首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The present paper aims to discuss the geog raphical distribution of the Juglandaceae on the basis of unity of the phylogeny and the process of dispersal in the plants. The paper is divided into the following three parts: 1. The systematic positions and the distribution patterns of nine living genera in the family Juglandaceae (namely, Engelhardia, Oreomunnea, Alfaroa, Pterocarya, Cyclocarya, Juglans, Carya, Annamocarya and Platycarya) are briefly discussed. The evolutional relationships between the different genera of the Juglandaceae are elucidated. The fossil distribution and the geological date of the plant groups are reviewed. Through the analysis for the geographical distribution of the Juglandaceous genera, the distribution patterns may be divided as follows: A. The tropical distribution pattern a. The genera of tropical Asia distribution: Engelhardia, Annamocarya. b. The genera of tropical Central America distribution: Oreomunnea, Alfaroa. B. The temperate distribution pattern c. The genus of disjunct distribution between Western Asia and Eastern Asia: Pterocarya. d. The genus of disjunct distribution between Eurasia and America: Juglans. e. The genus of disjunct distribution between Eastern Asia and North America: Carya. f. The genera whose distribution is confined to Eastern Asia: Cyclocarya, Platycarya. 2. The distribution of species According to Takhtajan’s view point of phytochoria, the number of species in every region are counted. It has shown clearily that the Eastern Asian Region and the Cotinental South-east Asian Region are most abundant in number of genera and species. Of the 71 living species, 53 are regional endemic elements, namely 74.6% of the total species. The author is of the opinion that most endemic species in Eurasia are of old endemic nature and in America of new endimic nature. There are now 7 genera and 28 species in China, whose south-western and central parts are most abundant in species, with Province Yunnan being richest in genera and species. 3. Discussions of the distribution patterns of the Juglandaceae A. The centre of floristic region B. The centre of floristic regions is determined by the following two principles: a. A large number of species concentrate in a district, namely the centre of the majority; b. Species of a district can reflect the main stages of the systematic evolution of the Juglandaceae, namely the centre of diversity. It has shown clearly that the southern part of Eastern Asian region and the northern part of Continental South-east Asian Region (i.c. Southern China and Northern Indo-China) are the main distribution centre of the Juglandaceae, while the southern part of Sonora Region and Caribbean Region (i.c. South-western U.S.A., Mexico and Central America) are the secondary distribution centre. As far as fossil records goes, it has shown that in Tertiary period the Juglandaceae were widely distributed in northern Eurasia and North America, growing not only in Europe and the Caucasus but also as far as in Greenland and Alaska. It may be considered that the Juglandaceae might be originated from Laurasia. According to the analysis of distribution pattern for living primitive genus, for example, Engelhardia, South-western China and Northern Indo-China may be the birthplace of the most primitive Juglandaceous plants. It also can be seen that the primitive genera and the primitive sections of every genus in the Juglandaceae have mostly distributed in the tropics or subtropics. At the same time, according to the analysis of morphological characters, such as naked buds in the primitive taxa of this family, it is considered that this character has relationship with the living conditions of their ancestors. All the evidence seems to show that the Juglandaceae are of forest origin in the tropical mountains having seasonal drying period. B. The time of the origin The geological times of fossil records are analyzed. It is concluded that the origin of the Juglandaceae dates back at least as early as the Cretaceous period. C. The routes of despersal After the emergence of the Juglandaceous plant on earth, it had first developed and dispersed in Southern China and Indo-China. Under conditions of the stable temperature and humidity in North Hemisphere during the period of its origin and development, the Juglandaceous plants had rapidly developed and distributed in Eurasia and dispersed to North America by two routes: Europe-Greenland-North America route and Asia-Bering Land-bridge-North America route. From Central America it later reached South America. D. The formaation of the modern distribution pattern and reasons for this formation. According to the fossil records, the formation of two disjunct areas was not due to the origin of synchronous development, nor to the parallel evolution in the two continents of Eurasia and America, nor can it be interpreted as due to result of transmissive function. The modern distribution pattern has developed as a result of the tectonic movement and of the climatic change after the Tertiary period. Because of the continental drift, the Eurasian Continent was separated from the North American Continent, it had formed a disjunction between Eurasia and North America. Especially, under the glaciation during the Late Tertiary and Quaternary Periods, the continents in Eurasia and North America were covered by ice sheet with the exception of “plant refuges”, most plants in the area were destroyed, but the southern part of Eastern Asia remained practically intact and most of the plants including the Juglandaceae were preserved from destruction by ice and thence became a main centre of survival in the North Hemisphere, likewise, there is another centre of survival in the same latitude in North America and Central America. E. Finally, the probable evolutionary relationships of the genera of the Juglanda-ceae is presented by the dendrogram in the text.  相似文献   

2.
木兰科(Magnoliaceae)的起源、进化和地理分布   总被引:31,自引:1,他引:30  
木兰科为亚洲-美洲间断分布科,全世界有15属,246种,主要分布于亚洲东南部的热带、亚热带地区,从喜马拉雅至日本,向南达新几内亚及新不列颠;少数种类分布于北美东南部、中美至南美巴西.中国有11属,约99种.木兰科的现代分布中心在东亚-东南亚地区.根据木兰科的化石记录、系统发育和现代分布,推测其起源时间为早白垩纪,甚至更早.起源地可能在中国的西南地区,并由此向外辐射,向东经日本、俄罗斯远东地区经白令陆桥进入北美;向西经西亚、欧洲,通过格陵兰进入北美,然后到达南美;向南经印度支那、马来西亚,直至新几内亚.东亚-北美间断分布的形成是受第四纪冰期的影响;南美的木兰科是从北美迁移而来.  相似文献   

3.
木兰科(Magnoliaceae)的起源、进化和地理分布   总被引:13,自引:0,他引:13  
木兰科为亚洲-美洲间断分布科,全世界有15属,246种,主要分布于亚洲东南部的热带、亚热带地区,从喜马拉雅至日本,向南达新几内亚及新不列颠;少数种类分布于北美东南部、中美至南美巴西.中国有11属,约99种.木兰科的现代分布中心在东亚-东南亚地区.根据木兰科的化石记录、系统发育和现代分布,推测其起源时间为早白垩纪,甚至更早.起源地可能在中国的西南地区,并由此向外辐射,向东经日本、俄罗斯远东地区经白令陆桥进入北美;向西经西亚、欧洲,通过格陵兰进入北美,然后到达南美;向南经印度支那、马来西亚,直至新几内亚.东亚-北美间断分布的形成是受第四纪冰期的影响;南美的木兰科是从北美迁移而来.  相似文献   

4.
木兰科的化石记录   总被引:3,自引:0,他引:3  
张光富 《古生物学报》2001,40(4):433-442
通过整理和分析木兰科植物的化石记录发现:不论是植物大化石还是花粉,迄今为止在白垩纪以前地层中尚无可靠的记录,自白垩纪以来,木兰科的许多种广泛发生于北半球,如亚洲,欧洲及北美等地,但非洲和大洋洲至今尚未发现木兰科的化石记录。该科最早的化石记录为中国东北延吉地区早白垩世大拉子组的喙柱始木兰Archimagnolia rostrato-stylose Tao et Zhang. 根据现有化石记录,并结合木兰科现代植物的地理分布,推测:1)木兰科的起源时间不迟于早白垩世Aptian-Albian期;2)木兰科起源地点可能是东亚,后来经过欧洲进入北美,再从北美迁移到达南美洲;3)在地质历史时期,木兰属的出现比鹅掌楸属早,从而支持根据形态学与分子系统学研究得出的木兰属较鹅掌楸属原始的结论。  相似文献   

5.
Powers DM  Stephenson SL 《Mycologia》2006,98(2):218-222
Most of what is known about the distribution of protostelids is limited to results from surveys carried out in North and Central America. To increase our knowledge about protostelid diversity and distribution we surveyed protostelids from 12 study sites in northern Queensland and the Northern Territory of Australia during May-Jun 2003. Aerial litter and ground litter samples were randomly collected along a 200 m transect at each site. Study sites ranged from tropical forests to deserts. We recovered 10 species and two apparently undescribed species from samples of aerial (dead but still attached plant parts) and ground litter. Samples from a woodland site characterized by intermediate moisture conditions had the greatest species richness, followed by samples from dry woodland, tropical forest and desert sites. When species richness for a particular microhabitat was considered, samples of aerial litter yielded more species than samples of ground litter. Percentages of samples colonized with protostelids were similar for the aerial and ground litter microhabitats within a given habitat type except for dry woodlands, in which aerial litter samples were characterized by higher numbers of species than ground litter samples. Two species (Protostelium mycophaga and Soliformovum irregularis) that in temperate North America are associated with aerial litter microhabitats also were recovered from aerial litter in dry habitats in Australia. Schizoplasmodiopsis pseudoendospora, a North American temperate ground litter species, was equally abundant in aerial litter and ground litter in Australia. This study is the first of its kind for protostelid ecology in Australia and the most extensive study of protostelids in the southern hemisphere. These data complement ongoing research on protostelid distribution from around the world.  相似文献   

6.
The Icacinaceae occur pantropically today, but are well represented by fossil fruits of the warm Early Middle Eocene, when tropical plants that currently occupy low latitudes were more widely distributed in higher latitudes. Members of this family are first known in the Late Cretaceous; however, fossil fruits of tribe Iodeae are quite rare before the Eocene. In this paper we describe the first formally recognized Late Paleocene icacinaceous taxa from western North America. We name two new species of Icacinicarya based on anatomically preserved fruits and establish a new genus, Icacinicaryites, for impressions with a strong similarity to Icacinicarya that lack anatomical preservation. These new records from the Almont/Beicegel Creek flora in North Dakota and several localities in Wyoming, Colorado, and Montana complement records known from the Early Eocene of England and document an increased diversity of Iodeae and related forms in the Paleogene of western North America.  相似文献   

7.
Four benthic algae are reported here for the first time in the North Carolina flora. The new brown algal genus and species, Onslowia endophytica Searles, is described as an endophyte of Halymenia floridana from the North Carolina continental shelf. New records of Boodleopsis pusilla and Naccaria corymbosa from North Carolina constitute range extensions of these tropical species on the American coast north from Florida. Blastophysa rhizopus, an endophyte and epiphyte known from the North Atlantic coast of Europe and America as well as the Caribbean is reported from North Carolina for the first time and in a new host, Predaea feldmannii.  相似文献   

8.
姜科植物地理   总被引:10,自引:1,他引:9  
本文讨论了姜科的分类系统、起源、进化和地理分布.姜科为一还热带分布科,按Burtt[8]的系统分2亚科4族.全世界有52属,约1377种,其中姜亚科含48属,1268种.主要分布于热带亚洲.其现代分布中心在印度-马来西亚。闭鞘姜亚科含4属,109种,主要分布于热带美洲及非洲。本文在化石资料及现代分布资料的基础上,讨论了姜科的早期分化时间、地点及现代分布格局形成。化石记录表明.欧洲、北美及印度的白垩纪、早第三纪均发现过姜科的化石,据此姜科植物的起源时间应不晚于早白垩纪。姜亚科的早期分化中心推论在劳亚古陆的南部.欧洲和北美没有现代姜科的分布是因为第三纪冰期的影响.而亚洲热带地区现代姜科植物繁盛是因为气候适宜.且相对稳定所致.南美的姜亚科种类应是由非洲传人.而大洋洲的姜亚科种类则是由马来西亚传入.闭鞘姜亚科的早期分化中心推论在西冈瓦纳古陆.亚洲及大洋洲的闭鞘姜亚科的种类应是随印度板块飘向亚洲时传入。中国姜科植物有22属.209种(占全世界属的42%.种的15%).主要分布于马来西亚亚区(占全国属的90%).其次为中国喜马拉雅亚区(占全国属的68%)。最少为中国-日本亚区(占全国属的45%)。统计数字表明.马来西亚  相似文献   

9.
Stonis JR  Diskus A 《Zoological science》2007,24(12):1286-1291
We describe Tischeria gouaniae sp. n. from the tropical forests of Belize. The new species is a leaf-miner of Gouania polygama (Rhamnaceae). Together with the related T. bifurcata Braun, it is among the most striking representatives of Tischeria. Both species possess a pseudognathos and very broad aedeagus fused with extremely long lateral processes of the juxta. The new species differs from T. bifurcata in the broadly rounded vinculum, spiny juxta, and slender apical processes of the aedeagus, and in its host plant. The external features and male genitalia of Tischeria gouaniae sp. n. are figured and described. A checklist and distribution map for all nine currently known Tischeria species from North and South America are given. Most American species are known from USA, but others are now known from tropical forest habitats of Central America, the Caribbean, and Guyana. Host-plants are known for five of the nine species reviewed here, belonging to four genera and two plant families (Fagaceae and Rhamnaceae).  相似文献   

10.
M. MÖNKKONEN  P. HELLE  D. WELSH 《Ibis》1992,134(S1):7-13
In this paper we compare ecological attributes of tropical migrant passerines from the Nearctic and western Palaearctic, focusing particularly on habitat association patterns during both breeding and wintering seasons. Three regions were compared: Europe, western and eastern North America. Breeding bird census data from 32 studies (each including at least four stages of forest succession) were used to assess the association patterns of breeding habitats among tropical migrants. For each species we calculated an index of habitat diversity and habitat preference.
Tropical migrants preferred earlier successional stages than other birds in Europe. The opposite was true in eastern North America. In eastern North America, tropical migrants tended to be associated with a smaller range of serai stages than other passerine species. In their winter quarters, Palaearctic migrants live primarily in open habitats, such as savannas, whereas eastern Nearctic migrants make more frequent use of evergreen forests. Migrants from western North America show the greatest match between breeding and wintering habitats.
We relate the results to the taxonomy and probable history of contemporary avifaunas and vegetation formations of the Old and New World. Taxonomically, tropical migrants from different parts of the Holarctic are less closely related to each other than residents and short-distance migrants. Tropical and temperate avifaunas are more closely related to each other in the New World than in the Old World. Conservation implications of the between-continent differences are briefly discussed.  相似文献   

11.
12.
Climate change can influence the geographical range of the ecological niche of pathogens by altering biotic interactions with vectors and reservoirs. The distributions of 20 epidemiologically important triatomine species in North America were modelled, comparing the genetic algorithm for rule‐set prediction (GARP) and maximum entropy (MaxEnt), with or without topographical variables. Potential shifts in transmission niche for Trypanosoma cruzi (Trypanosomatida: Trypanosomatidae) (Chagas, 1909) were analysed for 2050 and 2070 in Representative Concentration Pathway (RCP) 4.5 and RCP 8.5. There were no significant quantitative range differences between the GARP and MaxEnt models, but GARP models best represented known distributions for most species [partial‐receiver operating characteristic (ROC) > 1]; elevation was an important variable contributing to the ecological niche model (ENM). There was little difference between niche breadth projections for RCP 4.5 and RCP 8.5; the majority of species shifted significantly in both periods. Those species with the greatest current distribution range are expected to have the greatest shifts. Positional changes in the centroid, although reduced for most species, were associated with latitude. A significant increase or decrease in mean niche elevation is expected principally for Neotropical 1 species. The impact of climate change will be specific to each species, its biogeographical region and its latitude. North American triatomines with the greatest current distribution ranges (Nearctic 2 and Nearctic/Neotropical) will have the greatest future distribution shifts. Significant shifts (increases or decreases) in mean elevation over time are projected principally for the Neotropical species with the broadest current distributions. Changes in the vector exposure threat to the human population were significant for both future periods, with a 1.48% increase for urban populations and a 1.76% increase for rural populations in 2050.  相似文献   

13.
Aim We examine the regional dominance of California as a beachhead for marine biological invasions in western North America and assess the relative contribution of different transfer mechanisms to invasions over time. Location Western North America (California to Alaska, excluding Mexico). Methods We undertook extensive analysis of literature and collections records to characterize the invasion history of non‐native species (invertebrates, microalgae and microorganisms) with established populations in coastal marine (tidal) waters of western North America through 2006. Using these data, we estimated (1) the proportion of first regional records of non‐native species that occurred in California and (2) the relative contribution of transfer mechanisms to California invasions (or vector strength) over time. Results Excluding vascular plants and vertebrates, we identified 290 non‐native marine species with established populations in western North America, and 79% had first regional records from California. Many (40–64%) of the non‐native species in adjacent states and provinces were first reported in California, suggesting northward spread. California also drives the increasing regional rate of detected invasions. Of 257 non‐native species established in California, 59% had first regional records in San Francisco Bay; 57% are known from multiple estuaries, suggesting secondary spread; and a majority were attributed to vessels (ballast water or hull fouling) or oysters, in some combination, but their relative contributions are not clear. For California, more than one vector was possible for 56% of species, and the potential contribution of ballast water, hull fouling and live trade increased over time, unlike other vectors. Main conclusions California, especially San Francisco Bay, plays a pivotal role for marine invasion dynamics for western North America, providing an entry point from which many species spread. This pattern is associated historically with high propagule supply and salinity. Any effective strategies to minimize new invasions throughout this region must (1) focus attention on California and (2) address current uncertainty and future shifts in vector strength.  相似文献   

14.
Brunke AJ  Marshall SA 《ZooKeys》2011,(75):29-68
Staphylinidae (Rove Beetles) from northeastern North America deposited in the University of Guelph Insect Collection (Ontario, Canada) were curated from 2008-2010 by the first author. The identification of this material has resulted in the recognition of thirty-five new provincial or state records, six new Canadian records, one new record for the United States and two new records for eastern Canada. All records are for subfamilies other than Aleocharinae and Pselaphinae, which will be treated in future publications as collaborative projects. Range expansions of ten exotic species to additional provinces and states are reported. The known distributions of each species in northeastern North America are summarized and presented as maps, and those species with a distinctive habitus are illustrated with color photographs. Genitalia and/or secondary sexual characters are illustrated for those species currently only identifiable on the basis of dissected males. The majority of the new records are in groups that have been recently revised, demonstrating the importance of curation and local insect surveys to the understanding of biodiversity, even for taxa and areas considered 'relatively well-known'.  相似文献   

15.
Cosmopolitan species of cellular slime molds occur continents apart in both tropical and temperate zones of the world though the spore masses are too heavy to be wind borne, and water dispersal is limited to the watercourses. A highly mobile distribution vector was found in ground-feeding migratory song birds. Nine ubiquitous species and 2 ecologicially distinct species of dictyostelid cellular slime molds were isolated from the feces of ground-feeding eastern North American migratory thrushes, finches, sparrows and warblers, both on breeding and winter grounds. Three propagules of slime molds, amoebae, spores and macrocysts survive passage through the avian digesive tract and remain in the gut long enough to be transported by major bird migrations. Habitats with the greates species diversity of both cellular slime molds and ground-feeding passerines concur in both eastern North America and Central America. Birds actively seek their prefered habitats; the cellular slime molds have arrived at these habitats as passengers. Rare slime molds can serve as a marker to the habitats that migratory birds have visited, or birds with known habitats can provide clues as to the distribution of rare species of cellular slime molds.  相似文献   

16.
The boreotropics hypothesis postulates a preferential tropical biotic interchange between North America and Eurasia during the early Tertiary that was directed by Eocene thermal maxima and the close proximity of these two continental plates. This preferential interchange occurred at a time when South America was geologically and biotically isolated. A prediction of this hypothesis posits that a taxon with a present-day center of diversity in tropical North America, and with an early Tertiary fossil record from any region there, has a high probability of having sister-group relatives in the Paleotropics and derived relatives in South America. We propose a test of this prediction with phylogenetic studies of two pantropical taxa of Leguminosae that have early Tertiary North American fossil records. Our findings are consistent with the boreotropics hypothesis, and additional evidence suggests that many tropical elements in North America could be descendants of northern tropical progenitors. Ramifications of this hypothesis include the importance of integrating the fossil record with cladistic biogeographic studies, theoretical bases for recognizing tropical taxa with such disjunct distributions as Mexico and Madagascar, identification of taxa that may be most useful for testing vicariance models of Caribbean biogeography, and integrating the study of disjunct distributions in temperate regions of the northern hemisphere with those in the neo- and paleotropics.  相似文献   

17.
The first Ateuchus Weber (Scarabaeinae) species, A. tuza sp. nov., from a rodent burrow from North America is described. Diagnostic characters are presented; photographs of an adult male and illustrations of male genitalia are included. A key for all known Mexican Ateuchus Weber species is provided. Ateuchus hornai (Balthasar) is revalidated. New distribution records from Mexico and Central America are reported.  相似文献   

18.
The larvae of Leptus Latreille, 1796 (Acarina: Erythraeidae) of Europe and North America are comprehensively revised. Of those described since 1900 a total of 34 species is considered recognizable and capable of being keyed; no species described before 1900 is considered recognizable. The nominal type of the genus, Acarus phalangii de Geer, 1778 is rejected as an illegitimate name. Eighteen European and 17 North American species are described and keyed, of which 17 are new to science. One new subspecies from North America, of a species previously known from Europe, is described and keyed. Standard metric data are given for each species or subspecies from available specimens (except two North American species, L. ariel Southcott and L. clarki Southcott, recently described elsewhere; for these last-named two additional metric data are given). Larvae have been recorded from April to September, with the greatest number found being for July and August.
Protonymphs are described for two North American species ( L. ghiradellae sp. nov. and L. welbourni sp. nov. ), and deutonymphs for two North American species ( L. calix sp. nov. and L. ghiradellae ). Keys are given to separate the reared protonymphs, and three described deutonymphs (the two preceding and the European L. galerucae Feider). Data on the duration of the protonymphal instar suggest that in North America and Europe there are two modes: one lasting 3–4 weeks, the other 5–7 months. Developmental abnormalities are recorded systematically.  相似文献   

19.
论无心菜属的地理分布   总被引:2,自引:0,他引:2  
全世界无心菜属植物有306种,隶属10亚属24组,主要分布于欧、亚、美三洲和北非,基本上是北温带分布属。文章分析了亚属的系统位置及其分布式样。地中海区到西亚亚区和中亚亚区的西北部是其分布区中心,也可能是它的起源地,中国横断山脉到青藏高原是其次生分布中心。起源时间至少应该追溯到白垩纪中期。最后,讨论了它的散布途径和现代分布式样的形成及其原因。  相似文献   

20.
The natural history of introduced species is often unclear due to a lack of historical records. Even when historical information is readily available, important factors of the invasions such as genetic bottlenecks, hybridization, historical relationships among populations and adaptive changes are left unknown. In this study, we developed a set of nuclear, simple sequence repeat markers and used these to characterize the genetic diversity and population structure among native (Eurasian) and non-native (North and South American) populations of Centaurea solstitialis L., (yellow starthistle). We used these data to test hypotheses about the invasion pathways of the species that were based on historical and geographical records, and we make inferences about historical relationships among populations and demographic processes following invasion. We confirm that the center of diversity and the native range of the species is likely the eastern Mediterranean region in the vicinity of Turkey. From this region, the species likely proceeded to colonize other parts of Europe and Asia via a slow, stepwise range expansion. Spanish populations were the primary source of seed to invade South America via human-mediated events, as was evident from historical records, but populations from the eastern Mediterranean region were also important. North American populations were largely derived from South America, but had secondary contributors. We suggest that the introduction history of non-native populations from disparate parts of the native range have allowed not just one, but multiple opportunities first in South America then again in North America for the creation of novel genotypes via intraspecific hybridization. We propose that multiple intraspecific hybridization events may have created especially potent conditions for the selection of a noxious invader, and may explain differences in genetic patterns among North and South America populations, inferred differences in demographic processes, as well as morphological differences previously reported from common garden experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号