首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
In the preceding paper (Sheetz, M. and S.J. Singer. 1977. J Cell Biol. 73:638-646) it was shown that erythrocyte ghosts undergo pronounced shape changes in the presence of mg-ATP. The biochemical effects of the action of ATP are herein examined. The biochemical effects of the action of ATP are herein examined. Phosphorylation by ATP of spectrin component 2 of the erythrocyte membrane is known to occur. We have shown that it is only membrane protein that is significantly phosphorylated under the conditions where the shape changes are produced. The extent of this phosphorylation rises with increasing ATP concentration, reaching nearly 1 mol phosphoryle group per mole of component 2 at 8mM ATP. Most of this phosphorylation appears to occur at a single site on the protein molecule, according to cyanogen bromide peptide cleavage experiments. The degree of phosphorylation of component 2 is apparently also regulated by a membrane-bound protein phosphatase. This activity can be demonstrated in erythrocyte ghosts prepared from intact cells prelabeled with [(32)P]phosphate. In addition to the phosphorylation of component 2, some phosphorylation of lipids, mainly of phosphatidylinositol, is also known to occur. The ghost shape changes are, however, shown to be correlated with the degree of phosphorylation of component 2. In such experiment, the incorporation of exogenous phosphatases into ghosts reversed the shape changes produced by ATP, or by the membrane-intercalating drug chlorpromazine. The results obtained in this and the preceding paper are consistent with the proposal that the erythrocyte membrane possesses kinase and phosphates activities which produce phosphorylation and dephosphorylation of a specific site on spectrin component 2 molecules; the steady-state level of this phosphorylation regulates the structural state of the spectrin complex on the cytoplasmic surface of the membrane, which in turn exerts an important control on the shape of the cell.  相似文献   

2.
Isolated human erythrocyte membranes crenate when suspended in isotonic medium, but can use MgATP to reduce their net positive curvature, yielding smooth discs and cup forms that eventually undergo endocytosis. An earlier report from this laboratory (Patel, V.P. and Fairbanks, G. (1981) J. Cell Biol. 88, 430-440), has described a phenomenon of ATP-independent shape change in which ghosts prepared by hemolysis and washing in synthetic zwitterionic buffers crenated at 0 degree C, but underwent conversion to smooth discs and cups when warmed in the absence of MgATP. We have further explored the effect of the hemolysis condition on the requirement for ATP in ghost shape change. 25 hemolysis buffers were applied at 10 mM (pH 7.4, 0 degree C). Eight anionic buffers with relatively high ionic strength (e.g., phosphate and diethylmalonic acid (DMA] yielded ghosts requiring ATP for shape change, while two cationic buffers (Bistris and imidazole) and ten synthetic zwitterionic buffers (e.g., Tricine and Hepes) with lower ionic strength produced ghosts that smoothed spontaneously at 30 degrees C. Hemolysis at intermediate ionic strength yielded mixed populations in which spontaneous smoothing was expressed in all-or-none fashion. Maximal ATP-independent shape change was induced by hemolysis at pH 7.3-7.7, while ATP was required after hemolysis at pH less than or equal to 7.1 even when the ionic strength at hemolysis was low. Ghosts requiring ATP could be converted to ATP independence by washing at low ionic strength, but ATP independence could not be reversed readily by washing at high ionic strength. Exposure to low ionic strength at pH greater than 7.1 presumably changes membrane organization in a way that alters the temperature dependence of tensions within the bilayer or skeleton of the composite membrane.  相似文献   

3.
Human erythrocyte ghosts have been shown, by scanning electron microscopy, to undergo ATP-dependent shape changes. Under appropriate conditions the ghosts prepared from normal disk-shaped intact cells adopt a highly crenated shape, which in the presence of Mg-ATP at 37 degrees C is slowly converted to the disk shape and eventually to the cup shape. These changes are not observed with other nucleotides or with 5'-adenylyl imidodiphosphate. Anti-spectrin antibodies, incorporated along with the Mg-ATP into the ghosts in amounts less than equivalent to the spectrin, markedly accelerate the shape changes observed with the Mg-ATP alone. The Fab fragments of these antibodies, however, have no effect. The conclusion is that the structural effect produced by the ATP is promoted by the cross-linking of spectrin by its antibodies, and may therefore itself be some kind of polymerization or network formation involving the spectrin complex on the cytoplasmic face of the membrane. The factors that contribute to the shape of the ghost and of the intact erythrocyte are discussed in the light of these findings.  相似文献   

4.
Human erythrocyte ghosts prepared by hemolysis and washing in hypotonic Tris are crenated by salt and divalent cations, but undergo shape change to smooth biconcave discs and stomatocytic forms when incubated with MgATP at 37 degrees C. This is normally accompanied by protein and lipid phosphorylations in which the major phosphate acceptors are the spectrin beta-chain and inositol phospholipids, respectively. The system was manipulated in several ways to demonstrate the independence of ATP-dependent shape change from the major phosphorylation reactions. Salt-extracted membranes incubated with adenosine, an inhibitor of spectrin and phosphatidylinositol kinases, underwent normal shape change despite reductions of greater than 90% in spectrin and phospholipid labeling by [gamma-32P]ATP. ATP-dependent shape change was blocked by vanadate at micromolar concentrations (half-maximal inhibition at less than 1 microM), but vanadate did not inhibit membrane autophosphorylation reactions or turnover of spectrin- or lipid-bound phosphate. Vanadate inhibited part of the ATP hydrolysis that accompanies shape change and is expressed in the presence of ouabain and EGTA. The vanadate-sensitive MgATPase activity was approximately 3 nmol Pi X min-1 X mg of protein-1. The results implicate it in ATP-dependent shape change.  相似文献   

5.
The Mr 245,000 calmodulin-binding protein of the dogfish erythrocyte cytoskeleton (D245) has been compared with human erythrocyte spectrin and mammalian brain fodrin [J. Levine and M. Willard (1981) J. Cell Biol. 90, 631-643]. Mammalian erythrocyte alpha-spectrin, brain alpha-fodrin, and D245 are all localized in the cell surface-associated cytoskeleton, and have similar molecular weights. Like mammalian erythrocyte spectrin, D245 was extracted from erythrocyte ghosts under low-ionic-strength conditions. However, D245 failed to bind an antibody which reacted strongly with both subunits of human erythrocyte spectrin. Unlike mammalian erythrocyte alpha- and beta-spectrin, D245 bound calmodulin in the absence of urea both in a "gel-binding" assay and in situ using azidocalmodulin [D.C. Bartelt, R.K. Carlin, G.A. Scheele, and W.D. Cohen (1982) J. Cell Biol. 95, 278-284]. Striking similarities were noted between D245 and alpha-fodrin in that both exhibited (a) comparable calcium-dependent calmodulin binding properties, (b) strong reactivity with two different anti-fodrin antibody preparations, (c) similar reactivity with antibody to brain CBP-I, now believed to be fodrin, (d) proteolytic degradation yielding an Mr 150,000 calmodulin-binding fragment, and (e) lack of reactivity with an anti-spectrin antibody. A protein with calmodulin-binding and anti-fodrin-binding properties similar to D245 was detected in cytoskeletal preparations of chicken erythrocytes. Moderate and consistent cross-reactivity of anti-fodrin with human erythrocyte alpha-spectrin was also observed. The data indicate that D245 is functionally and immunologically more closely related to alpha-fodrin than to alpha-spectrin of the mammalian erythrocyte.  相似文献   

6.
R R Weihing 《Biochemistry》1983,22(8):1839-1847
The high molecular weight protein (HMWP) which was previously observed to be a major component of the actin based gels formed by incubating cytoplasmic extracts of HeLa cells at 25 degrees C [Weihing, R. R. (1977) J. Cell Biol. 75, 95-103] has now been purified by gel filtration of 0.6 M KCl extracts of precipitated gels. A few hundred micrograms of HMWP, which is about 90% pure, can be isolated from 4 X 10(9) cells. HMWP can gel muscle actin and cross-link it into filament bundles. Its subunit molecular weight is 250 0000, its Stokes radius is 125 A, and its sedimentation coefficient is 9 S. A native molecular weight of 480 000 was calculated by using the latter two parameters, and therefore the native molecule is a dimer. Its amino acid analysis is nearly indistinguishable from that of macrophage actin binding protein and of mammalian and avian filamins. All of these findings indicate that HMWP is homologous to the latter proteins. However, HeLa cell HMWP and avian filamin must differ in their primary sequences because their partial peptide maps are distinct and because an antiserum against HMWP reacts only weakly with filamin. For studies on the intracellular location of HMWP, a goat antiserum against purified HMWP was prepared and characterized and then used to localize HMWP in suspension grown cells. The technique of immunoblotting revealed that the antiserum reacted virtually exclusively with the high molecular weight polypeptide that comigrates with HMWP in cell lysates and in ZnCl2-stabilized plasma membrane ghosts prepared from HeLa cells [Gruenstein, E., Rich, A., & Weihing, R. R. (1975) J. Cell Biol. 64, 223-234] and that it did not react with rabbit myosin heavy chain, microtubule proteins (MAPS and tubulin) from HeLa cells and calf brain, or the proteins of human erythrocyte ghosts including spectrin. Suspension-grown cells which were stained with the antiserum by the technique of indirect immunofluorescence showed bright fluorescence at the rim of the cells and less intense generalized fluorescence. If preimmune serum or immune serum treated with HMWP was substituted for the immune serum, then staining at the rim was not observed, but the generalized fluorescence was only slightly reduced; unpermeabilized cells were not stained. These results indicate that HMWP is a component of the cortical cytoplasm of HeLa cells. Possible functions of cortical HMWP are discussed briefly.  相似文献   

7.
Addition of EGF to human carcinoma A-431 cells is known to induce membrane ruffling after approximately 2 min (Chinkers, M., J. A. McKanna, and S. Cohen. 1979. J. Cell Biol. 83:260-265) and the phosphorylation of a protein referred to as p81, a known substrate for various protein-tyrosine kinases (Cooper, J. A., D. F. Bowen-Pope, E. Raines, R. Ross, and T. Hunter. 1982. Cell. 31:263-273). Ezrin, a Mr approximately 80,000 cytoskeletal protein of the isolated chicken microvillar core, is present in actin-containing cell surface structures of a wide variety of cells (Bretscher, A. 1983. J. Cell Biol. 97:425-432). Ezrin was then found to be homologous to p81 and to be phosphorylated on tyrosine in response to EGF (Gould, K. L., J. A. Cooper, A. Bretscher, and T. Hunter. 1986. J. Cell Biol. 102:660-669). Here, the purification of ezrin from human placenta is described. Antibodies to human ezrin, together with antibodies to other microfilament-associated proteins, were used to follow the distribution and phosphorylation of these proteins in A-431 cells after EGF treatment. EGF induces the formation of microvillar-like surface structures on these cells within 30 s and these give way to membrane ruffles at approximately 2-5 min after EGF addition; the cells then round up after approximately 10-20 min. Ezrin is recruited into the microvillar-like structures and the membrane ruffles, and is phosphorylated on tyrosine and serine in a time course that parallels the formation and disappearance of these surface structures. Spectrin is recruited into the membrane ruffles and shows a similar rapid kinetics of phosphorylation, but only on serine residues, and remains phosphorylated through the rounding up of the cells. The microvillar- like structures and membrane ruffles are also enriched in fimbrin and alpha-actinin. Myosin becomes rapidly reorganized into a striated pattern that is consistent with it playing a role in cell rounding. These results show that two cortical proteins, ezrin and spectrin, become phosphorylated in a time course coincident with remodeling of the cell surface. The results are consistent with the notion that ezrin phosphorylation may play a role in the formation of cell surface projections whereas spectrin phosphorylation may be involved in remodelling of more planar areas of the cell surface.  相似文献   

8.
Important similarities are reported between human smooth muscle actomyosin and the human erythrocyte spectrin complex, primarily components 1, 2, and 5 (Fairbanks G., Steck, T.L., and Wallach, D.F.H. (1971), Biochemistry 10, 2606). The actin-like protein, component 5, is identical with human uterine actin in its ability to form 50-70-A filaments to stimulate myosin ATPase activity, and to bind rabbit heavy meromyoson specit heavy meromyosin specifically. Antibodies to human smooth muscle myosin(uterine) were prepared which were monospecific. A weak but specific cross-reaction of these antisera with components 1 and/or 2 (spectrin) was characterized and at least 25% of the antimyosin antibodies showed a low affinity reaction iwth spectrin. Antibodies generated against a soluble complex of spectrin components 1 and 2 reacted only with component 1 and did not cross-react with myosin. In addition to these structural similarities between smooth muscle actomyosin and the spectrin complex, we have found that spectrin is involved in ATP-dependent erythrocyte shape changes (Sheetz, M.P., Painter, R.G., AND Singer, S.J. (1976B), Cold Spring Harbor Symp. Cell Motility (in press) and, therefore, the spectrin complex is also a mechanochemical protein system.  相似文献   

9.
Human erythrocyte membranes (ghosts) prepared from fresh blood changed in shape from spherical to crenated, when suspended in 10(-7)-10(-6) M Ca2+-EGTA buffers. Although the ghosts from long-stored ACD blood (10 weeks) were less sensitive to 10(-7)-10(-6) M Ca2+, the ghosts obtained from this blood after it had been preincubated with adenine and inosine for 3 h at 37 degrees C were highly sensitive to Ca2+. When these highly sensitive ghosts were incubated in 10 mM Tris-Cl buffer (pH 7.4) or 1 mM MgCl2 (pH 7.4) at 0 degrees C, they gradually lost Ca2+ sensitivity within 60 min, but they recovered Ca2+ sensitivity again after re-incubation with 2 mM Mg-ATP for 20 min at 37 degrees C followed by washing with 1 mM MgCl2 (pH 7.4). The shape of these highly Ca2+-sensitive ghosts immediately changed from crenate to disc on addition of 1 mM Mg-ATP even at 6 degrees C in the presence of 10(-7)-10(-6) M Ca2+. A similar shape change was also observed when ghosts treated with 0.5% Triton X-100 (Triton shells) were used. Triton shells from fresh blood ghosts or from long-stored blood ghosts which had been preincubated with 2 mM Mg-ATP for 20 min at 37 degrees C shrank immediately in the presence of 10(-6) M Ca2+ and then swelled on addition of 1 mM Mg-ATP. The specificity to ATP and the dependency on ATP concentration are in agreement with those of the ghost shape change at step 2 (Jinbu, Y. et al., Biochem biophys res commun 112 (1983) 384-390) [18]. These results suggest that cytoskeletal protein phosphorylation enhances sensitivity to Ca2+ and induces erythrocyte shape change in the presence of physiological concentrations of ATP and Ca2+.  相似文献   

10.
The long-lived fusogenic state induced in spherical-shaped erythrocyte ghosts by electric field pulses (Sowers, A.E. 1984. J. Cell Biol. 99:1989-1996; Sowers, A.E. 1986. J. Cell Biol. 102:1358-1362) was studied in terms of how the fusion yield depended on both (a) the location where membrane-membrane contact took place with respect to the orientation of the electric pulse and (b) the time interval between the pulse treatment and membrane-membrane contact. Fusion yields were greater for membrane-membrane contact locations closer to where the pulse-induced transmembrane voltage was expected to be greatest and showed a time interval-dependent accelerating decay. The portion of the membrane that became fusogenic included the area up to a latitude of approximately 38 degrees of arc towards the equators of the membranes. A time interval-dependent increase or decrease in rate of decay in the fusion yield for membrane-membrane contacts induced closer to the equator of the membranes did not occur showing that the pulse-induced fusogenic state is immobile in the early 5-45-s interval after induction and has a rate of decay, which does not permit long time interval changes in lateral position to be measured.  相似文献   

11.
Human erythrocyte membranes (ghosts) from acid/citrate/dextrose preserved blood were digested with trypsin (protein/trypsin = 100:1) under hypotonic conditions and then analyzed by SDS-polyacrylamide gel electrophoresis. After digestion for about 20-30 s at 0 degree C, only ankyrin had disappeared and other bands including spectrin, actin, band 4.1 and band 3 remained intact. This observation was supported by electron micrographs showing that the horizontally disposed, filamentous structure was a little apart from the lipid bilayer and its components were not destroyed. In contrast to intact ghosts, treatment with chlorpromazine, or Mg-ATP did not induce shape change in these trypsin-treated ghosts. The number of transformable cells correlated closely with the amount of remaining ankyrin in the SDS-polyacrylamide gel electrophoresis pattern. Furthermore, the chlorpromazine- and Mg-ATP-induced decreases in viscosity of suspensions of erythrocyte ghosts were also prevented by trypsin treatment for 20-30 s at 0 degree C. These findings suggest that ankyrin plays an important role in the change in shape and deformability of erythrocyte ghosts. The molecular mechanism of drug-induced shape change and the role of undermembrane structure in regulating erythrocyte shape and deformability are discussed.  相似文献   

12.
Human red blood cells contain all of the elements involved in the formation of nonmuscle actomyosin II complexes (V. M. Fowler. 1986. J. Cell. Biochem. 31:1-9; 1996. Curr. Opin. Cell Biol. 8:86-96). No clear function has yet been attributed to these complexes. Using a mathematical model for the structure of the red blood cell spectrin skeleton (M. J. Saxton. 1992. J. Theor. Biol. 155:517-536), we have explored a possible role for myosin II bipolar minifilaments in the restoration of the membrane skeleton, which may be locally damaged by major mechanical or chemical stress. We propose that the establishment of stable links between distant antiparallel actin protofilaments after a local myosin II activation may initiate the repair of the disrupted area. We show that it is possible to define conditions in which the calculated number of myosin II minifilaments bound to actin protofilaments is consistent with the estimated number of myosin II minifilaments present in the red blood cells. A clear restoration effect can be observed when more than 50% of the spectrin polymers of a defined area are disrupted. It corresponds to a significant increase in the spectrin density in the protein free region of the membrane. This may be involved in a more complex repair process of the red blood cell membrane, which includes the vesiculation of the bilayer and the compaction of the disassembled spectrin network.  相似文献   

13.
Temperature transitions of spectrin in solution and in human erythrocyte membranes are recorded in the region t greater than 40 degrees C by irreversible changes in protein fluorescence spectra. Structural changes are completed 20 min after the sample incubation at an increased temperature. Both for isolated spectrin and for erythrocyte ghosts the temperature of half-transition is 46 +/- 1 degree C. There is no transition in the membranes after the removal of spectrin. Transitions in erythrocyte ghosts and in spectrin solution disappear at pH 5 when spectrin is in an aggregated state. Spectrin is suggested to be responsible for the transitions at 50 degrees C; its state in the cells areas more thermostable than in isolated membranes.  相似文献   

14.
ATP-induced endocytosis in human erythrocyte ghosts has been studied, and a procedure for the isolation of the endocytotic vesicles is described. Under isotonic conditions and 37 degrees C, optimal endocytosis occurs with concentrations of 4 to 10 mM MgATP. Within 30 min, up to 45% of the membrane is removed from the surface and converted into sealed inside-out vesicles. Local anesthetics, such as chlorpromazine, potentiate ATP-induced endocytosis in ghosts. Forcing cells containing endocytotic vesicles through a hypodermic needle leads to the exclusive fragmentation of the outermost plasma membrane. The endocytosed vesicles can then be separated from these fragments by centrifugation on a gradient of dextran T70. Biochemical analyses indicate that endocytotic vesicles contain full complements of the major membrane proteins (i.e. also spectrin and actin), common phospholipids, fatty acids, and cholesterol. Furthermore, they exhibit a fully intact spectrin component 2 phosphorylation machinery. In contrast, MgATPase activity is largely excluded from these vesicles. The novel inside-out vesicles described have properties different from those of previously analyzed fragments of the erythrocyte membrane. They will permit a detailed study of a native spectrin-actin network now exposed to the outside.  相似文献   

15.
Experiments were carried out with water-treated isolated rat liver mitochondria (mitochondria ghosts) previously studied by Caplan and Greenawalt (Caplan, A.I., and J.W. Greenawalt. 1966. J. Cell Biol. 31:455-472) and Vasington and Greenawalt (Vasington, F., and J. Greenawalt. 1968. J. Cell Biol. 39:661-675). The ghosts have permeability properties and osmotic behavior comparable to those of isolated mitochondria. Although they have lost most of their internal contents, they must have resealed. Four properties were found which have not been previously described in systems derived from biological membranes: (a) an osmotic behavior in the virtual absence of internal components. (b) a self-arranging property in the formation of invaginations corresponding in morphology to the cristae. The results suggest that the assembly of the molecular components of the inner membrane is sufficient to specify the morphology. Hence the surface area to volume ratio of the vesicles may specify the presence or absence of cristae-like folds. (c) an increase in the permeability of the membranes to sucrose in the presence of iso-osmotic concentrations of sucrose. (d) an independence of the light transmitted by suspensions of the vesicles from the refractive index of the external medium. This observations run counter to the general previous experience with either mitochondria or liposomes.  相似文献   

16.
In prefixed by 1 mmol/l OsO4 human erythrocytes, the discocyte shape was preserved upon heating to temperatures which include the denaturation temperature of the main peripheral protein spectrin. Nevertheless, the suspension of fixed cells displayed threshold decrease in its capacitance and resistance at the temperature range where spectrin denaturates. The same changes were established using intact cells and their resealed ghosts. For packed cells (ghosts), the capacitance and resistance decreased about 17% (31%) and 30% (19%). These data indicate a decrease in the beta dispersion of erythrocyte membrane associated, according to a previous study (Ivanov 1997), with the heat denaturation of spectrin at 49.5 degrees C. The amplitude of the 49.5 degrees C decrease in beta dispersion was reversibly reduced in intact erythrocytes and white ghosts following reversible decrease in the phosphorylation of their membrane proteins. It was fully eliminated in ghosts following their resealing with alkaline phosphatase (0.1 mg/ml) which dephosphorylated membrane proteins. These findings are discussed in relation to similar changes found in normal and tumour tissues and cells during hyperthermia.  相似文献   

17.
It was previously shown that the beta-spectrin ankyrin-binding domain binds lipid domains rich in PE in an ankyrin-dependent manner, and that its N-terminal sequence is crucial in interactions with phospholipids. In this study, the effect of the full-length ankyrin-binding domain of β-spectrin on natural erythrocyte and HeLa cell membranes was tested. It was found that, when encapsulated in resealed erythrocyte ghosts, the protein representing the full-length ankyrin-binding domain strongly affected the shape and barrier properties of the erythrocyte membrane, and induced partial spectrin release from the membrane, while truncated mutants had no effect. As found previously (Bok et al. Cell Biol. Int. 31 (2007) 1482–94), overexpression of the full-length GFP-tagged ankyrin-binding domain aggregated and induced aggregation of endogenous spectrin, but this was not the case with overexpression of proteins truncated at their N-terminus. Here, we show that the aggregation of spectrin was accompanied by the aggregation of integral membrane proteins that are known to be connected to spectrin via ankyrin, i.e. Na+K+ATP-ase, IP3 receptor protein and L1 CAM. By contrast, the morphology of the actin cytoskeleton remained unchanged and aggregation of cadherin E or N did not occur upon the overexpression of either full-length or truncated ankyrin-binding domain proteins. The obtained results indicate a substantial role of the lipid-binding part of the β-spectrin ankyrin-binding domain in the determination of the membrane and spectrin-based skeleton functional properties.  相似文献   

18.
Immunoaffinity purified pp60v-src was found to activate the MgATP-dependent protein phosphatase in the presence of MgATP. Although preliminary evidence suggested that phosphorylation of the inhibitor-2 subunit on tyrosine residues was responsible for the activation, preincubation of the pp60v-src preparation at 41 degrees C resulted in a rapid loss of its protein kinase activities towards both casein and inhibitor-2 while its ability to activate the protein phosphatase complex was relatively insensitive to this treatment. This result demonstrated that pp60v-src was not responsible for activation of the MgATP-dependent protein phosphatase. A protein kinase activity which phosphorylated glycogen synthase on serine residues was detected in the pp60v-src preparation. The protein kinase was active in the presence of inhibitors of phosphorylase kinase, glycogen synthase kinase 5/casein kinase II, and cAMP-dependent protein kinase. It is, therefore, likely that activation of the MgATP-dependent protein phosphatase resulted from the presence of a glycogen synthase kinase 3 like activity in the pp60v-src preparation. Our results illustrate the importance of applying multiple criteria to link the phosphorylation of a protein with an observed change in its activity.  相似文献   

19.
The release of spectrin-free vesicles from ATP-depleted human red blood cells (Lutz et al. (1977) J. Cell. Biol. 73, 548) can be considered the final step of a shape change from discocytes to echinocytes. The study of physical and chemical properties of released vesicles suggests that vesicle release is not merely a consequence of charge alterations within either monolayer of the budding membrane. Fresh membranes and released vesicles have within experimental error the same sialic acid content per surface area and the same electrophoretic mobilities. Vesicle release cannot be stimulated by doubling the charge density on the outer monolayerby means of a phospholipase D-treatment, but correlates with a breakdown of polyphosphoinositides to diacylglycerol on the inner monolayer. This breakdown does not lead to a significant change in the negative charge density on the inner monolayer, because an increased phosphatidate content compensates for this alteration. Furthermore, polyphosphoinositide breakdown and diacylglycerol production are not the rate-limiting step in vesicle release from ATP-depleting red blood cells. This is evident from the fact that 10 mM EDTA inhibits vesicle release to 75% without affecting polyphosphoinositide breakdown and diacylglycerol production. Hence, diacylglycerol formation may be sufficient for membrane budding as suggested earlier (Allan et al.(1976) Nature 261, 58), but vesicle release requires a second, as yet unidentified process.  相似文献   

20.
The preimplantation mouse embryo expresses two polypeptides, Mr 240,000 and Mr 235,000, that are immunologically cross-reactive with antibody to the alpha and beta subunits of mouse brain spectrin. We investigated the synthesis of the spectrin subunits in the Triton-soluble and Triton-insoluble fractions of fertilized eggs, two-cell embryos, compacted morulae, and blastocysts labeled with L-[35S]methionine. Synthesis of embryonic spectrin began in the Triton-soluble fraction with significant levels of alpha-spectrin synthesis first detected in the morula stage and significant levels of beta-spectrin synthesis detected in the blastocyst stage. Incorporation of newly synthesized alpha- and beta-spectrin into the cytoskeletal fraction took place in the blastocyst when equal amounts of both subunits were assembled. Previous studies have shown Triton-insoluble spectrin to be concentrated in regions of cell-cell contact in the embryo (J. S. Sobel and M. A. Alliegro, 1985, J. Cell Biol. 100, 333-336). The temporal and spatial correlation between the assembly of newly synthesized spectrin and its concentration in regions of cell apposition is consistent with the hypothesis that cell contact may influence the assembly of embryonic spectrin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号