首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 928 毫秒
1.
The growth hormone (GH) and insulin-like growth factor I (IGF-I) axis were studied in streptozotocin (STZ) diabetic and nondiabetic female mice following intravenous (IV) injection of the GH secretagogue (GHS) ipamorelin or saline. On day 14, blood samples were obtained before and 10 minutes after the injection. Livers were removed and frozen for determination of the mRNA expressions of the GH receptor, GH-binding protein, and IGF-I, and hepatic IGF-I peptide. Serum samples were analyzed for GH and IGF-I. Following ipamorelin injection, the GH levels were found to be 150 ± 35 μg/L and 62 ± 11 μg/L in the diabetic compared to the nondiabetic mice (P < .05). Serum IGF-I levels were lower in diabetic than in nondiabetic animals, and rose after stimulation only in the nondiabetic animals. Furthermore, hepatic GH resistance and IGF-I mRNA levels and IGF-I peptide were increased in nondiabetic animals in response to GH stimulation, whereas the low levels per se of all these parameters in diabetic mice were unaffected. The study shows that STZ diabetic mice demonstrate a substantial part of the clinical features of type 1 diabetes in humans, including GH hypersecretion and GH resistance. Accordingly, it is proposed that STZ diabetic mice may be a better model of the perturbations of the GH/IGF-I axis in diabetes than STZ diabetic rats.  相似文献   

2.
Growth hormone (GH) secretagogues (GHS) stimulate GH secretion in vivo in humans and in animals. They act on the ghrelin receptor, expressed in both the hypothalamus and the pituitary. It is unknown whether GHSs act predominantly by increasing the release of hypothalamic GH-releasing hormone (GHRH) or by acting directly on the somatotroph cells. We studied whether a potent GHS could stimulate growth in the absence of endogenous GHRH. To this end, we used GHRH knockout (GHRH-KO) mice. These animals have proportionate dwarfism due to severe GH deficiency (GHD) and pituitary hypoplasia due to reduced somatotroph cell mass. We treated male GHRH-KO mice for 6 wk (from week 1 to week 7 of age) with GH-releasing peptide-2 (GHRP-2, 10 microg s.c. twice a day). Chronic treatment with GHRP-2 failed to stimulate somatotroph cell proliferation and GH secretion and to promote longitudinal growth. GHRP-2-treated mice showed an increase in total body weight compared with placebo-treated animals, due to worsening of the body composition alterations typical of GHD animals. These data demonstrate that GHRP-2 failed to reverse the severe GHD caused by lack of GHRH.  相似文献   

3.
Growth hormone (GH) inhibits fat accumulation and promotes protein accretion, therefore the fall in GH observed with weight gain and normal aging may contribute to metabolic dysfunction. To directly test this hypothesis a novel mouse model of adult onset-isolated GH deficiency (AOiGHD) was generated by cross breeding rat GH promoter-driven Cre recombinase mice (Cre) with inducible diphtheria toxin receptor mice (iDTR) and treating adult Cre(+/-),iDTR(+/-) offspring with DT to selectively destroy the somatotrope population of the anterior pituitary gland, leading to a reduction in circulating GH and IGF-I levels. DT-treated Cre(-/-),iDTR(+/-) mice were used as GH-intact controls. AOiGHD improved whole body insulin sensitivity in both low-fat and high-fat fed mice. Consistent with improved insulin sensitivity, indirect calorimetry revealed AOiGHD mice preferentially utilized carbohydrates for energy metabolism, as compared to GH-intact controls. In high-fat, but not low-fat fed AOiGHD mice, fat mass increased, hepatic lipids decreased and glucose clearance and insulin output were impaired. These results suggest the age-related decline in GH helps to preserve systemic insulin sensitivity, and in the context of moderate caloric intake, prevents the deterioration in metabolic function. However, in the context of excess caloric intake, low GH leads to impaired insulin output, and thereby could contribute to the development of diabetes.  相似文献   

4.
Two truncated isoforms of growth hormone (GH) receptor (GHR) were identified in mice and in humans. The proteins encoded by these isoforms lack most of the intracellular domain of the GHR and inhibit GH action in a dominant negative fashion. We have quantified the mRNAs encoding the GHR isoforms in mouse tissues by use of real-time RT-PCR and examined the effect of GH excess or deficiency on regulation of mRNA levels of the GHR isoforms in vivo. In the liver, the truncated GHR mRNAs (mGHR-282 and mGHR-280) were 0.5 and <0.1%, respectively, the level of full-length GHR (mGHR-fl). In skeletal muscle, the values were 2-3 and 0.1-0.5% of mGHR-fl, respectively, and in subcutaneous fat, the values were 3-5 and 0.1-0.5% of mGHR-fl, respectively. The bovine GH transgenic mice showed a significant increase of mGHR-fl in liver but a significant decrease in skeletal muscle, with no difference in subcutaneous fat when compared with control mice. The lit/lit mice showed a significant decrease of mGHR-fl in liver, no difference of mGHR-fl in muscle, and a significant increase of mGHR-fl in subcutaneous fat when compared with lit/+ mice. The mRNA of mGHR-282 was regulated in parallel with mGHR-fl in all tissues of all mice examined, whereas that of mGHR-280 was not changed in either GH-excess or GH-deficient states. In conclusion, two truncated isoforms of GHR mRNAs were detected in liver, skeletal muscle, and subcutaneous fat of mice. The ratio of GHR-tr to GHR-fl mRNA was tissue specific and not affected by chronic excess or deficiency of GH.  相似文献   

5.
The effects of growth hormone secretagogues (GHSs) on the teleost somatotropic axis are poorly understood, particularly with respect to insulin-like growth factor-I (IGF-I) and the IGF-binding proteins (IGFBPs). To assess the endocrine and orexigenic responses of rainbow trout (Oncorhynchus mykiss) to GHS treatment, animals were injected with human GHRH(1-29)-amide, KP-102 or rat ghrelin at 0, 1 or 10 pmol/g body mass. Feed intake was tested at 2 and 5 h post-injection and plasma levels of growth hormone (GH), IGF-I and the IGFBPs were determined at 3, 6 and 12 h post-injection. Feed intake was significantly elevated by all of the GHSs tested at both post-injection time points. All GHSs elevated plasma GH levels in a time-dependent manner. Plasma IGF-I levels were elevated by all GHSs at 3 h post-injection, whereas those animals treated with KP-102 and ghrelin exhibited depressions at 6 h. Four IGFBPs were identified in the plasma by western blotting. Levels of the 20 kDa IGFBP decreased over the sampling time. Levels of the 32 kDa IGFBP were significantly depressed by all GHSs tested. Levels of the 42 kDa IGFBP were significantly elevated by all GHSs tested. Plasma levels of the 50 kDa IGFBP was decreased in some treatment groups at 3 h, but elevated by 6 h in the ghrelin-treated groups and elevated in all treatment groups by 12 h post-injection. The endocrine and orexigenic responses demonstrate that GHSs influence the teleost neuroendocrine system beyond short-term actions (<3 h post-injection) on GH release and the responses of the IGFBPs to GHS treatment support this notion and clarify their identification as functional homologues to mammalian IGFBPs.  相似文献   

6.
7.
The effects of biosynthetic methionyl-human growth hormone (met-hGH) on body composition and endogenous secretion of growth hormone (GH) and insulin-like growth factor I (IGF-I) were studied in eight well-trained exercising adults between 22 and 33 yr of age. By the use of double-blind procedures, met-hGH (2.67 mg/0.5 ml diluent, 3 days/wk) and bacteriostatic water (placebo, 0.5 ml, 3 days/wk) were administered in a repeated-measures design that counterbalanced treatment order. Duration of each treatment was 6 wk. Subjects trained with progressive resistance exercise throughout and were maintained on a high-protein diet monitored by extensive compositional analyses of daily dietary intake records. Hydrodensitometry revealed that met-hGH significantly decreased percent body fat (%fat) and increased fat-free weight (FFW) and FFW/fat weight (FW), whereas the placebo treatment did not change any of these measures. Changes in FFW/FW correlated with the relative dose of met-hGH but did not correlate with either the peak GH response to L-dopa/arginine stimulation or IGF-I levels obtained after treatment with placebo. There were no differences between treatments in the dietary intakes of total kilocalories, protein, carbohydrates, and fat. Mean IGF-I levels were elevated after treatment with met-hGH compared with postplacebo levels. After treatment with met-hGH, five of seven subjects had a suppressed GH response to stimulation from either L-dopa/arginine or submaximal exercise. We conclude that supraphysiological doses of met-hGH will alter body composition in exercising adults in a relative dose-dependent manner and that such treatment may suppress endogenous release of GH in some individuals.  相似文献   

8.
To elucidate the involvement of growth hormone (GH) in the genetic change produced by long-term selection in growth and fatness, a 'GH knock-out study' on over 900 mice was undertaken. Lines used had been selected for more than 50 generations for high (PH) and low (PL) body weight (initially protein mass) at 70 d(ays) and for high (F) and low fat content (L) at 98 d, producing a 3-fold difference in body weight and a 5-fold difference in fat content. GH deficiency was achieved by repeated backcrossing into each line a recessive mutant gene (lit) which has a defective GH releasing factor receptor. In the absence of GH, the P lines still differ in body weight (21 d to 98 d): e.g. at 98 d homozygous lit/lit: PH = 24.2 g, PL = 10.0 g; wild-type (wt): PH = 57.4 g, PL = 18.7 g. The effect of the GH deficiency on body weight (untransformed) was very much larger in the PH than in the PL line, but the interaction was much smaller, although still significant, on the log scale. This indicates that changes in the GH system contribute only a small part of the selection response in growth. GH deficiency increased fat percentage in all lines (including P), especially in males (99 d, males lit/lit: F = 26.4%, L = 6.9%; wt: F = 22.0%, L = 4.8%; females: 20.2%, 5.2%, 20.7%, 3.0%) with significant genotype x line and genotype x sex interactions. The interactions between the effects of the lit gene and the genetic background were, however, relatively small compared with these main effects and again indicate that other systems contributed most of the selection response.  相似文献   

9.
Growth hormone (GH) can induce an accelerated lipolysis. Impaired secretion of GH in obesity results in the consequent loss of the lipolytic effect of GH. Dietary restriction as a basic treatment for obesity is complicated by poor compliance, protein catabolism, and slow rates or weight loss. GH has an anabolic effect by increasing insulin-like growth factor (IGF)-I. We investigated the effects of GH treatment and dietary restriction on lipolytic and anabolic actions, as well as the consequent changes in insulin and GH secretion in obesity. 24 obese subjects (22 women and 2 men; 22-46 years old) were fed a diet of 25 kcal/kg ideal body weight (IBW) with 1.2 g protein/kg IBW daily and were treated with recombinant human GH (n = 12, 0.18 U/kg IBW/week) or placebo (n = 12, vehicle injection) in a 12-week randomized, double-blind and placebo-controlled trial. GH treatment caused a 1.6-fold increase in the fraction of body weight lost as fat and a greater loss of visceral fat area than placebo treatment (35.3 vs. 28.5%, p < 0.05). In the placebo group, there was a loss in lean body mass (-2.62 +/- 1.51 kg) and a negative nitrogen balance (-4.52 +/- 3.51 g/day). By contrast, the GH group increased in lean body mass (1.13 +/- 1.04 kg) and had a positive nitrogen balance (1.81 +/- 2.06 g/day). GH injections caused a 1.6-fold increase in IGF-I, despite caloric restriction. GH response to L-dopa stimulation was blunted in all subjects and it was increased after treatment in both groups. GH treatment did not induce a further increase in insulin levels during an oral glucose tolerance test (OGTT) but significantly decreased free fatty acid (FFA) levels during OGTT. The decrease in FFA area under the curve during OGTT was positively correlated with visceral fat loss. This study demonstrates that in obese subjects given a hypocaloric diet, GH accelerates body fat loss, exerts anabolic effects and improves GH secretion. These findings suggest a possible therapeutic role of low-dose GH with caloric restriction for obesity.  相似文献   

10.
Growth hormone (GH) acts on adipose tissue by accelerating fat expenditure, preventing triglyceride accumulation, and facilitating lipid mobilization. To investigate whether GH is involved in the development and metabolism of interscapular brown adipose tissue (BAT), a site of nonshivering thermogenesis, we employed three lines of transgenic mice. Two of the lines are dwarf due to expression of a GH antagonist (GHA) or disruption of the GH receptor/binding-protein gene. A third mouse line is giant due to overexpression of a bovine GH (bGH) transgene. We have found that the body weights of those animals are proportional to their body lengths at 10 weeks of age. However, GHA dwarf mice tend to catch up with the nontransgenic (NT) littermates in body weight but not in body length at 52 weeks of age. The increase of body mass index (BMI) for GHA mice accelerates rapidly relative to controls as a function of age. We have also observed that BAT in both dwarf mouse lines but not in giant mice is enlarged in contrast to nontransgenic littermates. This enlargement occurs as a function of age. Northern analysis suggests that BAT can be a GH-responsive tissue because GHR/BP mRNAs were found there. Finally, the level of uncoupling protein-1 (UCP1) RNA was found to be higher in dwarf mice and lower in giant animals relative to controls, suggesting that GH-mediated signaling may negatively regulate UCP1 gene expression in BAT.  相似文献   

11.
Growth hormone (GH) secretion and serum insulin-like growth factor-I (IGF-I) decline with aging. This study addresses the role played by the hypothalamic regulators in the aging GH decline and investigates the mechanisms through which growth hormone secretagogues (GHS) activate GH secretion in the aging rats. Two groups of male Wistar rats were studied: young-adult (3 mo) and old (24 mo). Hypothalamic growth hormone-releasing hormone (GHRH) mRNA and immunoreactive (IR) GHRH dramatically decreased (P < 0.01 and P < 0.001) in the old rats, as did median eminence IR-GHRH. Decreases of hypothalamic IR-somatostatin (SS; P < 0.001) and SS mRNA (P < 0.01), and median eminence IR-SS were found in old rats as were GHS receptor and IGF-I mRNA (P < 0.01 and P < 0.05). Hypothalamic IGF-I receptor mRNA and protein were unmodified. Both young and old pituitary cells, cultured alone or cocultured with fetal hypothalamic cells, responded to ghrelin. Only in the presence of fetal hypothalamic cells did ghrelin elevate the age-related decrease of GH secretion to within normal adult range. In old rats, growth hormone-releasing peptide-6 returned the levels of GH and IGF-I secretion and liver IGF-I mRNA, and partially restored the lower pituitary IR-GH and GH mRNA levels to those of young untreated rats. These results suggest that the aging GH decline may result from decreased GHRH function rather than from increased SS action. The reduction of hypothalamic GHS-R gene expression might impair the action of ghrelin on GH release. The role of IGF-I is not altered. The aging GH/IGF-I axis decline could be rejuvenated by GHS treatment.  相似文献   

12.
New tert-butyl, picolyl and fluorinated analogues of capromorelin (3), a short-acting growth hormone secretagogue (GHS), were prepared as part of a program to identify long-acting GHSs that increase 24-h plasma IGF-1 levels. Compounds 4c and 4d (ACD LogD values >or=2.9) displayed extended plasma elimination half-lives in dogs, primarily due to high volumes of distribution, but showed weak GH secretagogue activities in rats (ED(50)s>10 mg/kg). A less lipophilic derivative 4 (ACD LogD=1.6) exhibited a shorter canine half-life, but stimulated GH secretion in two animal species. Repeat oral dosing of 4 in dogs for 29 days (6 mg/kg) resulted in a significant down-regulation of the post dose GH response and a 60 and 40% increase in IGF-1 levels relative to pre-dose levels at the 8- and 24-h post dose time points. Compound 4 (CP-464709-18) has been selected as a development candidate for the treatment of frailty.  相似文献   

13.
In women who are growth hormone (GH) deficient, exogenous estrogens increase the dosage of GH that is needed to normalize circulating levels of insulin-like growth factor (IGF-1). Serum IGF-1 derives mostly from the liver, and it is unknown whether the peripheral effects of GH are also impaired by estrogens. Because the ultimate effect of GH is longitudinal growth, we have investigated the influence of estrogen administration on the growth response to recombinant mouse GH therapy in prepubertal GH-deficient (GHD) GHRH knockout (GHRHKO) female mice. Twenty-four GHRHKO female mice (4 animals/group) were treated for 4 weeks (from the second to sixth week of age) with the following schedules: Group I, GH only (25 microg/day); Group II, subcutaneous (sc) ethynil estradiol (EE) (0.035 ES01247g/day); Group III, GH + scEE; Group IV, oral (po) EE (0.035 microg/day); Group V, GH + poEE; Group VI, placebo. At the end of the treatment period, we measured uterine weight, total body weight (TBW), body length (nose-anus, N-A), and femur length. In addition, serum IGF-1 levels were measured. Uteri of mice treated with oral or scEE showed similar increases in weight. There was no difference in the increase in longitudinal growth parameters between mice treated with GH alone or with GH in association with oral or scEE. Serum IGF-1 decreased in animals treated with GH + scEE, compared with GH group, but no group was significantly different from placebo. These results show that subcutaneous or oral EE does not reduce the growth response to GH in female GHD mice.  相似文献   

14.
The role of the somatotropic axis in sleep regulation was studied by using the lit/lit mouse with nonfunctional growth hormone (GH)-releasing hormone (GHRH) receptors (GHRH-Rs) and control heterozygous C57BL/6J mice, which have a normal phenotype. During the light period, the lit/lit mice displayed significantly less spontaneous rapid eye movement sleep (REMS) and non-REMS (NREMS) than the controls. Intraperitoneal injection of GHRH (50 microg/kg) failed to promote sleep in the lit/lit mice, whereas it enhanced NREMS in the heterozygous mice. Subcutaneous infusion of GH replacement stimulated weight gain, increased the concentration of plasma insulin-like growth factor-1 (IGF-1), and normalized REMS, but failed to restore normal NREMS in the lit/lit mice. The NREMS response to a 4-h sleep deprivation was attenuated in the lit/lit mice. In control mice, intraperitoneal injection of ghrelin (400 microg/kg) elicited GH secretion and promoted NREMS, and intraperitoneal administration of the somatostatin analog octretotide (Oct, 200 microg/kg) inhibited sleep. In contrast, these responses were missing in the lit/lit mice. The results suggest that GH promotes REMS whereas GHRH stimulates NREMS via central GHRH-Rs and that GHRH is involved in the mediation of the sleep effects of ghrelin and somatostatin.  相似文献   

15.
It is generally well accepted that the pubertal surge in estrogen is responsible for the rapid bone accretion that occurs during puberty and that this effect is mediated by an estrogen-induced increase in growth hormone (GH)/insulin-like growth factor (IGF) action. To test the cause and effect relationship between estrogen and GH/IGF, we evaluated the consequence of ovariectomy (OVX) in prepubertal mice (C57BL/6J mice at 3 wk of age) on skeletal changes and the GH/IGF axis during puberty. Contrary to our expectations, OVX increased body weight (12-18%), bone mineral content (11%), bone length (4%), bone size (3%), and serum, liver, and bone IGF-I (30-50%) and decreased total body fat (18%) at 3 wk postsurgery. To determine whether estrogen is the key ovarian factor responsible for these changes, we performed a second experiment in which OVX mice were treated with placebo or estrogen implants. In addition to observing similar results compared with our first experiment, estrogen treatment partially rescued the increased body weight and bone size and completely rescued body fat and IGF-I levels. The increased bone accretion in OVX mice was due to increased bone formation rate (as determined by bone histomorphometry) and increased serum procollagen peptide. In conclusion, contrary to the known estrogen effect as an initiator of GH/IGF surge and thereby pubertal growth spurt, our findings demonstrate that loss of estrogen and/or other hormones during the prepubertal growth period effect leads to an increase in IGF-I production and bone accretion in mice.  相似文献   

16.
Homozygous little (lit/lit) mutant mice exhibit a growth lag which is manifested at approximately two weeks postnatally. Functional aspects of the development of pituitary growth hormone (GH) cells and prolactin (PRL) cells were thus analyzed by means of colloidal gold immunocytochemistry at the ultrastructural level in lit/lit mice and their normal counterparts ranging in age from 5 days postnatally to adulthood. In the adult normal and lit/lit pituitaries, secretory granules in GH cells and PRL cells showed a positive immunoreaction to their respective antisera, as did granules in both cell-types at 5 days postnatally. By 14 days some GH cells in lit/lit pituitaries appeared to be less densely populated with granules than GH cells in normal pituitaries, but a positive immunoreaction continued to occur even in sparsely granulated GH cells. PRL cells showed ultrastructural features in lit/lit pituitaries which were similar to those in normal mice, and immunoreactivity was present at all stages examined. The results indicate that since differences in granule reactivity were not evident between lit/lit and normal GH cells, despite ultrastructural morphologic differences which were present by 14 days postnatally, manifestations of the defect in lit/lit may be primarily quantitative in terms of numbers of granules and/or numbers of GH cells. With respect to PRL cells, neither morphologic nor functional aberrations could be observed; thus, a deficit in PRL hormone production might be the result of a more subtle defect than that in GH cells.  相似文献   

17.
To ascertain the frequency of subcutaneous IGF-1 administration necessary to promote growth we examined the weight gain of male homozygous lit/lit mice in response to either sc. IGF-1 or bovine GH administration. Lit/lit mice showed a dose dependent response to treatment with GH. Bovine GH induced a response in body weight gain within 3 days of the start of treatment. Following a single subcutaneous injection of IGF-1, plasma IGF-1 levels were elevated for 4-6 hours. Three treatment schedules for IGF-1 were used (once daily, twice daily and four times daily), each employing the same total daily dose of IGF-1 (30 micrograms). With IGF-1 treatment, a significant effect on body weight gain was obtained when administered four times daily. The growth rate with IGF-1 treatment 6 hourly was similar to that observed following treatment with bGH (10 micrograms sc daily). Twelve hourly IGF-1 administration only had a significant effect on body weight gain when weight was measured in the evening. Lit/lit mice treated once daily with 30 micrograms IGF-1 had no weight gain response and became severely hypoglycaemic. Frequent subcutaneous IGF-1 administration is one approach to growth enhancement in GH deficiency; higher doses administered less frequently do not promote growth and may cause hypoglycaemia.  相似文献   

18.
The pulsatile release of growth hormone (GH) by the anterior pituitary is stimulated by small synthetic molecules termed GH secretagogues (GHS). The receptor for GHS (GHS-R) belongs to the family of G-protein-coupled receptors. An endogenous specific ligand of 28 amino acids has recently been purified from rat stomach, it has been termed 'ghrelin'. Ghrelin demonstrates potent and reproducible GH-releasing activity, as well as significant prolactin-, ACTH- and cortisol-releasing activity. However, its major physiological relevance may relate to energy homeostasis. Peripheral daily administration of ghrelin caused weight gain by reducing fat utilization in mice and rats. In man, intravenous ghrelin was shown to stimulate food intake. The pathophysiological role and the potential clinical use of ghrelin are reviewed.  相似文献   

19.
The stomach hormone ghrelin is the endogenous ligand for the growth hormone secretagogue receptor (GHS-R). Systemic administration of ghrelin will cause elevations in growth hormone (GH) secretion, food intake, adiposity, and body growth. Ghrelin also affects insulin secretion, gastric acid secretion, and gastric motility. Several reports indicate that repeated or continuous activation of GHS-R by exogenous GHSs or ghrelin results in a diminished GH secretory response. The purpose of this study was to examine the extent to which the acute stimulation of food intake by exogenous ghrelin is altered by chronic hyperghrelinemia in transgenic mice that overexpress the human ghrelin gene. The present findings show that the orexigenic action of exogenous ghrelin is not diminished by a chronic hyperghrelinemia and indicate that the food ingestive pathway of the GHS-R is not susceptible to desensitization. In contrast, the epididymal fat pad growth response, like the GH response, to exogenous ghrelin is blunted in ghrelin transgenic mice with chronic hyperghrelinemia.  相似文献   

20.
Growth hormone (GH) secretagogues (GHS) are synthetic peptidyl and non-peptidyl molecules which possess strong, dose-dependent and reproducible GH releasing effects as well as significant prolactin (PRL) and adrenocorticotropic hormone (ACTH) releasing effects. The neuroendocrine activities of GHS are mediated by specific receptors mainly present at the pituitary and hypothalamic level but also elsewhere in the central nervous system. GHS release GH via actions at the pituitary and (mainly) the hypothalamic level, probably acting on GH releasing hormone (GHRH) secreting neurons and/or as functional somatostatin antagonists. GHS release more GH than GHRH and the coadministration of these peptides has a synergistic effect but these effects need the integrity of the hypothalamo-pituitary unit. The GH releasing effect of GHS is generally gender-independent and undergoes marked age-related variations reflecting age-related changes in the neural control of anterior pituitary function. The PRL releasing activity of GHS probably comes from direct pituitary action, which indeed is slight and independent of both age and gender. The acute stimulatory effect of GHS on ACTH/cortisol secretion is similar to that of corticotropin releasing hormone (CRH) and arginine vasopressin (AVP). In physiological conditions, the ACTH releasing activity of GHS is mediated by central mechanisms, at least partially, independent of both CRH and AVP but probably involving GABAergic mechanisms. The ACTH releasing activity of GHS is gender-independent and undergoes peculiar age-related variations showing a trend towards increase in ageing. GHS possess specific receptors also at the peripheral levels in endocrine and non-endocrine human tissues. Cardiac receptors are specific for peptidyl GHS and probably mediate GH-independent cardiotropic activities both in animals and in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号