首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In subjects with obesity and type 2 diabetes mellitus (T2DM), biliopancreatic diversion (BPD) improves glucose stimulated insulin secretion, whereas the effects on other secretion mechanisms are still unknown. Our objective was to evaluate the early effects of BPD on nonglucose‐stimulated insulin secretion. In 16 morbid obese subjects (9 with T2DM and 7 with normal fasting glucose (NFG)), we measured insulin secretion after glucose‐dependent arginine stimulation test and after intravenous glucose tolerance test (IVGTT) before and 1 month after BPD. After surgery the mean weight lost was 13% in both groups. The acute insulin response during IVGTT was improved in T2DM after BDP (from 55 ± 10 to 277 ± 91 pmol/l, P = 0.03). A reduction of insulin response to arginine was observed in NFG, whereas opposite was found in T2DM. In particular, acute insulin response to arginine at basal glucose concentrations (AIRbasal) was reduced but insulin response at 14 mmol/l of plasma glucose (AIR14) was increased. Therefore, after BPD any statistical difference in AIR14 between NFG and T2DM disappeared (1,032 ± 123 for NFG and 665 ± 236 pmol/l for T2DM, P = ns). The same was observed for SlopeAIR, a measure of glucose potentiation, reduced in T2DM before BPD but increased after surgery, when no statistically significant difference resulted compared with NFG (SlopeAIR after BPD: 78 ± 11 in NFG and 56 ± 18 pmol/l in T2DM, P = ns). In conclusion, in obese T2DM subjects 1 month after BPD we observed a great improvement of both glucose‐ and nonglucose‐stimulated insulin secretions. The mechanisms by which BDP improve insulin secretion are still unknown.  相似文献   

2.
Objective: Biliopancreatic diversion (BPD) restores normal glucose tolerance in a few weeks in morbid obese subjects with type 2 diabetes, improving insulin sensitivity. However, there is less known about the effects of BPD on insulin secretion. We tested the early effects of BPD on insulin secretion in obese subjects with and without type 2 diabetes. Methods and Procedures: Twenty‐one consecutive morbid obese subjects, 9 with type 2 diabetes (T2DM) and 12 with normal fasting glucose (NFG) were evaluated, just before and 1 month after BPD, by measuring body weight (BW), glucose, adipocitokines, homeostasis model assessment of insulin resistance (HOMA‐IR), acute insulin response (AIR) to e.v. glucose and the insulinogenic index adjusted for insulin resistance ([ΔI5/ΔG5]/HOMA‐IR). Results: Preoperatively, those with T2DM differed from those with NFG in showing higher levels of fasting glucose, reduced AIR (57.9 ± 29.5 vs. 644.9 ± 143.1 pmol/l, P < 0.01) and reduced adjusted insulinogenic index (1.0 ± 0.5 vs. 17.6 ± 3.9 1/mmol2, P < 0.001). One month following BPD, in both groups BW was reduced (by ~11%), but all subjects were still severely obese; HOMA‐IR and leptin decreased significanlty, while high‐molecular weight (HMW) adiponectin and adjusted insulinogenic index increased. In the T2DM group, fasting glucose returned to non‐diabetic values. AIR did not change in the NFG group, while in the T2DM group it showed a significant increase (from 58.0 ± 29.5 to 273.8 ± 47.2 pmol/l, P < 0.01). In the T2DM group, the AIR percentage variation from baseline was significantly related to changes in fasting glucose (r = 0.70, P = 0.02), suggesting an important relationship exists between impaired AIR and hyperglycaemia. Discussion: BPD is able to restore AIR in T2DM even just 1 month after surgery. AIR restoration is associated with normalization of fasting glucose concentrations.  相似文献   

3.
《Endocrine practice》2015,21(10):1143-1151
Objective: It is well known that inflammation is associated with diabetes, but it is unclear whether obesity mediates this association in individuals with youth-onset type 2 diabetes mellitus (T2DM-Y).Methods: We recruited individuals with T2DM-Y (age at onset <25 years) and age-matched normal glucose tolerance (NGT) subjects. Participants were further classified using Asia-Pacific body mass index cut-points for obesity and categorized as: nonobese NGT (n = 100), Obese NGT (n = 50), nonobese T2DM-Y (n = 50), and obese T2DM-Y (n = 50). We compared adipokines (adiponectin and leptin) and proinflammatory cytokines (tumor necrosis factor alpha &lsqb;TNF-α] and monocyte chemotactic protein-1 &lsqb;MCP-1]) across groups.Results: Compared to nonobese NGT, the other 3 groups (obese NGT, nonobese T2DM-Y, and obese T2DM-Y) were found to have lower adiponectin (7.7 vs. 5.7, 4.2, 3.8 μg/mL, P<.01), and higher leptin (3.6 vs. 5.4, 5.7, 7.9 μg/mL, P<.001) and MCP 1 (186 vs. 272, 340, 473 pg/mL, P<.001) respectively. However, TNF-α levels were higher only among nonobese T2DM-Y (112 pg/mL) and obese T2DM-Y (141 pg/mL, P<.01 for each). After adjusting for age, sex, waist, hypertension, homeostatic model assessment of insulin resistance (HOMA-IR), serum cholesterol, triglycerides, and family history of diabetes, adiponectin was associated with 33% and 41% lower odds of being nonobese T2DM and obese T2DM, respectively. However, adjusted for same factors, leptin, TNF-α, and MCP-1 were associated with markedly higher odds (5- to 14-fold) of nonobese and obese T2DM.Conclusion: In young Asian Indians, leptin and proinflammatory cytokines are positively, and adiponectin negatively, associated with both nonobese and obese T2DM-Y compared to nonobese NGT individuals.Abbreviations: BMI = body mass index CI = confidence interval FPG = fasting plasma glucose HOMA-IR = homeostatic model assessment of insulin resistance IGT = impaired glucose tolerance MCP-1 = monocyte chemotactic protein-1 NGT = normal glucose tolerance OGTT = oral glucose tolerance test OR = odds ratio T2DM-Y = youth-onset type 2 diabetes TNF-α = tumor necrosis factor-α  相似文献   

4.
Our aim was to study the potential mechanisms responsible for the improvement in glucose control in Type 2 diabetes (T2D) within days after Roux-en-Y gastric bypass (RYGB). Thirteen obese subjects with T2D and twelve matched subjects with normal glucose tolerance (NGT) were examined during a liquid meal before (Pre), 1 wk, 3 mo, and 1 yr after RYGB. Glucose, insulin, C-peptide, glucagon-like peptide-1 (GLP-1), glucose-dependent-insulinotropic polypeptide (GIP), and glucagon concentrations were measured. Insulin resistance (HOMA-IR), β-cell glucose sensitivity (β-GS), and disposition index (D(β-GS): β-GS × 1/HOMA-IR) were calculated. Within the first week after RYGB, fasting glucose [T2D Pre: 8.8 ± 2.3, 1 wk: 7.0 ± 1.2 (P < 0.001)], and insulin concentrations decreased significantly in both groups. At 129 min, glucose concentrations decreased in T2D [Pre: 11.4 ± 3, 1 wk: 8.2 ± 2 (P = 0.003)] but not in NGT. HOMA-IR decreased by 50% in both groups. β-GS increased in T2D [Pre: 1.03 ± 0.49, 1 wk: 1.70 ± 1.2, (P = 0.012)] but did not change in NGT. The increase in DI(β-GS) was 3-fold in T2D and 1.5-fold in NGT. After RYGB, glucagon secretion was increased in response to the meal. GIP secretion was unchanged, while GLP-1 secretion increased more than 10-fold in both groups. The changes induced by RYGB were sustained or further enhanced 3 mo and 1 yr after surgery. Improvement in glycemic control in T2D after RYGB occurs within days after surgery and is associated with increased insulin sensitivity and improved β-cell function, the latter of which may be explained by dramatic increases in GLP-1 secretion.  相似文献   

5.

Object

To detect the levels of plasma High-Mobility Group Box-1(HMGB1) in Chinese subject with obesity and type 2 diabetes mellitus (T2DM), and to investigate the correlations between plasma HMGB1 concentration and parameters of body fat, insulin resistance (IR) metabolism and inflammation.

Methods

This study recruited 79 normal glucose tolerance (NGT) subjects and 76 newly diagnosed T2DM patients. NGT and T2DM groups were divided into normal weight (NW) and obese (OB)subgroups respectively. Anthropometric parameters such as height, weight, waist circumference, hip circumference and blood pressure were measured. Plasma concentrations of HMGB1, IL-6, fasting plasma glucose (FPG), 2 hours post challenge plasma glucose (2hPG), serum lipid, glycated hemoglobin (HbA1C) and fasting insulin (FINS) were examined. The homeostasis model assessment (HOMA) was performed to assess IR status.

Results

Plasma HMGB1 levels were higher in T2DM group than that in NGT group. The concentrations of serum HMGB1 were also higher in subjects with OB than those in subjects with NW both in NGT and T2DM groups. Plasma levels of HMGB1 were positively correlated with waist hip ratio (WHR), blood pressure, FPG, FINS, HOMA-IR, TG, IL-6 and negatively correlated with HOMA-βand high-density lipoprotein-cholesterol (HDL-c) independent of age, gender and BMI. Plasma levels of HMGB1 were significantly correlated with diabetes in fully adjusted models.

Conclusion

Plasma HMGB1 levels were increased in Chinese subjects with pure T2DM, which might be caused by IR. Serum HMGB1 participated in the pathological process of obesity and T2DM via its proinflammatory effect.  相似文献   

6.

Background

Apelin is an adipokine that plays a role in the regulation of glucose homeostasis and in obesity. The relationship between apelin serum concentration and dysmetabolic conditions such as type 2 diabetes (T2D) is still controversial. Aims of our study are: 1) determine the circulating levels of apelin in a large cohort of Italian subjects with T2D, T1D and in non-diabetic controls; 2) identify putative metabolic determinants of modified apelin concentrations, in order to search possible mechanism of apelin control; 3) investigate changes in apelin levels in response to sharp modifications of glucose/insulin metabolism in T2D obese subjects before and 3 days after bariatric surgery.

Methods

We recruited 369 subjects, 119 with T2D, 113 with T1D and 137 non-diabetic controls. All subjects underwent a complete clinical examination, including anthropometric and laboratory measurements. Serum apelin levels were determined by EIA (immunoenzyme assay).

Results

Patients with T2D had significantly higher serum apelin levels compared to controls (1.23±1.1 ng/mL vs 0.91±0.7 ng/mL, P<0.001) and to T1D subjects (0.73±0.39 ng/mL, P<0.001). Controls and T1D subjects did not differ significantly in apelin levels. Apelin concentrations were directly associated with fasting blood glucose (FBG), body mass index (BMI), basal Disposition Index (DI-0), age, and diagnosis of T2D at bivariate correlation analysis. Multiple regression analysis confirmed that diagnosis of T2D, basal DI-0 and FBG were all determinants of serum apelin levels independently from age and BMI. Bariatric surgery performed in a subgroup of obese diabetic subjects (n = 12) resulted in a significant reduction of apelin concentrations compared to baseline levels (P = 0.01).

Conclusions

Our study demonstrates that T2D, but not T1D, is associated with increased serum apelin levels compared to non-diabetic subjects. This association is dependent on impaired glucose homeostasis, and disappears after bariatric surgery, providing further evidence regarding the relationship between apelin and the regulation of glucose metabolism.  相似文献   

7.
Visceral fat has been linked to insulin resistance and type 2 diabetes mellitus (T2DM); and emerging data links RBP4 gene expression in adipose tissue with insulin resistance. In this study, we examined RBP4 protein expression in omental adipose tissue obtained from 24 severely obese patients undergoing bariatric surgery, and 10 lean controls (4 males/6 females, BMI = 23.2 ± 1.5 kg/m2) undergoing elective abdominal surgeries. Twelve of the obese patients had T2DM (2 males/10 females, BMI: 44.7 ± 1.5 kg/m2) and 12 had normal glucose tolerance (NGT: 4 males/8 females, BMI: 47.6 ± 1.9 kg/m2). Adipose RBP4, glucose transport protein‐4 (GLUT4), and p85 protein expression were determined by western blot. Blood samples from the bariatric patients were analyzed for serum RBP4, total cholesterol, triglycerides, and glucose. Adipose RBP4 protein expression (NGT: 11.0 ± 0.6; T2DM: 11.8 ± 0.7; lean: 8.7 ± 0.8 arbitrary units) was significantly increased in both NGT (P = 0.03) and T2DM (P = 0.005), compared to lean controls. GLUT4 protein was decreased in both NGT (P = 0.02) and T2DM (P = 0.03), and p85 expression was increased in T2DM subjects, compared to NGT (P = 0.03) and lean controls (P = 0.003). Regression analysis showed a strong correlation between adipose RBP4 protein and BMI for all subjects, as well as between adipose RBP4 and fasting glucose levels in T2DM subjects (r = 0.76, P = 0.004). Further, in T2DM, serum RBP4 was correlated with p85 expression (r = 0.68, P = 0.01), and adipose RBP4 protein trended toward an association with p85 protein (r = 0.55, P = 0.06). These data suggest that RBP4 may regulate adiposity, and p85 expression in obese‐T2DM, thus providing a link to impaired insulin signaling and diabetes in severely obese patients.  相似文献   

8.

Objective

Recent studies suggested that secreted protein acidic and rich in cysteine (SPARC), a novel adipokine, is a key player in the pathology of obesity and type 2 diabetes. We aimed to determine whether concentrations of SPARC were altered in patients with gestational diabetes mellitus (GDM) compared to normal glucose tolerance (NGT) controls and to investigate the relationships between SPARC and metabolic parameters in pregnant women.

Design/Methods

Cross-sectional study of 120 pregnant women with GDM and 60 controls with NGT, in a university hospital setting. Plasma levels of SPARC, adiponectin, fibroblast growth factor 21 (FGF21), insulin and proinsulin were determined by ELISA.

Results

GDM women had higher SPARC and lower adiponectin than NGT subjects; no difference was found in FGF21. SPARC levels were the lowest in subjects in the third tertile of insulin sensitivity index (ISIOGTT) and correlated positively with pre-pregnant BMI, insulin and 3 h glucose during 100-g OGTT, HOMA-IR, fasting proinsulin, hsCRP and white blood cells count, and negatively with ISIOGTT, when adjusting for gestational age. Triglyceride (TG), Apolipoprotein A1, apolipoprotein B and lipoprotein (a) correlated with SPARC in partial Pearson correlation. Correlations between SPARC with adiponectin, systolic blood pressure and TG were marginally significant in partial Spearman correlation analysis. In multivariate regression analysis, SPARC was an independent negative indicator of ISIOGTT.

Conclusions

SPARC levels are correlated significantly with inflammation and may also be correlated with dyslipidemia and represent an independent determinant of insulin resistance in late pregnancy, indicating a potential role of SPARC in the pathophysiology of GDM.  相似文献   

9.
Objective: We studied plasma adiponectin, insulin sensitivity, and insulin secretion before and after oral glucose challenge in normal glucose tolerant, impaired glucose tolerant, and type 2 diabetic first degree relatives of African‐American patients with type 2 diabetes. Research Methods and Procedures: We studied 19 subjects with normal glucose tolerance (NGT), 8 with impaired glucose tolerance (IGT), and 14 with type 2 diabetes. Serum glucose, insulin, C‐peptide, and plasma adiponectin levels were measured before and 2 hours after oral glucose tolerance test. Homeostasis model assessment‐insulin resistance index (HOMA‐IR) and HOMA‐β cell function were calculated in each subject using HOMA. We empirically defined insulin sensitivity as HOMA‐IR < 2.68 and insulin resistance as HOMA‐IR > 2.68. Results: Subjects with IGT and type 2 diabetes were more insulin resistant (as assessed by HOMA‐IR) when compared with NGT subjects. Mean plasma fasting adiponectin levels were significantly lower in the type 2 diabetes group when compared with NGT and IGT groups. Plasma adiponectin levels were 2‐fold greater (11.09 ± 4.98 vs. 6.42 ± 3.3811 μg/mL) in insulin‐sensitive (HOMA‐IR, 1.74 ± 0.65) than in insulin‐resistant (HOMA‐IR, 5.12 ± 2.14) NGT subjects. Mean plasma adiponectin levels were significantly lower in the glucose tolerant, insulin‐resistant subjects than in the insulin sensitive NGT subjects and were comparable with those of the patients with newly diagnosed type 2 diabetes. We found significant inverse relationships of adiponectin with HOMA‐IR (r = ?0.502, p = 0.046) and with HOMA‐β cell function (r = ?0.498, p = 0.042) but not with the percentage body fat (r = ?0.368, p = 0.063), serum glucose, BMI, age, and glycosylated hemoglobin A1C (%A1C). Discussion: In summary, we found that plasma adiponectin levels were significantly lower in insulin‐resistant, non‐diabetic first degree relatives of African‐American patients with type 2 diabetes and in those with newly diagnosed type 2 diabetes. We conclude that a decreased plasma adiponectin and insulin resistance coexist in a genetically prone subset of first degree African‐American relatives before development of IGT and type 2 diabetes.  相似文献   

10.
Summary. Elevated plasma total homocysteine (tHcy) has been suggested to be an additional risk factor for cardiovascular disease in subjects with impaired glucose tolerance (IGT) and Type 2 diabetes (T2D). In order to investigate whether an insulin resistant/chronic hyperinsulinemic situation in male diabetic and prediabetic subjects directly influences the tHcy metabolism, fasting tHcy and post-methionine load tHcy plasma levels (PML-tHcy) were determined in 15 men with IGT, 13 men with newly dia-gnosed T2D, and 16 normoglycemic controls (NGT). Fasting tHcy (IGT, 13.1 ± 4.6; T2D, 12.8 ± 4.0; NGT, 10.7 ± 4.4 μmol/L) and PML-tHcy (IGT, 46.5 ± 17.39; T2D, 41.1 ± 6.8; NGT, 38.0 ± 9.7 μmol/L) showed no differences between the groups. Fasting tHcy and PML-tHcy correlated with fasting proinsulin (r = 0.395, p < 0.05; r = 0.386, p< 0.05) and creatinine (r = 0.489, p < 0.01; r = 0.339, p < 0.05), resp. Multiple regression analysis showed only a relationship between fasting tHcy and creatinine. No relationships have been found between fasting tHcy and PML-tHcy, resp., and indicators of an insulin resistant state, e.g., insulin and proinsulin, as well as serum cobalamin and folate concentrations. In conclusion, our data suggest that the degree of glucose intolerance has no direct impact on the metabolism of homocysteine. However, tHcy levels tend to be elevated with the development of nephropathy, indicating an association between tHcy and renal function in these subjects. Received May 11, 1999  相似文献   

11.
Gastric bypass surgery causes resolution of type 2 diabetes (T2DM), which has led to the hypothesis that upper gastrointestinal (UGI) tract diversion, itself, improves glycemic control. The purpose of this study was to determine whether UGI tract bypass without gastric exclusion has therapeutic effects in patients with T2DM. We performed a prospective trial to assess glucose and β-cell response to an oral glucose load before and at 6, 9, and 12 months after duodenal-jejunal bypass (DJB) surgery. Thirty-five overweight or obese adults (BMI: 27.0 ± 4.0 kg/m(2)) with T2DM and 35 sex-, age-, race-, and BMI-matched subjects with normal glucose tolerance (NGT) were studied. Subjects lost weight after surgery, which was greatest at 3 months (6.9 ± 4.9%) with subsequent regain to 4.2 ± 5.3% weight loss at 12 months after surgery. Glycated hemoglobin (HbA(1c)) decreased from 9.3 ± 1.6% before to 7.7 ± 2.0% at 12 months after surgery (P < 0.001), in conjunction with a 20% decrease in the use of diabetes medications (P < 0.05); 7 (20%) subjects achieved remission of diabetes (no medications and HbA(1c) <6.5%). The area under the curve after glucose ingestion was ~20% lower for glucose but doubled for insulin and C-peptide at 12 months, compared with pre-surgery values (all P < 0.01). However, the β-cell response was still 70% lower than subjects with NGT (P < 0.001). DJB surgery improves glycemic control and increases, but does not normalize the β-cell response to glucose ingestion. These findings suggest that altering the intestinal site of delivery of ingested nutrients has moderate therapeutic effects by improving β-cell function and glycemic control.  相似文献   

12.

Objective

Type 2 diabetes (T2DM) and obesity are associated with magnesium deficiency. We aimed to determine whether the presence of type 2 diabetes and the degree of metabolic control are related to low serum magnesium levels in obese individuals.

Methods

A) Case-control study: 200 obese subjects [50 with T2DM (cases) and 150 without diabetes (controls)] prospectively recruited. B) Interventional study: the effect of bariatric surgery on serum magnesium levels was examined in a subset of 120 obese subjects (40 with type 2 diabetes and 80 without diabetes).

Results

Type 2 diabetic patients showed lower serum magnesium levels [0.75±0.07 vs. 0.81±0.06 mmol/L; mean difference −0.06 (95% CI −0.09 to −0.04); p<0.001] than non-diabetic patients. Forty-eight percent of diabetic subjects, but only 15% of non-diabetic subjects showed a serum magnesium concentration lower than 0.75 mmol/L. Significant negative correlations between magnesium and fasting plasma glucose, HbA1c, HOMA-IR, and BMI were detected. Multiple linear regression analysis showed that fasting plasma glucose and HbA1c independently predicted serum magnesium. After bariatric surgery serum magnesium increased only in those patients in whom diabetes was resolved, but remain unchanged in those who not, without difference in loss weight between groups. Changes in serum magnesium negatively correlated with changes in fasting plasma glucose and HbA1c. Absolute changes in HbA1c independently predicted magnesium changes in the multiple linear regression analysis.

Conclusions

Our results provide evidence that the presence of diabetes and the degree of metabolic control are essential in accounting for the lower levels of magnesium that exist in obese subjects.  相似文献   

13.
This study aimed to identify potential immunological markers for predicting type 1 diabetes in patients with gestational diabetes mellitus (GDM) and any immunological impairment in their newborn. In 62 GDM patients and 74 women with normal glucose tolerance (NGT), and their babies, we assessed total lymphocytes, T lymphocyte subsets CD3 and CD8 expressing T cell receptor (TCR) alpha/beta or gamma/delta, CD16 and CD19, pancreatic autoantibodies and cytokines (IL-5, IL-2, soluble receptor IL-2). At delivery, umbilical cord blood samples were taken for lymphocyte subpopulations and cytokine measurements. GDM mothers had higher levels of total lymphocytes, CD8 expressing TCR gamma/delta, and lower levels of CD3 expressing TCR alpha/beta than NGT controls. Insulin-treated GDM mothers had lower CD4 and CD4/CD8 ratios, and higher CD8 and IL-5 than diet-treated GDM or controls. Five women were positive for pancreatic autoantibodies, with lower CD4 (p<0.01) and CD4/CD8 ratios (p<0.05), and higher CD8 (p<0.03) and CD19 than GDM and control mothers negative for autoantibodies. GDM newborn had higher CD8 gamma/delta and lower CD16 than NGT babies. There were no significant differences in TNF-alpha concentrations in the cord blood obtained from the GDM and NGT newborn. In conclusion, GDM women and their newborn have lymphocyte subset impairments, which are more important in patients positive for autoantibodies and/or treated with insulin.  相似文献   

14.
INTRODUCTION: Basal leptin level has been demonstrated to correlate positively with many indices of obesity, as well as insulin resistance. However, to date, little is known about regulation of leptin in obese children with incipient glucose metabolic disorders. OBJECTIVE: The aim of this study was to define the precise influence of the glucose tolerance status on plasma leptin in obese boys and girls separately. MATERIAL AND METHODS: 70 obese children with impaired glucose tolerance (IGT) and well-matched 70 normal glucose-tolerant (NGT) subjects were examined. Fasting and 2-h post glucose load plasma glucose and insulin levels as well as fasting leptin levels were determined, apart from anthropometric measurements. RESULTS: Leptin levels were significantly lower in girls with IGT compared to NGT girl (17.7+/-6.5 microg/L vs. 23.1+/-7.7 microg/L; p<.001). No such difference was observed in boys. In a multiple regression analysis adjusting for age and adiposity, in the female group plasma glucose and insulin levels 2-h after glucose load were the best predictors of fasting plasma leptin (r=-0.49, p<.005 and r=0.34, p<.05; respectively). In boys, plasma insulin level 2-h after glucose load was the independent determinant of leptin (r=0.36, p<.05). CONCLUSION: The differences between regulation of leptin synthesis in girls and boys with simple obesity were found. The stimulatory effect of insulin on leptin synthesis was greater in girls with normoglycemia than in girls with impaired glucose tolerance.  相似文献   

15.
INTRODUCTION: Basal leptin level has been demonstrated to correlate positively with many indices of obesity, as well as insulin resistance. However, to date, little is known about regulation of leptin in obese children with incipient glucose metabolic disorders. OBJECTIVE: The aim of this study was to define the precise influence of the glucose tolerance status on plasma leptin in obese boys and girls separately. MATERIAL AND METHODS: 70 obese children with impaired glucose tolerance (IGT) and well-matched 70 normal glucose-tolerant (NGT) subjects were examined. Fasting and 2-h post glucose load plasma glucose and insulin levels as well as fasting leptin levels were determined, apart from anthropometric measurements. RESULTS: Leptin levels were significantly lower in girls with IGT compared to NGT girl (17.7+/-6.5 microg/L vs. 23.1+/-7.7 microg/L; p<.001). No such difference was observed in boys. In a multiple regression analysis adjusting for age and adiposity, in the female group plasma glucose and insulin levels 2-h after glucose load were the best predictors of fasting plasma leptin (r=-0.49, p<.005 and r=0.34, p<.05; respectively). In boys, plasma insulin level 2-h after glucose load was the independent determinant of leptin (r=0.36, p<.05). CONCLUSION: The differences between regulation of leptin synthesis in girls and boys with simple obesity were found. The stimulatory effect of insulin on leptin synthesis was greater in girls with normoglycemia than in girls with impaired glucose tolerance.  相似文献   

16.

Context

Lipotoxicity is a risk factor for developing obesity-related metabolic complications, including non-alcoholic fatty liver disease, type 2 diabetes (DM2), cardiovascular disease and stroke. Yet, the mechanisms underlying the development of lipotoxicity itself remain poorly understood. Here, we investigated whether glucose intolerance aggravates lipotoxicity by evaluating the association between triglyceride (TG) concentrations and glucose tolerance status in a cross-sectional study on obese Caucasian women at risk for DM2.

Methods

913 obese females unknown to have diabetes were recruited (mean age: 41.2±SD 12.3; median BMI: 36.2, IQR 32.9–40.2). Visceral (VAT) and subcutaneous abdominal adipose tissue volumes were quantified with computed tomography. Glucose, insulin, and triglyceride concentrations were determined in fasting state and following a 75 gram oral glucose tolerance test.

Results

Based on fasting and 2 h post-load glucose levels, 27% of the women had impaired glucose tolerance (IGT), and 8% had newly diagnosed DM2. Fasting TG concentrations were similar between the IGT- and DM2-groups, and increased as compared to women with normal glucose tolerance (NGT). Even when adjusting for age, hip circumference and VAT, fasting TG concentrations remained elevated as compared to NGT. Mixed modelling analysis of post-load responses showed that TG concentrations declined more slowly in the DM2-group as compared to IGT and NGT. However, when adjusting for VAT the difference in decline between the glucose tolerance groups disappeared.

Conclusions

Glucose intolerance associates with elevated fasting TG concentrations in obese Caucasian women. We propose that glucose intolerance and increased VAT reduce lipid disposal mechanisms and may accelerate lipotoxicity.  相似文献   

17.

Aim

Altered adipokine serum concentrations early reflect impaired adipose tissue function in obese patients with type 2 diabetes (T2D). It is not entirely clear whether these adipokine alterations are already present in prediabetic states and so far there is no comprehensive adipokine panel available. Therefore, the aim of this study was to assess distinct adipokine profiles in patients with normal glucose tolerance (NGT), impaired fasting glucose (IFG), impaired glucose tolerance (IGT) or T2D.

Methods

Based on 75 g oral glucose tolerance tests, 124 individuals were divided into groups of IFG (n = 35), IGT (n = 45), or NGT (n = 43). Furthermore, 56 subjects with T2D were included. Serum concentrations of adiponectin, chemerin, fetuin-A, leptin, interleukin (IL)-6, retinol-binding protein 4 (RBP4), monocyte chemoattractant protein (MCP)-1, vaspin, progranulin, and soluble leptin receptor (sOBR) were measured by ELISAs.

Results

Chemerin, progranulin, fetuin-A, and RBP4, IL-6, adiponectin and leptin serum concentrations were differentially regulated among the four investigated groups but only circulating chemerin was significantly different in patients with IGT compared to those with IFG. Compared to T2D the IFG subjects had higher serum chemerin, progranulin, fetuin-A and RBP4 levels which was not detectable in the comparison of the T2D and IGT group.

Conclusion

Alterations in adipokine serum concentrations are already detectable in prediabetic states, mainly for chemerin, and may reflect adipose tissue dysfunction as an early pathogenetic event in T2D development. In addition, distinct adipokine serum patterns in individuals with IFG and IGT suggest a specific role of adipose tissue in the pathogenesis of these prediabetic states.  相似文献   

18.

Aims/hypothesis

Betatrophin has recently been introduced as a novel hormone and promotor of beta cell proliferation and improved glucose tolerance in mouse models of insulin resistance. In obese and diabetic humans altered levels were reported and a role in pathophysiology of metabolic diseases was therefore hypothesized. However its release and regulation in women with gestational diabetes mellitus (GDM), as well as its associations with markers of obesity, glucose and lipid metabolism during pregnancy still remain unclear.

Methods

Circulating betatrophin was quantified in 21 women with GDM and 19 pregnant body mass index-matched women with normal glucose tolerance (NGT) as well as 10 healthy age-matched non-pregnant women by enzyme-linked immunosorbent assay. Additionally we performed radioimmunassay (RIA) to confirm the results.

Results

Betatrophin concentrations measured by ELISA were significantly higher in GDM than in NGT (29.3±4.4 ng/ml vs. 18.1±8.7 ng/ml, p<0.001) which was confirmed by RIA. Betatrophin did not correlate with BMI or insulin resistance but showed a weak association with leptin levels in pregnancy and negative relationship with fasting C-peptide levels in all women. Moreover it correlated significantly with lipid parameters including triglycerides and total cholesterol in pregnancy, as well as estrogen, progesteron and birth weight.

Conclusions/interpretation

Circulating betatrophin concentrations are dramatically increased in pregnancy and are significantly higher in GDM versus pregnant NGT. In the light of the previously reported role in lipid metabolism, betatrophin may represent a novel endocrine regulator of lipid alterations in pregnancy. However additional studies are needed to elucidate whether hormonal factors, such as estrogen, control the production of betatrophin and if targeting betatrophin could hold promise in the fight against metabolic disease.  相似文献   

19.
The levels of glucose, immunoreactive insulin and C-peptide were studied in 13 obese patients and 10 control subjects, in basal conditions and after an oral glucose load (OGTT). The IRI and C-peptide levels were higher in the obese patients than in the controls either during fasting or during the OGTT. The C-peptide/IRI ratio decreased after the oral glucose load in both groups studied. However in the obese subjects the values for the C-peptide/IRI ratio were lower than those found in the controls during the same observation period. These results suggest the hypothesis that in the obese patients the high IRI levels which reflect an increased insulin secretion, are, at least in part, due to an early saturation of the hepatic degradation of insulin and/or to a decrease in the specific receptor sites normally present in the cell membranes.  相似文献   

20.
The altered plasma statuses of selected minerals (Ca, Mg, Cu, Zn) have been noted in a cluster of insulin resistance syndromes, including hypertension and diabetes mellitus. The differences in plasma values of these minerals in hypertensive men with and without insulin resistance, as evaluated by an insulin suppression test, were investigated. The results showed that the plasma values of determined minerals at fasting, 2 h after an oral glucose challenge, and after the insulin suppression test did not markedly differ between hypertensive subjects with and without insulin resistance. However, hypertensive subjects had significantly lower plasma Ca values at fasting and 2h after an oral glucose load, and higher fasting plasma Zn values, than normotensive controls. Hypertensive subjects also had higher steady-state plasma glucose values, higher Zn and lower Mg and Cu values after the insulin suppression test, when compared with controls. The present study suggests that altered plasma status of selected minerals in hypertension cannot be totally ascribed to the coexhibition of insulin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号