首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The murine Leydig tumor cell line, MLTC-1, contains gonadotropin receptors and a gonadotropin-responsive adenylate cyclase system that became refractory (desensitized) when exposed to human chorionic gonadotropin (hCG). MLTC-1 cells also contain phorbol ester receptors with a Kd of 53 nM for [3H]phorbol dibutyrate. Exposing cells to 12-O-tetradecanoyl phorbol 13-acetate (TPA) also causes desensitization of the hCG response. TPA-induced desensitization was similar to hCG-induced desensitization by every criteria tested. Both TPA- and hCG-induced desensitization caused approximately 50% loss of the hormone response within 30 min. Neither TPA or hCG altered receptor affinity for hCG. The dose response of adenylate cyclase to hCG or GTP in isolated membranes was not affected by either hCG- or TPA-induced desensitization. Similarly the dose response to hCG of cAMP accumulation in intact cells was not altered by desensitization with hCG or TPA. It was determined that MLTC-1 cells have Ca2+/phospholipid-dependent protein kinase activity that displayed a dose-dependent response to TPA. The concentration of TPA required to activate the protein kinase was similar to that required for desensitization. Phorbol esters that were unable to activate protein kinase C were also unable to desensitize MLTC-1 cells. The protein kinase from MLTC-1 cells was also activated by diacylglycerol. In addition, diacylglycerols caused desensitization of the hCG response. TPA- and diacylglycerol-induced desensitization is probably mediated by protein kinase C, and the similarities between hCG- and TPA-induced refractoriness suggests a convergence of mechanisms at some point of MLTC-1 cell desensitization.  相似文献   

3.
Previous studies (Miskin, R., T. G. Easton, and E. Reich, 1970, Cell. 15:1301-1312) have shown that sarcoma virus transformation and tumor promoters reduced the cell surface concentration of acetylcholine receptors (AChR) in differentiating chick embryo myogenic cultures. Both of these agents also induced high rates of plasminogen activator (PA) synthesis in myogenic cultures (Miskin, R., T. G. Easton, A. Maelicke, and E. Reich, 1978, Cell. 15:1287-1300), and the present work was performed to establish whether proteolysis might significantly affect receptor metabolism. Proteolysis in myogenic cultures was modulated by one or more of the following: stimulation of PA synthesis, direct addition of plasmin, removal of plasminogen, or addition of plasmin inhibitors. The results were: (a) When the rates of proteolysis were raised either by addition of plasmin or by stimulating PA synthesis in the presence of plasminogen, both the steady-state concentration and the half-life of surface AChR decreased, but the rate of receptor synthesis was unaffected. (b) The magnitude of these effects, and their dependence on added plasminogen, indicated that proteolysis initiated by plasminogen activation could account almost entirely for the reduction in receptor half-life produced by sarcoma virus transformation and phorbol ester. (c) The rate of receptor synthesis, which is also reduced by viral transformation and tumor promoters, was not modified by proteolysis; hence plasmin action may be responsible for a large part, but not all of the change in surface receptor under these conditions. (d) The plasmin catalysed changes in receptor parameters appear to occur in response to modified membrane metabolism resulting from proteolysis of surface components other than AChR itself.  相似文献   

4.
5.
6.
7.
Tumor-promoting phorbol esters and histamine induce tissue plasminogen activator (tPA) release from human endothelial cells in a dose- and time-dependent manner. Phorbol myristate acetate (PMA) and phorbol dibutyrate (PDBu) increased tPA concentration in the culture medium by eight to 12 times after 24 h with half-maximal stimulation at 13 and 55 nM, respectively. Maximum release by histamine was only half that of the phorbol esters and required 18 microM for half-maximal response. Kinetics of enhanced release was similar with both types of agonists: a 4-h lag period followed by a period of rapid release (4 h in PMA-treated and 10 h in histamine-treated cultures) followed by a decline toward pretreatment rates. The PMA and histamine effects were additive while histamine and thrombin, which also stimulates tPA release in human endothelial cells, were no more effective together than they were alone. Exposure of the cells to PMA, PDBu, or phorbol 12,13-didecanoate caused a loss of responsiveness to second treatment of the homologous agent that was time- and dose-dependent, sustained, and specific to active tumor promoters (half-maximal desensitization = 52 nM PDBu). A partial desensitized state was also established by histamine which resulted in a 60% lower response to a second challenge dose. Histamine-induced desensitization did not interfere with the PMA response. However, PMA-induced desensitization caused a 75% loss of the histamine and a 67% loss of the thrombin effects. These studies indicate that tumor promoters are potent agonists of tPA release from human endothelial cells and establish a desensitized state to further stimulation. Treatment of these cells with histamine has similar effects which may be mediated at least in part by pathways common to phorbol ester stimulation.  相似文献   

8.
9.
10.
11.
12.
D A Jans  B A Hemmings 《FEBS letters》1986,205(1):127-131
Mutants of the pig kidney cell line, LLC-PK1, affected in cAMP metabolism, were examined for cAMP-dependent protein kinase (cAMP-PK) activity and for cAMP-mediated induction of urokinase-type plasminogen activator (uPA). The FIB4 and FIB6 mutant cell lines possessed about 10% parental levels of cAMP-PK activity and concomitantly reduced uPA production (10-20% parental) in response to calcitonin, forskolin and 8-bromo cAMP. The FIB1, FIB2 and FIB5 mutant cell lines had about 70% parental levels of cAMP-PK and the synthesis of uPA was 40-60% parental. Thus, cAMP-mediated induction of uPA showed a dependence on the absolute levels of cAMP-PK. However, uPA synthesis in response to phorbol-12-myristate-13-acetate by all of the mutants was similar to parental, which indicates that enzyme induction mediated by phorbol esters does not involve cAMP or cAMP-PK.  相似文献   

13.
Loss of sensitivity to thrombin following an initial response is characteristic of a number of cell types, including platelets. It has recently been proposed that thrombin receptors resemble other G protein-coupled receptors, but that activation involves a novel mechanism in which thrombin cleaves the receptor, exposing a new N terminus that serves as the ligand for the receptor. Based upon this model, we have examined the mechanism of thrombin receptor desensitization by comparing the effects of thrombin with those of a peptide corresponding to the N-terminal sequence of the receptor following proteolysis by thrombin: SFLLRNPNDKYEPF or TRP42/55. Like thrombin, TRP42/55 stimulated pertussis toxin-sensitive inositol 1,4,5-trisphosphate formation, raised cytosolic Ca2+, and inhibited cAMP formation in the megakaryoblastic HEL cell line. Exposure to either thrombin or TRP42/55 desensitized the cells to both, but not to a third agonist, neuropeptide Y. The rate of recovery after desensitization depended upon the order of agonist addition. Resensitization of the cell to thrombin following a brief exposure to thrombin required up to 24 h and could be inhibited with cycloheximide. Resensitization to TRP42/55 after exposure to thrombin, or to thrombin after exposure to TRP42/55, on the other hand, was detectable within 30 min and could be inhibited by serine/threonine phosphatase inhibitors, but not by cycloheximide. Loss of responsiveness to thrombin and TRP42/55 was also observed following addition of the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA). However, while the protein kinase inhibitor staurosporine completely prevented the desensitization caused by TPA, it had only a limited effect on the desensitization caused by TRP42/55. These results demonstrate that the G protein-mediated effects of thrombin can be reproduced by a receptor-derived peptide and suggest that desensitization occurs by at least two mechanisms. The first, which is seen with thrombin, but not TRP42/55, involves proteolysis and requires protein synthesis for recovery. The second, which occurs with TRP42/55 and TPA, as well as with thrombin, involves phosphorylation, possibly of the receptor itself. Although protien kinase C is activated by thrombin and is presumably responsible for the desensitization caused by TPA, it does not appear to play a major role in receptor desensitization caused by thrombin and TRP42/55. This suggests that other kinases, such as those which inactivate adrenergic receptors and rhodopsin, are involved in the down-regulation of thrombin receptor function.  相似文献   

14.
The essential role of urokinase-type plasminogen activator (uPA) in tumor invasion and metastasis stresses the necessity of a fine-tuned cellular control over its expression. It has been shown that changes in uPA directly correlate with changes in cell invasiveness. We examined the role of Rel-related proteins in uPA synthesis by human ovarian cancer cells by inhibiting their expression using the antisense (AS) oligodeoxynucleotide (ODN) technology. Exposure of OV-MZ-6 cells to 10 microM phosphorothioate (PS)-derivatized AS-ODN directed to Rel A led to a maximal 50% decrease of uPA antigen in cell lysates and a 70% reduction in cell cultures supernatants accompanied by a significant transient decline in uPA mRNA levels. Antisense-PS-ODN directed to NF-kappa B1 (p50) or c-rel had no effect on uPA protein expression. AS-PS-ODN directed to Rel A also affected the proteolytic capacity of OV-MZ-6 cells reflected by an approximately 70% decrease in the fibrinolytic capacity of the cells within 24 h compared to untreated controls. AS-PS-ODN directed to I kappa B alpha expression increased uPA in cell culture supernatants up to 50%. uPA receptor (uPAR) production and synthesis of plasminogen activator inhibitor type-1 (PAI-1) were not altered by either AS-PS-ODN applied. Western blot and gel retardation analyses revealed constitutive expression of Rel-related proteins in nuclear protein extracts of OV-MZ-6 cells. Thus these proteins seem to be implicated in uPA regulation and may thereby contribute to tumor spread and metastasis.  相似文献   

15.
Induction of urokinase-type plasminogen activator (uPA) in response to either reagents activating cAMP-dependent protein kinase (cAMP-PK) or the calcium ion phospholipid-dependent kinase (C-kinase) was compared in the LLC-PK1 and T47D cell lines. The two cell lines exhibited quantitatively different responses to calcitonin, to the phosphodiesterase inhibitor isobutylmethylxanthine, and to the adenylate cyclase activator forskolin. Both showed activation of cAMP-PK in response to all these reagents, with T47D cells displaying a greater extent of activation. T47D cells, however, failed to produce uPA in response to calcitonin, forskolin, or the cAMP analog 8-bromo-cAMP, whereas LLC-PK1 cells produced high levels of uPA in response to all these agents. Both cell lines responded to phorbol esters in terms of uPA induction, though to differing extents. Phorbol myristate acetate (PMA) was shown conclusively not to activate cAMP-PK in either cell line, even at concentrations 10-fold higher than those promoting maximal uPA induction. It was concluded that phorbol ester-mediated induction of uPA does not involve cAMP or cAMP-PK activation. These results are discussed in relation to proposed models concerning the role of cAMP-PK in uPA induction.  相似文献   

16.
The J774 murine macrophage cells possess a beta 2-adrenergic receptor coupled to adenylate cyclase, which can be regulated by homologous desensitization. Stimulation of protein kinase C by phorbol esters or oleoyl acetyl glycerol potentiates two-to-threefold the isoproterenol-induced cyclic AMP accumulation. These promoters act at a post-receptor level, since the number and affinity of the beta-adrenergic receptors, measured by use of the hydrophilic ligand [3H]CGP-12177, are not modified. In addition, the effect of cholera toxin is similarly increased and pretreatment of the cells with pertussis toxin prevents the action of phorbol esters. On the other hand, these promoters are ineffective on isoproterenol-induced desensitization and the rates of receptor segregation and recovery remain unchanged. Therefore, protein kinase C modulates the isoproterenol-stimulated adenylate cyclase, whereas it is inactive on the homologous desensitization process.  相似文献   

17.
D W Ross 《Blood cells》1983,9(1):57-68
Unbalanced cell growth as manifested by an increase in cellular volume and in cellular dry mass following exposure to a variety of chemotherapeutic agents has been shown for neoplastic cells in vitro and human leukemic cells in vivo. The purpose of the present investigation was to test the hypothesis that unbalanced cell growth results from a disassociation of cell growth and cell division due to the blocking effect of chemotherapeutic agents. Monolayer cultures of CHO fibroblasts were studied in terms of their response to two chemotherapeutic agents that differ significantly in their mode of action, adriamycin and chlorambucil. Following exposure to these drugs, cell volume increased at a rate of from 1% to 4% per h; the total cell protein increased at a rate of from 4% to 7% per h. These changes were observed in both log and stationary phase cultures. Thus exposure to adriamycin and chlorambucil was followed by a more rapid rate of protein synthesis relative to the rate of degradation, resulting in larger cells with more protein whether or not the cells were actively in the division cycle. This is inconsistent with the hypothesis that unbalanced growth results simply from a disassociation of the cell division cycle from cell growth. These observations suggest that a final common pathway in the mode of action of chemotherapeutic agents may be the induction of unscheduled protein synthesis resulting in unbalanced cell growth.  相似文献   

18.
Phosphoinositide hydrolysis was studied in primary cultures of rat cerebellar astrocytes pre-labeled with [3H]myo-inositol. Among the agonists examined, the rank order of efficacies in causing phosphoinositide hydrolysis was bradykinin > endothelin-1 > ATP > norepinephrine. The bradykinin response was robust (24-fold increase) with EC50 value of 30 nM and saturating concentration of 1 μM. Preincubation of cells with pertussis toxin did not affect the activation of phosphoinositide turnover by bradykinin. Although short-term (within 90 min) treatment of cells with phorbol dibutyrate attenuated bradykinin-induced phosphoinositide breakdown, the inhibitory effect was lost after 3–6 h of phorbol dibutyrate treatment. Extended (24 h) preincubation resulted in a potentiation of bradykinin response. Homologous desensitization of bradykinin response was observed in cells prestimulated with bradykinin for up to 6 h. However, similar to the effect of phorbol dibutyrate. 24-h pretreatment with bradykinin selectively sensitized the response to bradykinin. Up-regulation of the bradykinin response was also observed in cells prestimulated with endothelin-1 or norepinephrine for 24 h, although these treatments resulted in only homologous desensitization to their own response. Our results suggest that cultured cerebellar astrocytes express bradykinin receptors coupled to phospholipase C and in these cells protein kinase C plays a more prominent role in the negative-feedback regulation of bradykinin-evoked phosphoinositide response.  相似文献   

19.
20.
Evidence is presented to support our previously proposed hypothesis that the hyperplastic effect of tumor promoters is related to their ability to alter existing physiological levels of growth factors in target tissues. Epidermal growth factor and phorbol ester tumor promoters acted synergistically at low (0.001-0.05 ng/ml) but not high (greater than 0.1 ng/ml) EGF concentrations to induce DNA synthesis in cultured Rat-1 fibroblast cells. The degree of synergism correlated with the tumor-promoting ability of the compound. The tumor promoters decreased 125I-EGF binding to cellular receptors in a dose-dependent manner that also correlated with the tumor-promoting ability of the compound. The inhibition of EGF binding by phorbol ester compounds resulted in a decrease in the amount of EGF degraded as compared to control cultures. At limiting EGF concentrations, the sparing of EGF degradation resulted in an increase in the amount of EGF remaining in the culture medium after 12 h of incubation and a concomitant increase in the amount of EGF bound to phorbol ester-treated cells at this time as compared to control cultures. The ability of a phorbol ester compound to alter EGF degradation and to stimulate DNA synthesis synergistically with EGF correlated with the tumor-promoting ability of the compound and occurred only a low EGF concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号