首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Introduction

The ability to degrade neutrophil extracellular traps (NETs) is reduced in a subset of patients with systemic lupus erythematosus (SLE). NETs consist of chromatin covered with antimicrobial enzymes and are normally degraded by DNase-I, an enzyme which is known to have reduced activity in SLE. Decreased ability to degrade NETs is associated with disease activity. In the current study we investigated how the ability of serum from SLE patients to degrade NETs varies during the course of SLE as well as what impact this may have for the clinical phenotype of SLE.

Methods

Serum from 69 patients with SLE, included in a prospective study, was taken every 60 days for a median of 784 days. The ability of serum to degrade NETs was determined and associated with clinical parameters occurring before and at the time of sampling, as well as after sampling by using conditional logistic regression.

Results

As many as 41% of all patients in the study showed decreased ability to degrade NETs at least once, but with a median of 20% of all time points. Decreased degradation was associated with manifestations of glomerulonephritis as well as low complement levels and elevated levels of antibodies directed against histones and DNA. Furthermore, the odds ratio for the patient to develop alopecia and fever after an episode of decreased NETs degradation was increased by four to five times compared to normal.

Conclusions

Decreased degradation of NETs is associated with clinical manifestations in SLE and may contribute to disease pathogenesis. Potential therapeutics restoring the ability to degrade NETs could be beneficial for certain patients with SLE.  相似文献   

2.
IntroductionPatients with systemic lupus erythematosus (SLE) have a decreased ability to clear cell remnants and multiple deficiencies in the ability to degrade cellular chromatin have been linked to the disease. Since the discovery of neutrophil extracellular traps (NETs), a renewed interest has been sparked in this field of research with multiple studies reporting a decreased ability of patients with SLE to degrade NETs. In this study we extend these findings by investigating the ability of patients with SLE to degrade chromatin from multiple clinically relevant sources.MethodsWe use flow cytometry in combination with NET degradation and DNA zymogram assays to investigate the ability of sera from SLE patients to degrade chromatin from three different sources of DNA such as NETs, apoptotic and necrotic cells. This ability was further associated with clinical manifestations.ResultsWe found that 61 % of the patients had an affected degradation of at least one chromatin source. Further, degradation of NETs correlated with degradation of chromatin from secondary necrotic cells but not with degradation of chromatin from primary necrotic cells. Patients who fail to degrade several forms of DNA more often display anti-nuclear and nephritic involvement whereas this is not observed in patients with decreased ability to degrade chromatin from primary necrotic cells.ConclusionsThe majority of patients with SLE has a decreased ability to degrade chromatin from clinically relevant sources. This decreased ability is further reflected in their clinical presentation.  相似文献   

3.
Neutrophil extracellular traps (NETs) have been implicated in the pathogenesis of systemic Lupus erythematosus (SLE), since netting neutrophils release potentially immunogenic autoantigens including histones, LL37, human neutrophil peptide (HNP), and self-DNA. In turn, these NETs activate plasmacytoid dendritic cells resulting in aggravation of inflammation and disease. How suppression of NET formation can be targeted for treatment has not been reported yet. Signal Inhibitory Receptor on Leukocytes-1 (SIRL-1) is a surface molecule exclusively expressed on phagocytes. We recently identified SIRL-1 as a negative regulator of human neutrophil function. Here, we determine whether ligation of SIRL-1 prevents the pathogenic release of NETs in SLE. Peripheral blood neutrophils from SLE patients with mild to moderate disease activity and healthy donors were freshly isolated. NET release was assessed spontaneously or after exposure to anti-neutrophil antibodies or plasma obtained from SLE patients. The formation of NETs was determined by microscopic evaluation using DNA dyes and immunostaining of NET components, as well as by live cell imaging. We show that SLE neutrophils spontaneously release NETs. NET formation is enhanced by stimulation with antibodies against LL37. Inhibition of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and MEK-ERK signaling prevents NET release in response to these antibodies. Signaling via the inhibitory receptor SIRL-1 was induced by ligation with anti-SIRL-1 specific antibodies. Both spontaneous and anti-neutrophil antibody-induced NET formation is suppressed by engagement of SIRL-1. Furthermore, NET release by healthy neutrophils exposed to SLE plasma is inhibited by SIRL-1 ligation. Thus, SIRL-1 engagement can dampen spontaneous and anti-neutrophil antibody-induced NET formation in SLE, likely by suppressing NAPDH oxidase and MEK-ERK activity. Together, these findings reveal a regulatory role for SIRL-1 in NET formation, potentially providing a novel therapeutic target to break the pathogenic loop in SLE.  相似文献   

4.
In cross-sectional studies autoantibodies against complement C1q (anti-C1q) were found to be highly associated with active lupus nephritis. The aim of this retrospective study was to determine the value of anti-C1q as follow-up marker of disease activity and renal involvement in patients with systemic lupus erythematosus (SLE). Fifty-two patients with SLE and a minimum of three anti-C1q measurements during follow-up were analyzed. Anti-C1q levels correlated with global disease activity scores. In subgroup analyses, patients without renal involvement did not show a significant correlation between anti-C1q levels and disease activity. In contrast, in patients with renal involvement, anti-C1q levels correlated well with global disease activity. In addition, a positive correlation with the urine protein-to-creatinine ratio and anti-dsDNA antibody levels as well as a negative correlation with complement levels was observed. Anti-C1q antibodies were found to strongly correlate with parameters of SLE disease activity during follow-up, in particular with regard to renal involvement.  相似文献   

5.
In periodontitis, polymorphonuclear leucocytes (PMNs) are activated. They entrap and eliminate pathogens by releasing neutrophil extracellular traps (NETs). Abnormal NET degradation is part of a pro-inflammatory status, affecting co-morbidities such as cardiovascular disease. We aimed to investigate the ex vivo NET degradation capacity of plasma from periodontitis patients compared to controls (part 1) and to quantify NET degradation before and after periodontal therapy (part 2). Fresh NETs were obtained by stimulating blood-derived PMNs with phorbol 12-myristate 13-acetate. Plasma samples from untreated periodontitis patients and controls were incubated for 3 h onto freshly generated NETs (part 1). Similarly, for part 2, NET degradation was studied for 91 patients before and 3, 6 and 12 mo after non-surgical periodontal therapy with and without adjunctive systemic antibiotics. Finally, NET degradation was fluorospectrometrically quantified. NET degradation levels did not differ between periodontitis patients and controls, irrespective of subject-related background characteristics. NET degradation significantly increased from 65.6 ± 1.7% before periodontal treatment to 75.7 ± 1.2% at 3 mo post periodontal therapy, and this improvement was maintained at 6 and 12 mo, irrespective of systemic usage of antibiotics. Improved NET degradation after periodontitis treatment is another systemic biomarker reflecting a decreased pro-inflammatory status, which also contributes to an improved cardiovascular condition.  相似文献   

6.
Neisseria meningitidis (Nm) is a leading cause of septicemia in childhood. Nm septicemia is unique with respect to very quick disease progression, high in vivo bacterial replication rate and its considerable mortality. Nm circumvents major mechanisms of innate immunity such as complement system and phagocytosis. Neutrophil extracellular traps (NETs) are formed from neutrophils during systemic infection and are suggested to contain invading microorganisms. Here, we investigated the interaction of Nm with NETs. Both, meningococci and spontaneously released outer membrane vesicles (SOMVs) were potent NET inducers. NETs were unable to kill NET bound meningococci, but slowed down their proliferation rate. Using Nm as model organism we identified three novel mechanisms how bacteria can evade NET‐mediated killing: (i) modification of lipid A of meningococcal LPS with phosphoethanolamine protected Nm from NET‐bound cathepsin G; (ii) expression of the high‐affinity zinc uptake receptor ZnuD allowed Nm to escape NET‐mediated nutritional immunity; (iii) binding of SOMVs to NETs saved Nm from NET binding and the consequent bacteriostatic effect. Escape from NETs may contribute to the most rapid progression of meningococcal disease. The induction of NET formation by Nm in vivo might aggravate thrombosis in vessels ultimately directing to disseminated intravascular coagulation (DIC).  相似文献   

7.
Neutrophil Extracellular Traps (NETs) have been recently identified as part of the neutrophil’s antimicrobial armamentarium. Apart from their role in fighting infections, recent research has demonstrated that they may be involved in many other disease processes, including cancer progression. Isolating purified NETs is a crucial element to allow the study of these functions.In this video, we demonstrate a simplified method of cell free NET isolation from human whole blood using readily available reagents. Isolated NETs can then be used for immunofluorescence staining, blotting or various functional assays. This enables an assessment of their biologic properties in the absence of the potential confounding effects of neutrophils themselves.A density gradient separation technique is employed to isolate neutrophils from healthy donor whole blood. Isolated neutrophils are then stimulated by phorbol 12-myristate 13-acetate (PMA) to induce NETosis. Activated neutrophils are then discarded, and a cell-free NET stock is obtained.We then demonstrate how isolated NETs can be used in an adhesion assay with A549 human lung cancer cells. The NET stock is used to coat the wells of a 96 well cell culture plate O/N, and after ensuring an adequate NET monolayer formation on the bottom of the wells, CFSE labeled A549 cells are added. Adherent cells are quantified using a Nikon TE300 fluorescent microscope. In some wells, 1000U DNAse1 is added 10 min before counting to degrade NETs  相似文献   

8.
Neutrophil extracellular traps (NETs) are composed of extracellular DNA fibers with antimicrobial peptides that capture and kill microbes. NETs play a critical role in innate host defense and in autoimmune and inflammatory diseases. While the mechanism of NET formation remains unclear, reactive oxygen species (ROS) produced via activation of NADPH oxidase (Nox) are known to be an important requirement. In this study, we investigated the effect of uric acid (UA) on NET formation. UA, a well-known ROS scavenger, was found to suppress Nox-dependent ROS release in a dose-dependent manner. Low concentrations of UA significantly inhibited Nox-dependent NET formation. However, high concentrations of UA unexpectedly induced, rather than inhibited, NET formation. NETs were directly induced by UA alone in a Nox-independent manner, as revealed by experiments using control neutrophils treated with ROS inhibitors or neutrophils of patients with chronic granulomatous disease who have a congenital defect in ROS production. Furthermore, we found that UA-induced NET formation was partially mediated by NF-κB activation. Our study is the first to demonstrate the novel function of UA in NET formation and may provide insight into the management of patients with hyperuricemia.  相似文献   

9.
Walport MJ 《Arthritis research》2002,4(Z3):S279-S293
Complement is implicated in the pathogenesis of systemic lupus erythematosus (SLE) in several ways and may act as both friend and foe. Homozygous deficiency of any of the proteins of the classical pathway is causally associated with susceptibility to the development of SLE, especially deficiency of the earliest proteins of the activation pathway. However, complement is also implicated in the effector inflammatory phase of the autoimmune response that characterizes the disease. Complement proteins are deposited in inflamed tissues and, in experimental models, inhibition of C5 ameliorates disease in a murine model. As a further twist to the associations between the complement system and SLE, autoantibodies to some complement proteins, especially to C1q, develop as part of the autoantibody response. The presence of anti-C1q autoantibodies is associated with severe illness, including glomerulonephritis. In this chapter the role of the complement system in SLE is reviewed and hypotheses are advanced to explain the complex relationships between complement and lupus.  相似文献   

10.
Much of the pathology of systemic lupus erythematosus (SLE) is caused by deposition of immune complexes (ICs) into various tissues, including renal glomeruli. Because clearance of ICs depends largely on early complement component C1q, homozygous C1q deficiency is a strong genetic risk factor in SLE, although it is rare in SLE patients overall. In this work we addressed the issue of whether genetic polymorphisms affecting C1q levels may predispose to SLE, using the (NZB x NZW)F(1) model. C1q genes are composed of three genes, C1qa, C1qc, and C1qb, arranged in this order, and each gene consists of two exons separated by one intron. Sequence analysis of the C1q gene in New Zealand Black (NZB), New Zealand White (NZW), and BALB/c mice showed no polymorphisms in exons and introns of three genes. However, Southern blot analysis revealed unique insertion polymorphism of a total of approximately 3.5 kb in the C1qa upstream region of NZB mice. C1q levels in sera and culture supernatants of LPS-stimulated peritoneal macrophages and C1q messages in spleen cells were all lower in disease-free young NZB and (NZB x NZW)F(1) mice than in age-matched non-autoimmune NZW and BALB/c mice. Quantitative trait loci analysis using (NZB x NZW)F(1) x NZW backcrosses showed that NZB microsatellites in the vicinity of the C1q allele on chromosome 4 were significantly linked to low serum C1q levels and the development of nephritis. These data imply that not only C1q deficiency but also regulatory region polymorphisms down-regulating C1q levels may confer the risk for lupus nephritis by reducing IC clearance and thus promoting IC deposition in glomeruli.  相似文献   

11.
Components that propagate inflammation in joint disease may be derived from cartilage since the inflammation resolves after joint replacement. We found that the cartilage component fibromodulin has the ability to activate an inflammatory cascade, i.e. complement. Fibromodulin and immunoglobulins cause comparable deposition of C1q, C4b, and C3b from human serum. Using C1q and factor B-deficient sera in combination with varying contents of metal ions, we established that fibromodulin activates both the classical and the alternative pathways of complement. Further studies revealed that fibromodulin binds directly to the globular heads of C1q, leading to activation of C1. However, deposition of the membrane attack complex and C5a release were lower in the presence of fibromodulin as compared with IgG. This can be explained by the fact that fibromodulin also binds complement inhibitor factor H. Factor H and C1q bind to non-overlapping sites on fibromodulin, but none of the interactions is mediated by the negatively charged keratan sulfate substituents of fibromodulin. C1q but not factor H binds to an N-terminal fragment of fibromodulin previously implicated to be affected in cartilage stimulated with the inflammatory cytokine interleukin 1. Taken together our observations indicate fibromodulin as one factor involved in the sustained inflammation of the joint.  相似文献   

12.
Undesired activation of the complement system is a major pathogenic factor contributing to various immune complex diseases and conditions such as hyperacute xenograft rejection. We aim for prevention of complement-mediated damage by specific inhibition of the classical complement pathway, thus not affecting the antimicrobial functions of the complement system via the alternative pathway and the lectin pathway. Therefore, 42 peptides previously selected from phage-displayed peptide libraries on basis of C1q binding were synthesized and examined for their ability to inhibit the function of C1q. From seven peptides that showed inhibition of C1q hemolytic activity but no inhibition of the alternative complement pathway, one peptide (2J) was selected and further studied. Peptide 2J inhibited the hemolytic activity of C1q from human, chimpanzee, rhesus monkey, rat, and mouse origin, all with a similar dose-response relationship (IC(50) 2-6 microM). Binding of C1q to peptide 2J involved the globular head domain of C1q. In line with this interaction, peptide 2J dose-dependently inhibited the binding of C1q to IgG and blocked activation of C4 and C3 and formation of C5b-9 induced via classical pathway activation, as assessed by ELISA. Furthermore, the peptide strongly inhibited the deposition of C4 and C3 on pig cells following their exposure to human xenoreactive Abs and complement. We conclude that peptide 2J is a promising reagent for the development of a therapeutic inhibitor of the earliest step of the classical complement pathway, i.e., the binding of C1q to its target.  相似文献   

13.
This study was performed to investigate the relation between IgG autoantibodies against human C-reactive protein (anti-CRP) and disease activity measures in serial serum samples from 10 patients with systemic lupus erythematosus (SLE), of whom four had active kidney involvement during the study period. The presence of anti-CRP was analysed by enzyme-linked immunosorbent assay. The cut-off for positive anti-CRP test was set at the 95th centile of 100 healthy blood donor sera. Specificity of the anti-CRP antibody binding was evaluated by preincubating patient sera with either native or monomeric CRP. Disease activity was determined by the SLE disease activity index (SLEDAI), serum levels of CRP, anti-DNA antibodies, complement components and blood cell counts. Of 50 serum samples, 20 (40%) contained antibodies reactive with monomeric CRP, and 7 of 10 patients were positive on at least one occasion during the study. All patients with active lupus nephritis were positive for anti-CRP at flare. Frequent correlations between anti-CRP levels and disease activity measures were observed in anti-CRP-positive individuals. Accumulated anti-CRP data from all patients were positively correlated with SLEDAI scores and anti-DNA antibody levels, whereas significant inverse relationships were noted for complement factors C1q, C3 and C4, and for lymphocyte counts. This study confirms the high prevalence of anti-CRP autoantibodies in SLE and that the antibody levels are correlated with clinical and laboratory disease activity measures. This indicates that anti-CRP antibodies might have biological functions of pathogenetic interest in SLE. Further prospective clinical studies and experimental studies on effects mediated by anti-CRP antibodies are warranted.  相似文献   

14.
Neutrophil extracellular chromatin traps (NETs) are a recently described mechanism of innate immune responses to bacteria and fungi. Evidence indicates that NETs are induced by inflammation, that they contribute to diverse disease pathologies, and that they associate with bactericidal substances. Genomic DNA is released in NETs, leading to a cell death that has been labeled NETosis. Although NETosis clearly differs from apoptosis, the classical form of cell death, recent experiments indicate a connection between NETosis and autophagy. The regulated deployment of NETs may require covalent modification of histones, the basic DNA-binding proteins that organize chromatin in the cell''s nucleus and within NETs. Histone modification by peptidylarginine deiminase 4 (PAD4) is necessary for NET release. The functions of additional histone modifications, however, remain to be tested.Less than a decade since their discovery, neutrophil extracellular traps (NETs) remain in the headlines. Initially, interest focused on the structure of extracellular NET chromatin and its capacity to capture and damage bacteria. Soon, however, researchers began to see the implications of extracellular chromatin for the development of autoimmune diseases. One quintessential autoimmune disease, systemic lupus erythematosus (SLE), is known to arise together with autoantibodies to DNA and chromatin, although the immediate trigger for the production of these autoantibodies is unclear. A connection between NETs and autoimmunity was made by discovering that histones, a set of proteins that act as a structural harness for DNA in chromatin, are modified by peptidylarginine deiminase 4 (PAD4), an enzyme that converts arginines to citrullines. Researchers had long suspected that autoantigen modifications could provide the initial stimuli in autoimmunity because subtle alterations in a protein''s primary sequence can break tolerance. PAD4 is implicated in the development of rheumatoid arthritis (RA) because the most reliable clinical test for RA uses the detection of anti-citrulline antibodies in the sera of patients.In a sophisticated set of experiments reported in the previous issue of Arthritis Research & Therapy, Liu and colleagues [1] accomplished an extensive inventory of post-translational modifications in NET histones. The researchers induced NETs from human neutrophils, as well as two cell lines that assume neutrophil-like characteristics, and used a panel of 40 commercially available antisera to identify histone modifications that arise in parallel with NETs. Stimuli that were used to elicit NET release also induced histone H3 and H4 citrullination in human neutrophils and the EPRO cell line. However, other modifications such as histone H4 lysine 20 methylation and H4 lysine 16 acetylation showed inconsistent results in neutrophils versus the EPRO cells. To survey histone modifications, Liu and colleagues [1] confronted technical difficulties in that histone amino terminal tails contain the highest concentration of histone modifications yet are also highly susceptible to proteases secreted by activated neutrophils [2,3]. The histone tails act as flexible tethers that organize chromatin into higher-order structures. Interestingly, purified NETs failed to induce an immune response in mice, although a subset of SLE sera reacted strongly with citrullinated histone H3 [1]. Therefore, mechanisms that regulate histone modification deserve further attention.Neeli and colleagues [4] were the first to identify citrullinated histone H3 in NETs, a discovery that was confirmed by others [5]. Neeli and colleagues [4] provided a second important insight, namely that PAD4-citrullinated histone H3 is a reliable marker of inflammation. Thus, it became clear that the release of NETs is not an ''accident'' caused by a barrage of proteases and reactive oxygen species unleashed from neutrophils. Instead, production of NETs requires enzymatic activity and input from neutrophil surface receptors and the cytoskeleton [6]. By analyzing PAD4-deficient mice, Li and colleagues [7] demonstrated that PAD4 is essential for the production of NETs in response to bacterial infections. The regulation of PAD4 activity thus moved to the forefront of the research on NETs.It is now clear that NET release takes advantage of NADPH (nicotinamide adenine dinucleotide phosphate) oxidase and the main granule proteases to trigger and construct the extended chromatin network [3,8]. In addition, myeloperoxidase is found in NETs after their release from the cells, and this enzyme and its products are the main components in NETs that kill bacteria [9]. In a notable study from the labs of Banchereau and Pascual [10], it was reported that SLE neutrophils are poised to undergo NETosis upon stimulation with anti-ribonucleo-protein autoantibodies and that NETs released by these neutrophils contain LL37 and HMGB-1, well-known stimulators of immune responses. In subsequent analyses using sera from patients with connective tissue disease, anti-citrullinated histone antibodies were observed in Felty''s syndrome, a rare disorder that shares serologic features with RA and SLE, whereas such autoantibodies were infrequent in SLE and RA [11]. These findings indicate that the process of NETosis is highly relevant to the development of human autoimmune responses, although a direct cause and effect may not connect the release of NETs to the production of autoantibodies.The detailed characterization of NET histone modifications, as accomplished by Liu and colleagues [1], invites speculations about the possible functions of these modifications. Several questions deserve further study: Will NET histone modifications, such as methylation, acetylation, and citrullination, be found to participate in gene regulation that sets the stage for NET release? Will the primary function of histone modifications turn out to be the decondensation of nuclear chromatin that is required for NETs expand to their optimal size and internal structure? Alternatively, NET histone modifications may serve non-traditional purposes. For example, certain modifications may anchor other NET components such as elastase, LL37, or myeloperoxidase to the chromatin meshwork. Unique modifications in NETs may attract phagocytes and stimulate them to ingest the trapped microorganisms. Other histone modifications may activate or dampen the inflammatory response by acting on innate pattern recognition receptors. The answers to these questions will, no doubt, keep research on NETs in leading immunology and microbiology journals for years to come.  相似文献   

15.
16.
Gestational diabetes mellitus (GDM) is a metabolic syndrome occurring in pregnant women and increases the risk of placental dysplasia. Neutrophil extracellular traps (NETs) may play a critical role in placental dysplasia. NETosis (neutrophil cell death by NET release) depends on NADPH/ROS pathway. In view of the adiponectin which is widely believed to be reduced in GDM patients suppresses NADPH oxidase and ROS generation of neutrophil. We speculate that increased NET release is associated with hypoadiponectinemia. Trophoblast apoptosis is significantly increased in GDM patients, but it is not clear whether NETs promotes cell apoptosis. This study aims to reveal the mechanism of Neutrophil Extracellular Traps generation and their role in trophoblast apoptosis in Gestational Diabetes Mellitus. We investigated the generation of NETs by cell-free DNA (cf-DNA) quantification, live-cell imaging, and reactive oxygen species (ROS) measurement. ERK1/2 and p38 MAPK signalling pathway proteins were detected by western blotting. The Cell Counting Kit-8 (CCK-8) assay, flow cytometry, and western blotting were performed to explore the effects of NETs on trophoblast apoptosis. We found that adiponectin inhibited NET release by suppressing ROS production, and p38 MAPK and ERK1/2 proteins were involved in the process. Further, NETs promoted trophoblast apoptosis by activating the ROS-dependent mitochondrial pathway, which is mediated by ERK1/2 signalling. The current study demonstrated that hypoadiponectinemia is the cause of NETs formation and NETs promoting trophoblast apoptosis.  相似文献   

17.
Neutrophil extracellular traps (NETs) are extracellular chromatin structures that can trap and degrade microbes. They arise from neutrophils that have activated a cell death program called NET cell death, or NETosis. Activation of NETosis has been shown to involve NADPH oxidase activity, disintegration of the nuclear envelope and most granule membranes, decondensation of nuclear chromatin and formation of NETs. We report that in phorbol myristate acetate (PMA)-stimulated neutrophils, intracellular chromatin decondensation and NET formation follow autophagy and superoxide production, both of which are required to mediate PMA-induced NETosis and occur independently of each other. Neutrophils from patients with chronic granulomatous disease, which lack NADPH oxidase activity, still exhibit PMA-induced autophagy. Conversely, PMA-induced NADPH oxidase activity is not affected by pharmacological inhibition of autophagy. Interestingly, inhibition of either autophagy or NADPH oxidase prevents intracellular chromatin decondensation, which is essential for NETosis and NET formation, and results in cell death characterized by hallmarks of apoptosis. These results indicate that apoptosis might function as a backup program for NETosis when autophagy or NADPH oxidase activity is prevented.  相似文献   

18.
Periodontitis is an inflammatory disease of the supporting structures of the teeth caused by, among other pathogens, Prevotella intermedia. Many strains of P. intermedia are resistant to killing by the human complement system, which is present at up to 70% of serum concentration in gingival crevicular fluid. Incubation of human serum with recombinant cysteine protease of P. intermedia (interpain A) resulted in a drastic decrease in bactericidal activity of the serum. Furthermore, a clinical strain 59 expressing interpain A was more serum-resistant than another clinical strain 57, which did not express interpain A, as determined by Western blotting. Moreover, in the presence of the cysteine protease inhibitor E64, the killing of strain 59 by human serum was enhanced. Importantly, we found that the majority of P. intermedia strains isolated from chronic and aggressive periodontitis carry and express the interpain A gene. The protective effect of interpain A against serum bactericidal activity was found to be attributable to its ability to inhibit all three complement pathways through the efficient degradation of the α-chain of C3—the major complement factor common to all three pathways. P. intermedia has been known to co-aggregate with P. gingivalis, which produce gingipains to efficiently degrade complement factors. Here, interpain A was found to have a synergistic effect with gingipains on complement degradation. In addition, interpain A was able to activate the C1 complex in serum, causing deposition of C1q on inert and bacterial surfaces, which may be important at initial stages of infection when local inflammatory reaction may be beneficial for a pathogen. Taken together, the newly characterized interpain A proteinase appears to be an important virulence factor of P. intermedia.  相似文献   

19.
Neutrophil extracellular traps (NETs) that bind invading microbes are pivotal for innate host defense. There is a growing body of evidence for the significance of NETs in the pathogenesis of infectious and inflammatory diseases, but the mechanism of NET formation remains unclear. Previous observation in neutrophils of chronic granulomatous disease (CGD) patients, which defect NADPH oxidase (Nox) and fail to produce reactive oxygen species (ROS), revealed that ROS contributed to the formation of NETs. However, the active species were not identified. In this study, we discovered that singlet oxygen, one of the ROS, mediated Nox-dependent NET formation upon stimulation with phorbol myristate acetate. We also revealed that singlet oxygen itself could induce NET formation by a distinct system generating singlet oxygen with porfimer sodium (Photofrin) in CGD neutrophils, as well as healthy neutrophils. This was independent of Nox activation. These results show that singlet oxygen is essential for NET formation, and provide novel insights into the pathogenesis of infectious and inflammatory diseases.  相似文献   

20.

Background

Trichinella spiralis expresses paramyosin (Ts-Pmy) as a defense mechanism. Ts-Pmy is a functional protein with binding activity to human complement C8 and C9 and thus plays a role in evading the attack of the host’s immune system. In the present study, the binding activity of Ts-Pmy to human complement C1q and its ability to inhibit classical complement activation were investigated.

Methods and Findings

The binding of recombinant and natural Ts-Pmy to human C1q were determined by ELISA, Far Western blotting and immunoprecipitation, respectively. Binding of recombinant Ts-Pmy (rTs-Pmy) to C1q inhibited C1q binding to IgM and consequently inhibited C3 deposition. The lysis of antibody-sensitized erythrocytes (EAs) elicited by the classical complement pathway was also inhibited in the presence of rTs-Pmy. In addition to inhibiting classical complement activation, rTs-Pmy also suppressed C1q binding to THP-1-derived macrophages, thereby reducing C1q-induced macrophages migration.

Conclusion

Our results suggest that T. spiralis paramyosin plays an important role in immune evasion by interfering with complement activation through binding to C1q in addition to C8 and C9.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号