to the yields of their isogenic parental virus encoding full-length NS1 proteins (11, 13, 21, 33, 39). Many of these delNS1 variants have proved to be effective as live-attenuated influenza vaccines (LAIVs), providing protection against challenge virus in a broad range of species (33, 46), including chickens (39, 44). The IFN-inducing capacity of the virus is considered an important element in the effectiveness of LAIVs (33). In that context, influenza viruses are intrinsically sensitive to the antiviral action of IFN (31, 32, 36), although they may display a nongenetic-based transient resistance (36). In addition, IFN sensitizes cells to the initiation of apoptosis by viruses (42) and by double-stranded RNA (40), which may be spontaneously released in the course of influenza virus replication (14). Furthermore, IFN functions as an adjuvant to boost the adaptive immune response in mammals (3, 4, 11, 26, 41, 43, 46) and in chickens when administered perorally in the drinking water of influenza virus-infected birds (19). This raises the question: does the enhanced induction of IFN by delNS1 variants suffice to render an infectious influenza virus preparation sufficiently attenuated to function as an effective live vaccine? To address that question, we turned to a recent report that described the selection of several variants of influenza virus with a common backbone of A/TK/OR/71-SEPRL (Southeast Poultry Research Laboratory) that contained NS1 protein genes which were unusual in the length and nature of the amino acid residues at the C termini of the truncated NS1 proteins that they expressed because of the natural introduction of a frameshift and stop codon by the deletion in the NS1 protein gene (44). delNS1 variants were isolated from serial low-inoculum passages of TK/OR/71-delNS1[1-124] (H7N3) in eggs (44). Four of these genetically stable plaque-purified variants, each encoding a truncated NS1 protein of a particular length, were tested as a candidate LAIV in 2-week-old chickens. Two of the delNS1 variants were effective as live vaccines (double deletions [D-del] pc3 and pc4) (phenotypically vac+), and two were not (D-del pc1 and pc2) (phenotypically vac) (44), despite only subtle differences in their encoded delNS1 proteins. Why were they phenotypically different?The present study addresses this question by analyzing and comparing the different virus particles that constitute the subpopulations of these two effective (vac+) and two ineffective (vac) live vaccine candidates. These analyses are based on recent reports in which noninfectious but biologically active particles (niBAPs) in subpopulations of influenza virus particles were defined and quantified (20, 21, 29). The study described in this report reveals several quantitative and qualitative differences between the particle subpopulations of the four candidate LAIVs, including the different types of IFN-induction dose-response curves, the quantum (maximum) yields (QY) of IFN induced, the efficacy of the interferon-inducing particles (IFPs), the replication efficiency of the virus, and the size of the plaques that they produced. Evidence is presented that the in vitro analysis of virus particle subpopulations may be useful to distinguish vac+ from vac LAIV candidates and provide a basis for identifying and enhancing the performance of particles with desirable phenotypes.  相似文献   

19.
20.
Today, global attention is focused on two influenza virus strains: the current pandemic strain, swine origin influenza virus (H1N1-2009), and the highly pathogenic avian influenza virus, H5N1. At present, the infection caused by the H1N1-2009 is moderate, with mortality rates of less <1%. In contrast, infection with the H5N1 virus resulted in high mortality rates, and ca. 60% of the infected patients succumb to the infection. Thus, one of the world greatest concerns is that the H5N1 virus will evolve to allow an efficient human infection and human-to-human transmission. Natural killer (NK) cells are one of the innate immune components playing an important role in fighting against influenza viruses. One of the major NK activating receptors involved in NK cell cytotoxicity is NKp46. We previously demonstrated that NKp46 recognizes the hemagglutinin proteins of B and A influenza virus strains. Whether NKp46 could also interact with H1N1-2009 virus or with the avian influenza virus is still unknown. We analyzed the immunological properties of both the avian and the H1N1-2009 influenza viruses. We show that NKp46 recognizes the hemagglutinins of H1N1-2009 and H5 and that this recognition leads to virus killing both in vitro and in vivo. However, importantly, while the swine H1-NKp46 interactions lead to the direct killing of the infected cells, the H5-NKp46 interactions were unable to elicit direct killing, probably because the NKp46 binding sites for these two viruses are different.Natural killer (NK) cells, which comprise 5 to 15% of peripheral blood lymphocytes, are a key frontline defense against a number of pathogens, including intracellular bacteria, parasites, and most importantly with respect to the present study, viruses (6, 40). The antiviral mechanisms by which NK cells operate include both cytotoxic activity and cytokine/chemokine secretion (21). The NK killing activity is executed by numerous receptors, including NKG2D, NKp80, CD16, and the natural cytotoxic receptors (NCRs): NKp30, NKp44, and NKp46 (7, 10, 25).Although the cellular ligands for NKG2D were identified (31, 38), the identity of several of the cellular ligands for the human NCRs is still unknown, except for BAT3 and B7-H6, which are ligands for NKp30 (8, 30). In contrast, viral ligands were identified for the NCRs, and we demonstrated that pp65 of HCMV interacts with NKp30 (3) and that various influenza virus hemagglutinins (HAs) are ligands for the NKp44 and NKp46 receptors (5, 22). Supporting these observations, it was recently shown that the HA-neuraminidase of Newcastle disease virus could also interact with NKp46 and NKp44 but not with NKp30 (17). Furthermore, we have shown in vivo that in the absence of NCR1 (the mouse homologue of NKp46), A/PR8 influenza virus infection is lethal (14).Human influenza virus (H1 and H3 subtype) infections pose a major threat to the entire population, as exemplified by the three major influenza pandemics that occurred during the 20th century. The Asian (A/H2N2) in 1957 to 1958 and the Hong Kong (A/H3N2) pandemics in 1968 to 1969 resulted in the deaths of 1 to 2 million people and the 1918 “Spanish flu” (A/H1N1) pandemic killed around 50 million people (18). At present, the worldwide concern regarding influenza pandemics concentrates mainly on two viruses: the A/H1N1 swine origin influenza virus (H1N1-2009), which currently causes only a moderate pandemic (the mortality rates are ca. 1%) but is more pathogenic than a regular seasonal influenza virus (19, 26, 27), and the avian influenza virus carrying the unique H5 HA (20). The avian influenza virus is quite deadly and, although it remains a zoonotic infection, ca. 60% of infected humans died due to the infection (28).The unique properties of the H5 protein of the avian influenza virus are one of the main reasons for the virulence of the virus. The H5 of the avian influenza virus binds to cell surface glycoproteins or glycolipids containing terminal sialyl-galactosyl residues linked by 2-3-linkage [Neu5Ac(α2-3)Gal] that are found in the human conjunctiva and ciliated portion of the respiratory columnar epithelium (33). In contrast, human viruses (including all three strains that caused the pandemics described above and the H1N1-2009) bind to receptors that mostly contain terminal 2-6-linked sialyl-galactosyl moieties [Neu5Ac(α2-6)Gal]. Such glycosylations are predominant on epithelial cells in the nasal mucosa, paranasal sinuses, pharynx, trachea, and bronchi (33, 37). It has been suggested that the lack of human-to-human transmission of avian influenza viruses is due to their α2,3-SA receptor binding preference, and the concern is that genetic changes in H5 might alter its preference from α2,3-SA to α2,6-SA, allowing human-to-human transmission.In our previous studies (4, 22) we showed that the interaction between NKp46 and influenza virus HAs depends on the sialylation of the NKp46 receptor. We further demonstrated that the sialic acid residues, which are linked via α2,6 to the threonine 225 residue of NKp46, are crucial for the NKp46 interactions with the various influenza virus HAs (4).We show that, both in vitro and in vivo, the killing of H1N1-2009-infected cells is correlated with the degree of NKp46 binding. Surprisingly, we observed that although NKp46 efficiently recognized the avian H5 HA, such interactions were unable to elicit the direct killing of the infected cells. By using mutagenesis analysis experiments and killing assays we demonstrate that NKp46 interacts with H1 and H5 at distinct sites, since we show that the sugar carrying residue at position 225 is crucial for the NKp46-H1N1-2009 interactions, whereas the interaction of H5 with NKp46 depends on both residues 216 and 225.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号