首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Placental fatty acid transfer in humans in vivo was studied using stable isotopes. Four pregnant women undergoing cesarean section received 4 h before delivery an oral dose of [(13)C]palmitic acid (PA), [(13)C]oleic acid (OA), [(13)C]linoleic acid (LA), and [(13)C]docosahexaenoic acid (DHA). Maternal blood samples were collected at -4 h (basal), -3 h, -2 h, -1 h, 0 h, and +1 h relative to time of cesarean section. At the time of birth, venous cord blood and placental tissue were collected. Fatty acid composition was determined by gas-liquid chromatography and isotopic enrichment by gas chromatography-combustion-isotope ratio mass spectrometry. (13)C-enrichment of fatty acids in the nonesterified fatty acids (NEFA) of cord plasma tended to be higher than in NEFA of placenta, with statistically significant differences for the nonesterified OA and DHA ([(13)C]PA, 0.024 +/- 0.011 vs. 0.001 +/- 0.001; [(13)C]OA, 0.042 +/- 0.008 vs. 0.005 +/- 0.003; [(13)C]LA, 0.038 +/- 0.010 vs. 0.008 +/- 0.002; [(13)C]DHA, 0.059 +/- 0.009 vs. 0.010 +/- 0.003). The ratio of tracer fatty acid concentrations of placenta to maternal plasma was significantly higher for [(13)C]DHA than for the other fatty acids ([(13)C]PA, 7.1 +/- 1%; [(13)C]OA, 3.8 +/- 0.4%; [(13)C]LA, 9.2 +/- 1.3%; [(13)C]DHA, 25.9 +/- 3.4%). These results suggest that only a part of the placental NEFA participated in fatty acid transfer, and that the placenta showed a preferential accretion of DHA relative to the other fatty acids.  相似文献   

2.
Impaired synthesis of DHA in patients with X-linked retinitis pigmentosa   总被引:1,自引:0,他引:1  
Many patients with X-linked retinitis pigmentosa (XLRP) have lower than normal blood levels of the long-chain polyunsaturated omega3 fatty acid docosahexaenoic acid (DHA; 22:6omega3). This clinical trial was designed to test whether down-regulation of DHA biosynthesis might be responsible for these reduced DHA levels. DHA biosynthesis was assessed in five severely affected patients with XLRP and in five age-matched controls by quantifying conversion of [U-(13)C]alpha-linolenic acid (alpha-LNA) to [(13)C]DHA. Following oral administration of [U-(13)C]alpha-LNA, blood samples were collected at designated intervals for 21 days and isotopic enrichment of all omega3 fatty acids was determined by gas chromatography/mass spectroscopy. Activity of each metabolic step in the conversion of alpha-LNA to DHA was determined by comparison of the ratios of the integrated concentration of (13)C-product to (13)C-precursor in plasma total lipid fractions. The ratio of [(13)C]DHA to [(13)C]18:3omega3 (the entire pathway) and that of [(13)C]20:5omega3 to [(13)C]20:4omega3 (Delta(5)-desaturase) were significantly lower in patients versus controls (P = 0.03 and 0.05, respectively). The estimated biosynthetic rates of [(13)C]20:5omega3, [(13)C]22:5omega3, [(13)C]24:5omega3, [(13)C]24:6omega3, and [(13)C]22:6omega3 were significantly lower in XLRP patients (42%, 43%, 31%, 18%, and 32% of control values, respectively; P < 0.04), supporting down-regulation of Delta(5)-desaturase in XLRP. The disappearance of (13)C-labeled fatty acids from plasma was not greater in XLRP patients compared with controls, suggesting that XLRP was not associated with increased rates of fatty acid oxidation or other routes of catabolism.Thus, despite individual variation among both patients and controls, the data are consistent with a lower rate of Delta(5)-desaturation, suggesting that decreased biosynthesis of DHA may contribute to lower blood levels of DHA in patients with XLRP.  相似文献   

3.
Docosahexaenoic acid (DHA) accumulates in nerve endings of the brain during development. It is released from the membrane during ischemia and electroconvulsive shock. DHA optimizes neurologic development, it is neuroprotective, and rat adrenopheochromocytoma (PC12) cells have decreased PLA2 activity when DHA is present. To characterize DHA metabolism in PC12 cells, media were supplemented with [3H]DHA or [3H]glycerol. Fractions of nerve growth cone particles (NGC) and cell bodies were prepared and the metabolism of the radiolabeled substrates was determined by thin-layer chromatography. [3H]glycerol incorporation into phospholipids indicated de novo lipid synthesis. [3H]DHA uptake was more rapid in the cell bodies than in the NGC. [3H]DHA first esterified in neutral lipids and later in phospholipids (phosphatidylethanolamine). [3H]glycerol primarily labeled phosphatidylcholine. DHA uptake was compartmentalized between the cell body and the NGC. With metabolism similar to that seen in vivo, PC12 cells are an appropriate model to study DHA in neurons.  相似文献   

4.
DHA/EPA-rich phosphatidylcholine (PC) was successfully synthesized by immobilized phospholipase A1 (PLA1)-catalyzed transesterification of PC and DHA/EPA-rich ethyl esters in a solvent-free system. Effects of reaction temperature, water addition and substrate mass ratio on the incorporation of DHA/EPA were evaluated using response surface methods (RSM). Water addition had most significant effect on the incorporation. Reaction temperature and substrate mass ratio, however, had no significant effect on the incorporation. The maximal incorporation was 19.09 % (24 h) under the following conditions: temperature 55.7 °C, water addition 1.1 wt % and substrate mass ratio (ethyl esters/PC) 6.8:1. Furthermore, effects of water addition (from 0 to 1.25 wt %) on DHA/EPA incorporation and the composition of products were further investigated. The immobilized PLA1 was more active when water addition was above 0.5 wt %. By monitoring the reaction processes with different water addition, a possible reaction scheme was proposed for transesterification of PC with DHA/EPA-rich ethyl esters. In summary, PC and sn2-lysophosphatidylocholine (LPC) were predominant in the mixtures at early stages of reaction, whereas sn1-LPC and glycerophosphocholine (GPC) predominant at later stages. The vacuum employed after 24 h significantly increased the incorporation of DHA/EPA and the composition of PC, and the highest incorporation (30.31 %) of DHA/EPA was obtained at 72 h and the yield of PC was 47.2 %.  相似文献   

5.
The fetal demand for docosahexaenoic acid (DHA) has to be satisfied by the mother. We determined the fatty acids in maternal plasma non-esterified fatty acid (NEFA), triacylglycerol (TAG) and phosphatidylcholine (PC), in a cross-sectional study of non-pregnant (n = 10), pregnant (n = 19), and postpartum (n = 9) women. There were lipid class-dependent differences in plasma polyunsaturated fatty acid (PUFA) concentrations between groups. During pregnancy, DHA was most highly enriched in PC, about 230%, with more modest enrichment for linoleic acid (LA) and arachidonic acid (AA), and no enrichment of alpha-linolenic acid (alpha-LNA). There was relative enrichment of LA, AA and alpha-LNA in TAG, but not of DHA. There was no specific enrichment of any PUFA in the NEFA pool. These data accord with the suggestion that the enrichment of alpha-LNA in TAG and of DHA in phospholipids reflects hepatic regulation of n-3 PUFA metabolism which potentially enhances the delivery of DHA to the placenta.  相似文献   

6.
Long-chain PUFAs (LCPUFAs) occur in foods primarily in the natural lipid classes, triacylglycerols (TAGs) or phospholipids (PLs). We studied the relative efficacy of the neural omega-3 DHA provided in formula to growing piglets as a dose of 13C-DHA bound to either TAG or phosphatidylcholine (PC). Piglets were assigned to identical formula-based diets from early life and provided with TAG-13C-DHA or PC-13C-DHA orally at 16 days. Days later, piglet organs were analyzed for 13C-DHA and other FA metabolites. PC-13C-DHA was 1.9-fold more efficacious for brain gray matter DHA accretion than TAG-13C-DHA, and was similarly more efficacious in gray matter synaptosomes, retina, liver, and red blood cells (RBCs). Liver labeling was greatest, implying initial processing in that organ followed by export to other organs, and suggesting that transfer from gut to bloodstream to liver in part drove the difference in relative efficacy for tissue accretion. Apparent retroconversion to 22:5n-3 was more than double for PC-13C-DHA and was more prominent in neural tissue than in liver or RBCs. These data directly support greater efficacy for PC as a carrier for LCPUFAs compared with TAG, consistent with previous studies of arachidonic acid and DHA measured in other species.  相似文献   

7.
Acetate-2-[14C] and choline-Me-[ 14C], absorbed through the stems of isolated barley heads, were used to label lysophosphatidylcholine (LPC) and phosphatidylcholine (PC) of the endosperm tissue. Labelling of LPC occurred in barley heads at almost all stages of development but was at a maximum when the fr. wt of the seeds had attained ca 60–70% of their maximum wt. In time-course experiments labelling of PC from each substrate reached a maximum after 50 hr and then declined. Label in LPC, however, continued to accumulate throughout 72 hr. Stimulation of labelling of LPC from choline-Me-[14C] by sucrose was observed. A bound form of LPC (starch lipid) and a free form were distinguished by differential solvent extraction.  相似文献   

8.
Long-chain acyl-CoA synthetase 6 preferentially promotes DHA metabolism   总被引:1,自引:0,他引:1  
Previously we demonstrated that supplementation with the polyunsaturated fatty acids (PUFA) arachidonic acid (AA) or docosahexaenoic acid (DHA) increased neurite outgrowth of PC12 cells during differentiation, and that overexpression of rat acyl-CoA synthetase long-chain family member 6 (Acsl6, formerly ACS2) further increased PUFA-enhanced neurite outgrowth. However, whether Acsl6 overexpression enhanced the amount of PUFA accumulated in the cells or altered the partitioning of any fatty acids into phospholipids (PLs) or triacylglycerides (TAGs) was unknown. Here we show that Acsl6 overexpression specifically promotes DHA internalization, activation to DHA-CoA, and accumulation in differentiating PC12 cells. In contrast, oleic acid (OA) and AA internalization and activation to OA-CoA and AA-CoA were increased only marginally by Acsl6 overexpression. Additionally, the level of total cellular PLs was increased in Acsl6 overexpressing cells when the medium was supplemented with AA and DHA, but not with OA. Acsl6 overexpression increased the incorporation of [(14)C]-labeled OA, AA, or DHA into PLs and TAGs. These results do not support a role for Acsl6 in the specific targeting of fatty acids into PLs or TAGs. Rather, our data support the hypothesis that Acsl6 functions primarily in DHA metabolism, and that its overexpression increases DHA and AA internalization primarily during the first 24 h of neuronal differentiation to stimulate PL synthesis and enhance neurite outgrowth.  相似文献   

9.
The mechanisms of placental transfer of long chain polyunsaturated fatty acids are poorly understood, however fatty acid transporters in the syncytiotrophoblast microvillous (MVM) and basal plasma membrane (BM) are believed to be involved. Using LC-MS/MS and samples from normal term pregnant women, we found that the concentration of lysophosphatidylcholine-docosahexaenoyl (DHA-LPC) was 4-fold higher in umbilical vein plasma compared to maternal venous concentrations while conversely phosphatidylcholine (PC) containing DHA or arachidonic acid were higher in maternal circulation. Using primary human trophoblast cells incubated with DHA we show that DHA was highly incorporated into PC and LPC species in the placenta. Protein expression of Phosphatidylcholine Transfer Protein (PCTP) was 14-fold higher in MVM and the expression of MFSD2a, an LPC transporter, was 5-fold higher in BM than in MVM. Interestingly, BM MFSD2a expression was positively correlated with DHA-LPC in the umbilical vein. These findings suggest that syncytiotrophoblast takes up PC from the maternal circulation, as well as preferentially incorporating DHA into PC. Placental PC are converted to LPC forms, which are transported across the BM mediated by MFSD2a, with a strong selectivity for DHA.  相似文献   

10.
Pre-type II alveolar cells isolated from the fetal rabbit lung on the 24th gestational day have been maintained in vitro for 14 days in a chemically defined medium supplemented with hormone-stripped serum. These cells replicate in culture. Measurement of the incorporation of [14C]choline into cellular disaturated phospholipid indicated that those cells grown in vitro under standard conditions for 8 days (pre-confluent) incorporate the radioactive precursor at a similar rate to cells maintained for 14 days (post-confluent). Both dexamethasone and serum-free medium conditioned by monolayer cultures of fetal rabbit lung fibroblasts stimulated [14C]choline incorporation into disaturated phosphatidylcholine (PC) by the pre- and post-confluent cultures after 24 or 48 h of exposure: the conditioned medium was more effective than the steroid. These treatments had little effect on choline incorporation into disaturated phosphatidylcholine of preconfluent cells during the first 12 h. A marked response occurred by 24 h after which the labelling of disaturated phosphatidylcholine plateaued. In contrast, with post-confluent cells labelling of disaturated PC increased in a more linear fashion and only plateaued after 72 h. Determination of the ratio of incorporation of [14C]choline into disaturated versus unsaturated phospholipid indicated that serum-free medium conditioned by monolayer cultures of fetal lung fibroblasts specifically increased the level of radioactive precursor in the disaturated phospholipid in both the pre- and post-confluent cell monolayers.  相似文献   

11.
Using mass spectrometry (MS), we examined the impact of endothelial lipase (EL) overexpression on the cellular phospholipid (PL) and triglyceride (TG) content of human aortic endothelial cells (HAEC) and of mouse plasma and liver tissue. In HAEC incubated with the major EL substrate, HDL, adenovirus (Ad)-mediated EL overexpression resulted in the generation of various lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE) species in cell culture supernatants. While the cellular phosphatidylethanolamine (PE) content remained unaltered, cellular phosphatidylcholine (PC)-, LPC- and TG-contents were significantly increased upon EL overexpression. Importantly, cellular lipid composition was not altered when EL was overexpressed in the absence of HDL. [14C]-LPC accumulated in EL overexpressing, but not LacZ-control cells, incubated with [14C]-PC labeled HDL, indicating EL-mediated LPC supply. Exogenously added [14C]-LPC accumulated in HAEC as well. Its conversion to [14C]-PC was sensitive to a lysophospholipid acyltransferase (LPLAT) inhibitor, thimerosal. Incorporation of [3H]-Choline into cellular PC was 56% lower in EL compared with LacZ cells, indicating decreased endogenous PC synthesis. In mice, adenovirus mediated EL overexpression decreased plasma PC, PE and LPC and increased liver LPC, LPE and TG content. Based on our results, we conclude that EL not only supplies cells with FFA as found previously, but also with HDL-derived LPC and LPE species resulting in increased cellular TG and PC content as well as decreased endogenous PC synthesis.  相似文献   

12.
We have proposed that incorporation of docosahexaenoic acid (DHA) into phosphatidylethanolamine (PE) might enhance resistance to lipid peroxidation in vivo. In this study, we examined the relationship between the transbilayer distribution of PE and the oxidative stability of DHA in PE. Liposomes composed of a phospholipid mixture were used as models for biological membranes. To modulate the transbilayer distribution of PE obtained from the liver of rats fed DHA (PE-DHA), we used phosphatidylcholine (PC) with two types of acyl chain region: dipalmitoyl (PC16:0) or dioleoyl (PC18:1). The proportion of PE-DHA in the liposomal external layer was significantly higher in liposomes containing PC18:1 than in those containing PC16:0. This tendency was more pronounced in liposomes extruded using a polycarbonate filter with smaller pore sizes. Additionally, PE-DHA in the external layer of liposomes prepared using a filter with smaller pore sizes could protect DHA itself from 2,2(')-azobis(2-aminopropane)dihydrochloride-mediated lipid peroxidation.  相似文献   

13.
Apolipoprotein ε allele 4 (APOE4) influences the metabolism of polyunsaturated fatty acids (PUFAs) such as docosahexaenoic acid (DHA). The entorhinal cortex (EC) in the brain is affected early in Alzheimer's disease and is rich in DHA. The purpose of this study is to identify the effect of APOE4 and DHA lipid species on the EC. Plasma and cerebrospinal fluid (CSF) lipidomic measurements were obtained from the DHA Brain Delivery Pilot, a randomized clinical trial of DHA supplementation (n = 10) versus placebo (n = 12) for six months in nondemented older adults stratified by APOE4 status. Wild-type C57B6/J mice were fed a high or low DHA diet for 6 months followed by plasma and brain lipidomic analysis. Levels of phosphatidylcholine DHA (PC 38:6) and cholesterol ester DHA (CE 22:6) had the largest increases in CSF following supplementation (P < 0.001). DHA within triglyceride (TG) lipids in CSF strongly correlated with corresponding plasma TG lipids, and differed by APOE4, with carriers having a lower increase than noncarriers. Changes in plasma PC DHA had the strongest association with changes in EC thickness in millimeters, independent of APOE4 status (P = 0.007). In mice, a high DHA diet increased PUFAs within brain lipids. Our findings demonstrate an exchange of DHA at the CSF-blood barrier and into the brain within all lipid species with APOE having the strongest effect on DHA-containing TGs. The correlation of PC DHA with EC suggests a functional consequence of DHA accretion in high density lipoprotein for the brain.  相似文献   

14.
Lipid metabolism in Trichuris globulosa (Nematoda)   总被引:1,自引:0,他引:1  
Adult males and females of Trichuris globulosa, an intestinal nematode parasite of goats, were studied for their lipid composition, capability of incorporation of (Na)-1-14C-acetate into different lipid classes and the activity of certain key enzymes of lipid metabolism. The parasite possesses a large variety of lipids including certain complex lipids. These are phosphatidylcholine (PC), diphosphatidylglycerol (cardiolipin), lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), phosphatidylserine (PS), phosphatidylinositol (PI), plasmalogens (choline + ethanolamine), mono-, di- and triacylglycerols, free and esterified cholesterol, non-esterified fatty acids (NEFA), gangliosides, cerebrosides (glycosyl ceramide) and sulphuric acid esters of cerebrosides (sulphatides). The females contain more lipids than males, particularly the acylglycerols and phospholipids, possibly to meet the energy requirement and structural entities for the daily production of large numbers of eggs. Incorporation studies of labelled substrate, sodium-1-14C acetate demonstrate that the adult female has extremely active mechanisms for biosynthesizing these lipids. Most of the labels are found in PC, PE, SM, acylglycerols, NEFA, gangliosides, cerebrosides and sulphatides. Cholesterol, although a minor component of the parasitic lipids, incorporates large amount of label and also undergoes fast turnover. Kinetic analysis of the incorporation by measuring the rate constant (k) and half life (t1/2) reveals that gangliosides are the fastest biosynthesizing and turning over lipids, although they constitute only 0.1% of the total lipids. The presence of important enzymes of lipid biosynthesis, glucose-6-phosphate dehydrogenase, malate dehydrogenase and hydroxymethyl glutaryl-CoA reductase and an enzyme of lipid ester hydrolysis, triacylglycerol lipase, is also established in T. globulosa. Michaelis-Menten kinetic characteristics of the parasitic enzymes (Km, Vmax, v and the first order rate constant, k) are comparable with those of rat liver homogenates.  相似文献   

15.
The effects of a single dose of 3,3'-5-triiodothyronine (T3) on the uptake of (methyl-14C) choline into liver phosphatidylcholine (PC) and lysophosphatidylcholine (LPC) were studied in chicks as a function of time up to 6 h after injection of the radioactive precursor. In all cases, chicks received the T3 dose intraperitoneally 5 h before injection of the labelled compound. T3 enhances the incorporation of 14C-choline into liver PC, showing a biphasic response; the main uptake occurs between 2 and 3 h after administering the precursor. A smaller but significant hormone-dependent increase in incorporation of the labelled compound is observed in the case of LPC. Lipid P associated to PC and LPC remains constant throughout the experiment, and does not vary with hormone treatment. It is suggested that T3-injection increases, either directly or through other metabolic processes, PC and LPC turnover in chick liver cells.  相似文献   

16.
Docosahexaenoic acid (DHA) is important for infant development. The DHA transfer from maternal diet into human milk has not been investigated in detail. We studied the effects of DHA supplementation on the fatty acid composition of human milk and the secretion of dietary (13)C-labeled fatty acids, including DHA, into human milk. Ten lactating women were randomized to consume, from 4 to 6 weeks postpartum, an oil rich in DHA (DHASCO, 200 mg of DHA/day) (n = 5) or a placebo oil (n = 5). Dietary intakes were followed by 7-day protocols. On study day 14 a single dose of [U-(13)C]DHASCO was given orally, milk samples were collected over 48 h, and milk production was recorded. Milk fatty acid composition was determined by gas-liquid chromatography and isotopic enrichment was determined by gas chromatography- combustion-isotope ratio mass spectrometry (GC-C-IRMS). Milk DHA content did not differ between the supplemented and placebo group at study entry (0.29 vs. 0.28 wt%, median). After 2 weeks of supplementation the milk DHA content was almost 2-fold higher in the supplemented versus placebo group (0.37 vs. 0.21 wt%, P = 0.003). Cumulative recovery of [(13)C]palmitic, [(13)C]oleic, and [(13)C]docosahexaenoic acids in human milk at 48 h was similar between supplemented and placebo groups (palmitic acid 7.40 vs. 8. 14%, oleic acid 9.14 vs. 9.97%, and docosahexaenoic acid 9.09 vs. 8. 03% of dose, respectively). Notable lower recovery was observed for [(13)C]myristic acid in both the supplemented and placebo groups, 0. 62 versus 0.77% of dose.Dietary DHA supplementation increases the DHA content in human milk. DHA transfer from the diet into human milk is comparable to palmitic and oleic acid transfer.  相似文献   

17.
The desaturation of [1-(14)C] 18:3n-3 to docosahexaenoic acid (DHA; 22:6n-3) is enhanced in an essential fatty acid deficient cell line (EPC-EFAD) in comparison with the parent cell line (EPC) from carp. In the present study, the effects of DHA on lipid and fatty acid compositions, and the metabolism of [1-(14)C]18:3n-3 were investigated in EPC-EFAD cells in comparison with EPC cells. DHA supplementation had only relatively minor effects on lipid content and lipid class compositions in both EPC and EPC-EFAD cells, but significantly increased the amount of DHA, 22:5n-3, eicosapentaenoic acid (EPA; 20:5n-3), total n-3 polyunsaturated fatty acids (PUFA), total PUFA and saturated fatty acids in total lipid and total polar lipid in both cell lines. Retroconversion of supplemental DHA to EPA was significantly greater in EPC cells. Monounsaturated fatty acids, n-9 and n-6PUFA were all decreased in total lipid and total polar lipid in both cell lines by DHA supplementation. The incorporation of [1-(14)C]18:3n-3 was greater into EPC-EFAD compared to EPC cells but DHA had no effect on the incorporation of [1-(14)C]18:3n-3 in either cell line. In contrast, the conversion of [1-(14)C]18:3n-3 to tetraenes, pentaenes and total desaturation products was similar in the two cell lines and was significantly reduced by DHA supplementation in both cell lines. However, the production of DHA from [1-(14)C]18:3n-3 was significantly greater in EPC-EFAD cells compared to EPC cells and, whereas DHA supplementation had no effect on the production of DHA from [1-(14)C]18:3n-3 in EPC cells, DHA supplementation significantly reduced the production of DHA from [1-(14)C] 18:3n-3 in EPC-EFAD cells. Greater production of DHA in EPC-EFAD cells could be a direct result of significantly lower levels of end-product DHA in these cells' lipids compared to EPC cells. Consistent with this, the suppression of DHA production upon DHA supplementation was associated with increased cellular and membrane DHA concentrations in EPC-EFAD cells. However, an increase in cellular DHA content to similar levels failed to suppress DHA production in DHA-supplemented EPC cells. A possible explanation is that greatly increased levels of EPA, derived from retroconversion of the added DHA, acts to offset the suppression of the pathway by DHA by stimulating conversion of EPA to DHA in DHA-supplemented EPC cells.  相似文献   

18.
Mice with surfactant protein (SP)-D deficiency have three to four times more surfactant lipids in air spaces and lung tissue than control mice. We measured multiple aspects of surfactant metabolism and function to identify abnormalities resulting from SP-D deficiency. Relative to saturated phosphatidylcholine (Sat PC), SP-A and SP-C were decreased in the alveolar surfactant and the large-aggregate surfactant fraction. Although large-aggregate surfactant from SP-D gene-targeted [(-/-)] mice converted to small-aggregate surfactant more rapidly, surface tension values were comparable to values for surfactant from SP-D wild-type [(+/+)] mice. (125)I-SP-D was cleared with a half-life of 7 h from SP-D(-/-) mice vs. 13 h in SP-D(+/+) mice. Although initial incorporation and secretion rates for [(3)H]palmitic acid and [(14)C]choline into Sat PC were similar, the labeled Sat PC was lost from the lungs of SP-D(+/+) mice more rapidly than from SP-D(-/-) mice. Clearance rates of intratracheal [(3)H]dipalmitoylphosphatidylcholine were used to estimate net clearances of Sat PC, which were approximately threefold higher for alveolar and total lung Sat PC in SP-D(-/-) mice than in SP-D(+/+) mice. SP-D deficiency results in multiple abnormalities in surfactant forms and metabolism that cannot be attributed to a single mechanism.  相似文献   

19.
We determined whether the membrane defect in hereditary pyropoikilocytosis (HPP) is associated with thermally induced changes in the lipid bilayer, the stability of which was probed by the rate of translocation of phosphatidylcholine (PC) over the two leaflets. [14C]PC was incorporated into the outer leaflet of the lipid bilayer of the intact erythrocytes using a PC-specific phospholipid exchange protein. The transbilayer equilibration of this PC was determined by measuring the time-dependent changes in its accessibility to exogenous phospholipase A2. The rate of transbilayer equilibration of PC was increased in HPP cells at 37 degrees C when compared to normal erythrocytes (rate constants, 0.07 +/- 0.02 and 0.03 +/- 0.01 h-1, respectively). A further dramatic increase in PC transbilayer equilibration was noted in HPP cells incubated at 44 degrees C (rate constant, 0.15 +/- 0.02 h-1). A similar marked acceleration in transbilayer movement of PC was also seen in normal erythrocytes when incubated at 46 degrees C (rate constant, 0.13 +/- 0.03 h-1). Despite the enhanced transbilayer mobility of PC in HPP cells when compared to normal erythrocytes, no major alteration in the asymmetric distribution could be observed when probed with phospholipase A2. Since changes in transbilayer mobility of PC and cell morphology occur in HPP cells at lower temperature than in normal red cells, it may be concluded that the enhanced thermal sensitivity of spectrin is the major factor responsible for these changes. Our results therefore support the view that the structural integrity of the skeletal network is essential for stabilization of the lipid bilayer of the red cell membrane.  相似文献   

20.
Polyunsaturated fatty acids have been reported to enhance the cytotoxic activity of several anticancer drugs. In the present study, we observed that doxorubicin chemosensitization of breast cancer cell lines by docosahexaenoic acid (DHA, a long-chain omega-3 polyunsaturated fatty acid) was cell-line selective, affecting MDA-MB-231 and MCF-7 dox (a doxorubicin-resistant cell line) but not the parental MCF-7 cell line. DHA supplementation led to an increase in membrane phospholipid DHA level, but did not induce changes in intracellular [(14)C]doxorubicin accumulation. In MDA-MB-231, doxorubicin efficacy enhancement by DHA was linked to an increase in malondialdehyde level, a final product of lipid peroxidation. DHA elicited by itself a 3.7-fold malondialdehyde level increase, additive to that induced by doxorubicin. Addition of doxorubicin to DHA further increased the glutathione level, indicative of the generation of an oxidative stress. In contrast to MDA-MB-231, doxorubicin did not increase the malondialdehyde level in MCF-7, although DHA induced lipid peroxidation. Therefore in MCF-7, lipid peroxidation induced by DHA itself was not sufficient to trigger an oxidative stress and to subsequently increase sensitivity to doxorubicin. These data indicate that the differential effect of DHA among cells on drug toxicity results from a differential oxidative response to doxorubicin. Chemosensitization through fatty acids appears as a new promising adjuvant therapeutic paradigm, since omega-3 fatty acids are physiological molecules found in food and are nontoxic in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号